
A solution to the learning dilemma for recurrent networks of

spiking neurons

Guillaume Bellec1,◦, Franz Scherr1,◦, Anand Subramoney1,

Elias Hajek1, Darjan Salaj1, Robert Legenstein1, Wolfgang Maass1,∗

1Institute of Theoretical Computer Science, Graz University of Technology,
Inffeldgasse 16b, Graz, Austria

◦ Equal contributions.
∗ To whom correspondence should be addressed; E-mail: maass@igi.tugraz.at.

Abstract

Recurrently connected networks of spiking neurons underlie the astounding information
processing capabilities of the brain. But in spite of extensive research, it has remained open
how learning through synaptic plasticity could be organized in such networks. We argue that
two pieces of this puzzle were provided by experimental data from neuroscience. A new math-
ematical insight tells us how they need to be combined to enable network learning through
gradient descent. The resulting learning method – called e-prop – approaches the performance
of BPTT (backpropagation through time), the best known method for training recurrent neu-
ral networks in machine learning. But in contrast to BPTT, e-prop is biologically plausible.
In addition, it elucidates how brain-inspired new computer chips – that are drastically more
energy efficient – can be enabled to learn.

Introduction

Networks of neurons in the brain differ in at least two essential aspects from deep networks
in machine learning: They are recurrently connected by synapses, forming a giant number of
loops, and they communicate via asynchronously emitted stereotypical electrical pulses, called
spikes, rather than bits or numbers that are produced in a synchronized manner by each layer.
Models that capture primary information processing capabilities of spiking neurons in the
brain are well known, and we consider the arguably most prominent one: leaky integrate-and-
fire (LIF) neurons, where spikes that arrive from other neurons through synaptic connections
are multiplied with the corresponding synaptic weight, and are linearly integrated by a leaky
membrane potential. The neuron fires – i.e., emits a spike – when the membrane potential
reaches a firing threshold.

An important open problem is how recurrent networks of spiking neurons (RSNNs) can
learn, i.e., how their synaptic weights can be modified by local rules for synaptic plasticity
so that the computational performance of the network improves. In deep learning this prob-
lem is solved for feedforward networks through gradient descent for a loss function E that
measures imperfections of current network performance (LeCun et al., 2015). Gradients of
E are propagated backwards through all layers of the feedforward networks to each synapse
through a process called backpropagation. Recurrently connected networks can compute more
efficiently because each neuron can participate several times in a network computation, and
they are able to solve tasks that require integration of information over time and a suitable
timing of network outputs according to task demands. But since a synaptic weight can af-
fect the network computation at several time points during a computation, its impact on the
loss function (see Fig. 1A) is more indirect, and learning through gradient descent becomes

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


substantially more difficult in a recurrent network. In machine learning one had solved this
problem 30 years ago by unrolling a recurrent network into a virtual feedforward network, see
Fig. 1B, and applying the backpropagation algorithm to it (Fig. 1C). This learning method
for recurrent neural networks is called backpropagation through time (BPTT ).

We show that with a careful choice of the pseudo-derivative for handling the discontinuous
dynamics of spiking neurons one can apply this learning method also to RSNNs, yielding the
by far best performing learning algorithm for such networks (see Huh and Sejnowski (2018) for
related preceding results). But the dilemma is that BPTT requires storing the intermediate
states of all neurons during a network computation, and to merge these in a subsequent offline
process with gradients that are computed backwards in time (see Fig. 1C and Movie S2). This
makes it very unlikely that BPTT is used by the brain (Lillicrap and Santoro, 2019). This
dilemma is exacerbated by the fact that neurons in the brain have a repertoire of additional
internal dynamic processes on slower time scales that are not reflected in the LIF model, but
which are likely to contribute to the superior capabilities of RSNNs in the brain to compute
in the temporal domain. In fact, even in machine learning one uses special types of neuron
models, called LSTM (Long Short-Term Memory) units, in order to handle such tasks. But
any neuron model that has additional internal processes, and hence more hidden variables
that capture their current state, makes learning in a recurrent network of such neurons even
more difficult.

We present an approach for solving this dilemma: e-prop (Fig. 1D and 1E, see Movie S3).
It can be applied not only to RSNNs, but also to recurrent networks of LSTM units and most
other types of recurrent neural networks. We focus on the application of e-prop to RSNNs
that have, besides LIF neurons, also a more sophisticated form of LIF neurons, called ALIF
neurons. An ALIF neuron has a second hidden variable besides its membrane potential: an
adaptive firing threshold. The firing threshold of an ALIF neuron increases through each ot its
spikes and decays back to a resting value between spikes. This models firing rate adaptation, a
well known feature of a fraction of neurons in the brain (Allen Institute: Cell Types Database,
2018) that dampens their firing activity. We refer to an RSNN that contains a fraction of
ALIF neurons as a Long short-term memory Spiking Neural Network (LSNN), because we
show that ALIF neurons provide a qualitative jump in temporal computing capabilities of
RSNNs, allowing RSNNs to approach for the first time the performance of LSTM networks
in machine learning for temporal processing tasks.

E-prop is motivated by two streams of experimental data from neuroscience that can be
seen as providing hints how the brain solves the learning dilemma for RSNNs:

i) The dynamics of neurons in the brain is enriched by continuously ongoing updates of
traces of past activity on the molecular level, for example in the form of calcium ions
or activated CaMKII enzymes(Sanhueza and Lisman, 2013). These traces in particular
record events where the presynaptic neuron fired before the postsynaptic neuron, which
is known to induce Hebbian-like STDP (spike timing dependent plasticity) if followed
by a top-down learning signal (Cassenaer and Laurent, 2012; Yagishita et al., 2014;
Gerstner et al., 2018). We refer to local traces of this type as eligibility traces in our
learning model.

ii) In the brain there exists an abundance of top-down signals such as dopamine and acetyl-
choline, to name only a few, that inform local populations of neurons about sub-optimal
performance of brain computations. Interestingly some of these signals are of a predic-
tive nature, e.g. they predict upcoming rewards in the case of dopamine or movement
errors in the case of the error-related negativity (ERN), see MacLean et al. (2015). Fur-
thermore both dopamine signals (Engelhard et al., 2019; Roeper, 2013) and ERN-related
neural firing (Sajad et al., 2019) are reported to be specific for a target population of
neurons, rather than global. We refer to such top-down signals as learning signals in our
learning model.

Our re-analysis of the mathematical basis of gradient descent in recurrent neural networks
in equ. (1) tells us how eligibility traces and learning signals need to be combined to produce
network learning through gradient descent – without backprogation of signals through time
or retrograde through synaptic connections. We will show that the resulting new learning
method, e-prop, approximates the performance of BPTT for RSNNs, thereby providing a
solution to the learning dilemma for RSNNs. We demonstrate this on tasks for supervised

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 1: (Caption on the next page.)

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 1: Schemes for RSNNs, BPTT, and e-prop. A) RSNN with network inputs x, neuron
spikes z, and output targets y∗, for each time step t of the RSNN computation. Output neurons y
provide a low-pass filter of network spike z. B) BPTT computes gradient in the unrolled version of
the network. It has a copy of all neurons of the RSNN for each time step t. A synaptic connection
from neuron i to neuron j of the RSNN is replaced by an array of feedforward connections, one for
each time step t, that goes from the copy of neuron i in the layer for time step t to a copy of neuron
j in the layer for time step t + 1. All synapses in this array have the same weight: the weight of
this synaptic connection in the RSNN. C) Loss gradients of BPTT are propagated backwards in
time and retrograde across synapses in an offline manner, long after the forward computation has
passed a layer. D) Online learning dynamics of e-prop. Feedforward computation of eligibility
traces is indicated in blue. These are combined with online learning signals according to equ.
(1). E) Illustration of the dynamics of ALIF neurons and e-prop. Observable variables (spikes)
zt and hidden variables of an ALIF neuron, slow factor εtji,a (equation (22)) of the eligibility
trace etji (equation (23)) of the synapse from neuron i to neuron j, as well as a learning signal
Lt
j and the resulting online weight change proposed by e-prop. In this case a late activation of a

learning signal, such as dopamine in the experiments of Yagishita et al. (2014), it transforms the
eligibility trace into the modification of the synaptic weight. The dashed curve above the plot of
εtji,a shows an easily computable approximation (see equation (24)) of εtji,a as low-pass filter of
STDP-inducing spiking events that can be used for an approximation of e-prop.

learning (Fig. 2,3) and reinforcement learning (Fig. 4). None of these tasks were previously
known to be solvable by RSNNs.

The previously described learning dilemma for RSNNs also affects the development of
new, brain inspired computing hardware, which aims at a drastic reduction in the energy
consumption of computing and learning. Resulting new designs of computer chips, such as
Intel’s Loihi (Davies et al., 2018), are usually focused on RSNN architectures. On-chip learn-
ing capability for these RSNNs in the hardware is essential. Although it does not matter
here whether the learning algorithm is biologically plausible, the excessive storage and offline
processing demands of BPTT make this option unappealing for such novel computing hard-
ware also. Hence a corresponding learning dilemma exists also there. E-prop does not contain
any features that make it unlikely to be implementable on such neuromorphic chips, thereby
promising a solution also for this learning dilemma.

Results

Mathematical basis for e-prop

Spikes are modeled as binary variables ztj that assume value 1 if neuron j fires at time t,
otherwise value 0. It is common to let t vary over small discrete time steps, e.g. of 1ms
length. The goal of network learning is to find synaptic weights W that minimize a given loss
function E. E may depend on all or a subset of the spikes in the network. E measures in
the case of regression or classification learning the deviation of the actual output ytk of each
output neuron k at time t from its given target value y∗,tk (Fig. 1A). In reinforcement learning
(RL), the goal is to optimize the behavior of an agent in order to maximize obtained rewards.
In this case, E measures deficiencies of the current agent policy to collect rewards.

The gradient dE
dWji

for the weight Wji of the synapse from neuron i to neuron j tells us

how this weight should be changed in order to reduce E. The key observation for e-prop (see
proof in Methods) is that this gradient can be represented as a sum over the time steps t of the
RSNN computation: A sum of products of learning signals Ltj (specific for the post-synaptic
neuron j of the corresponding synapse) and synapse-specific eligibility traces etji:

dE

dWji
=
∑
t

Ltj e
t
ji . (1)

The ideal value of Ltj is the derivative dE
dztj

, which tells us how the current spike output ztj of

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


neuron j affects E. In contrast, the eligibility trace etji does not depend on E, but on the
internal dynamics of neuron j and the spikes of neuron i. It tells us how a change of the
weight Wji would affect the spike output ztj when considering the history of the interaction
of i and j and ignoring other connections in the network (see equation (S2)).

We view (1) as a program for online learning: In order to reduce E, change at each step t of
the network computation all synaptic weights Wji proportionally to −Ltjetji (see Fig. 1E for an
illustration). There is no need to explicitly compute or store the sum (1), or to wait for later
signals. Hence e-prop is an online learning method in a strict sense (see Fig. 1D and Movie S3).
In particular, there is no need to unroll the network as for BPTT. Furthermore, in contrast to
the previously known real time recurrent learning algorithm (RTRL, see Williams and Zipser
(1989) and Methods), which substantially increases the required number of multiplications as
function of network size, e-prop is – up to a constant factor – not more costly than the RSNN
computation itself. This is obviously an important issue both for biological plausibility and
neuromorphic implementations.

Since the ideal value dE
dztj

of the learning signal Ltj also captures influences which the current

spike output ztj of neuron j may have on E via future spikes of other neurons, its precise value
is in general not available at time t. We replace it by an approximation that ignores these
indirect influences: Only currently arising errors at the output neurons k of the RSNN are
taken into account, and are routed with neuron-specific weights Bjk to the network neurons
j, (see Fig. 2A):

Ltj =
∑
k

Bjk (ytk − y∗,tk )︸ ︷︷ ︸
error of output k

at time t

. (2)

Although this signal Ltj only captures errors that arise at the current time step t, it is combined
in equation (1) with an eligibility trace etji that may reach far back into the past of the target
neuron j (see Fig.1E). In this way e-prop alleviates the need to propagate signals backwards
in time.

There are several strategies for choosing the weights Bjk for this online learning signal.
In symmetric e-prop we set it equal to the corresponding output weight W out

kj from neuron j
to output neuron k. This learning signal is closest to the theory, and would be theoretically
optimal in the absence of recurrent connections. Biologically more plausible are two variants
that avoid weight sharing: If all network neurons j are connected to output neurons k, we let
Bjk evolve in adaptive e-prop through a simple local plasticity rule that mirrors the plasticity
rule applied to W out

kj . In random e-prop the values of the weights Bjk are randomly chosen
and remain fixed, similar to broadcast alignment for feedforward networks (Lillicrap et al.,
2016; Nøkland, 2016). Resulting synaptic plasticity rules (see Methods) look very similar
to previously proposed plasticity rules (Gerstner et al., 2018). In particular they involve
postsynaptic depolarization as one of the factors, similarly as the data-based rule in Clopath
et al. (2010), see section S6 in the supplement for an analysis.

We finally would like to mention that the Learning-to-Learn approach can be used to
train a separate neural network to generate – instead of the previously considered options –
tailormade learning signals for a limited range of potential learning tasks. This variation of
e-prop enables for example one-shot learning of new arm movements (Bellec et al., 2019).

Comparing the performance of e-prop and BPTT on a common
benchmark task

The speech recognition task TIMIT (Garofolo et al., 1993) is one of the most commonly used
benchmarks for temporal processing capabilities of different types of recurrent neural networks
and different learning approaches Greff et al. (2017). It comes in two versions. Both use, as
input, acoustic speech signals from sentences that are spoken by 630 speakers from 8 dialect
regions of the USA (see the top of Fig. 2B for a sample segment). In the simpler version, used
for example in Greff et al. (2017), the goal is to recognize which of 61 phonemes is spoken
in each 10 ms time frame (“frame-wise classification”). In the harder version from Graves
et al. (2013), which achieved an essential step toward human-level performance in speech-
to-text transcription, the goal is to recognize the sequence of phonemes in the entire spoken
sentence independently of their timing (“sequence transcription”). E-prop approximates the
performance of BPTT on LSNNs for both versions of TIMIT very well, as shown in Fig. 2C.

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 2: Comparison of the performance of BPTT and e-prop on TIMIT. A) Network
architecture for e-prop, illustrated for an LSNN consisting of LIF and ALIF neurons. B) Input
and target output for the two versions of TIMIT. C) Performance of BPTT and the three versions
of e-prop for LSNNs consisting of 800 neurons for framewise targets and 2400 for sequence targets.

For the more difficult version of TIMIT we trained as in Graves et al. (2013) a complex LSNN
consisting of a feedforward sequence of three recurrent networks. Our results show that e-prop
can also handle learning for such more complex network structures very well. In Fig. S2 we
show for comparison also the performance of LSTM networks. These data show that for both
versions of TIMIT the performance of LSNNs comes rather close to that of LSTM networks.
This has previously not been demonstrated for any type of RSNN with any learning method
on a real-world benchmark task for temporal processing. Furthermore LSNNs could solve
the frame-wise classification task without any neuron firing more frequently than 12Hz (spike
count taken over 32 spoken sentences), demonstrating that they operate in an energy efficient
spike-coding, rather than a rate-coding regime. The FORCE method of Nicola and Clopath
(2017) is the best performing previously known learning method for RSNNs. However this
learning method was not argued to be biologically realistic, since the plasticity rule for each
synaptic weight required knowledge of the current values of all other synaptic weights in the
RSNNs. It was applied in Nicola and Clopath (2017) to supervised learning of several pattern
generation task. We show in Figs. S1 and S5 that RSNNs can learn such tasks also with
e-prop, hence without the biologically unrealistic feature of FORCE. We show in Fig S2 that
e-prop can not only be applied to RSNNs, but also to LSTM networks – and many other
types of recurrent networks – that fit under the quite general model discussed in Methods.
Furthermore, e-prop approximates the performance of BPTT very well for LSTM networks
as well (Fig. S2).

E-prop performance for a task where temporal credit assignment
is difficult

A hallmark of cognitive computations in the brain is the capability to go beyond a purely
reactive mode, to integrate diverse sensory cues over time, and to wait until the right moment
arrives for an action. A large number of experiments in neuroscience analyze neural coding
after learning for such tasks. But it had remained unknown how one can model the underlying
learning processes in RSNNs of the brain. We wondered whether e-prop can fill this void. As
an example we consider the task that was studied in the experiments of Morcos and Harvey
(2016) and Engelhard et al. (2019). There a rodent learnt to run along a linear track in a
virtual environment, where it encountered several visual cues on the left and right, see Fig. 3A
and Movie S2. Later, when it arrived at a T-junction, it had to decide whether to turn left or
right. It was rewarded when it turned to that side from which it had previously received the

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 3: Solving a task with difficult temporal credit assignment by e-prop. A) Setup
of corresponding rodent experiments of Morcos and Harvey (2016) and Engelhard et al. (2019),
see Movie S2. B) Input spikes, internal spiking activity of 10 out of 50 sample LIF neurons and
10 out of 50 sample ALIF neurons, softmax output, sample learning signals and samples of slow
components of eligibility traces in the bottom row. C) Learning curves for BPTT and two e-prop
versions. D) Correlation between the broadcast weights Bjk for k = left/right for learning signals
in random e-prop and sensitivity to “left” and “right” input components after learning. fj,left
(fj,right) is the resulting average firing rate of neuron j during presentation of left (right) cues after
learning.

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


majority of visual cues. This task is not easy to learn since the subject needs to find out that
it does not matter on which side the last cue was, or in which order the cues were presented.
Instead, the subject has to learn to count cues separately for each side and to compare the
two resulting numbers. Furthermore the cues need to be processed long before a reward is
given. We show in Fig. S4 that LSNNs can learn this task through reward-based e-prop. But
since the solution provided by e-prop to the temporal credit assignment problem is easier to
explain with the supervised learning variation of this task, we discuss below the case where
a teacher tells the subject at the end of each trial what would have been the right decision.
This still yields a really challenging scenario for e-prop since non-zero learning signals Ltj arise
only during the last 150ms of a trial (Fig. 3B). Hence all synaptic plasticity of e-prop has to
take place during these last 150ms, long after the relevant computations on input cues had
been carried out. The result of training an LSNN with BPTT and e-prop for solving this
task is shown in Fig. 3C (illustrated in Movies S3 and S4). Whereas this task can not even
be solved by BPTT with a regular RSNN that has no adapting neurons (red curve), all 3
previously discussed variations of e-prop can solve it if the RSNN contains adapting neurons.
We also explain in section S2.4 how this task can be solved for sparsely connected LSNNs
when biologically inspired stochastic rewiring (Kappel et al., 2018) is integrated into e-prop.

But how can the neurons in the LSNN learn to record and count the input cues if all
the learning signals are identically 0 until the last 150ms (5th row of Fig. 3B)? The solution
is indicated in the bottom row of Fig. 3B: The slow component εtji,a (equation (22)) of the
eligibility traces eji of adapting neurons j decays with the long time constant of firing rate
adaptation (see equation (27) and Movie S4), that typically lies in the range of seconds. Since
these traces stretch from the beginning of the trial into its last phase, they enable assignment
of credit to firing events that happened over 1000 ms ago. Fig. 3D provides insight into the
functional role of the broadcast weights of random e-prop in this context: The difference of
these weights determines for each neuron j whether it learns to respond in the first phase
of a trial more to cues from the left or right. This observation suggests that neuron-specific
learning signals for RSNNs have the advantage that they can create a variety of feature
detectors for task-relevant network inputs. Hence a suitable weighted sum of these feature
detectors is able to cancel remaining errors at the network output, similarly as in the case of
feedforward networks (Lillicrap et al., 2016).

Reward-based e-prop

Deep RL has recently produced really powerful results in machine learning and AI through
clever applications of BPTT to RL (Mnih et al., 2016). We found that one of the arguably
most powerful RL methods within the range of deep RL approaches that are not directly
biologically implausible, policy gradient in combination with actor-critic, can be implemented
with e-prop. This yields the biologically plausible RL algorithm reward-based e-prop. The
LSNN learns through reward-based e-prop both an approximation to the value function and
a stochastic policy. Neuron-specific learning signals are combined in reward-based e-prop
with a global signal that transmits reward prediction errors (Fig. S3). In contrast to the
supervised case where the learning signals depend on the deviation from an external target
signal, the learning signals here are emitted when an action is taken and they express here how
much this action deviates from the action mean that is currently proposed by the network.
We show in Methods that reward-based e-prop yields local reward-based rules for synaptic
plasticity that are in many aspects similar to ones that have previously been discussed in the
literature (Gerstner et al., 2018). But those previously proposed rules estimated gradients of
the policy essentially by correlating the noisy output of network neurons with rewards, which
is known to be inefficient due to noisy gradient estimates. In contrast, reward-based e-prop
computes policy- and value-gradients by approximating BPTT, which is one of the pillars of
modern deep RL.

We tested reward-based e-prop on a task that captures the essence of numerous learning
experiments in systems neuroscience: A delayed goal-directed movement has to be learnt,
consisting of a sequence of many 2-dimensional continuous motor commands, each of them
being only loosely linked to rewards. We chose a setup where the agent first receives a spatial
goal cue (Fig. 4A), then has to control the angles of a two-joint arm during a delay so that its
tip remains – in spite of motor noise that result from the stochastic policy – within a center

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 4: Application of e-prop to RL. A) Scheme of the delayed arm movement task. The
red arrow points to the formerly visible goal. The arm always starts moving from the center of the
circle. B) Resulting arm movement in three sample trials after learning. The orange dot indicates
the position of the tip of the arm at the end of the delay period. C) Performance of reward-based
random e-prop and of a control where e-prop is replaced by BPTT, both for an LSNN consisting
of 350 LIF and 150 ALIF neurons. Solid curves show the mean over 5 different runs, and shaded
area indicates 1 standard deviation.

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


region (indicated by a dotted circle) in order to avoid small negative rewards, until it receives
a go-cue (see Movie S5). The agent then has to move the tip of the arm to the location of
the initial goal cue in order to receive a reward. Note that no forward- or inverse model of
the arm was given to the LSNN, it had to learn those implicitly. This task had so far been
beyond the reach of biologically plausible learning, for any type of neural network model.

Three sample trials after learning are shown in Fig. 4B (and in Movie S6). Fig. 4C shows
that reward-based e-prop is able to solve this demanding RL task about as well as policy
gradient with biologically implausible BPTT. We conjecture that variants of reward-based
e-prop will be able to solve most RL tasks that can be solved by online actor-critic methods
in machine learning.

Discussion

We propose that in order to understand the computational function and neural coding of
higher brain areas, one needs to understand the organization of the plasticity mechanisms
that install and maintain the computational functions of the underlying RSNNs. So far BPTT
was the only candidate for that, since no other learning method provided sufficiently powerful
computational function to RSNN models. But since BPTT is not viewed to be biologically
realistic (Lillicrap and Santoro, 2019), it does not help us to understand the organization of
synaptic plasticity in RSNNs of the brain. E-prop offers a solution to this dilemma, since it
does not require biologically unrealistic mechanisms, but still enables RSNNs to learn difficult
computational tasks almost as well as BPTT. Furthermore it enables RSNNs to solve these
tasks in an energy efficient sparse firing regime, rather than resorting to rate coding. In
particular, we have shown in Fig. 3 and 4 that e-prop enables us to model for the first
time the learning processes in RSNNs of the brain that underlie the emergence of complex
behaviors in key experiments of systems neuroscience.

E-prop relies on two types of signals that are abundandly available in the brain, but whose
precise role for learning have not yet been understood: eligibility traces and learning signals.
Since e-prop is based on a transparent mathematical principle, it provides a normative model
for both types of signals, as well as for synaptic plasticity rules. In particular, it suggests
a new rule for the organization of eligibility traces: that the time constant of the eligibility
trace for a synapse is correlated with the time constant for the history-dependence of the firing
activity of the postsynaptic neuron. It also suggests that the experimentally found diverse
time constants of the firing activity of populations of neurons in different brain areas (Runyan
et al., 2017) are correlated with their capability to handle corresponding ranges of delays in
temporal credit assignment for learning. Finally, e-prop theory suggests that learning signals
for different populations of neurons should be diverse, rather than uniform and global (see
section S6.2), and should be correlated with the impact which the activity of these neurons
has on the quality of the learnt behavior.

Apart from these consequences of e-prop for research in neuroscience and cognitive science,
e-prop also provides an interesting new tool for approaches in machine learning where BPTT
is replaced by approximations in order to improve computational efficiency. For example, the
combination of eligibility traces from e-prop with synthetic gradients from Jaderberg et al.
(2016) substantially improves performance of LSTM networks for difficult machine learning
problems such as the copy-repeat task and the Penn Treebank word prediction task (Bellec
et al., 2019).

Finally, E-prop suggests a viable new approach for on-chip learning of RSNNs on neuro-
morphic chips. Whereas BPTT is not within the reach of current neuromorphic chip designs,
an implementation of e-prop appears to offer no serious hurdle. Since we have shown in Fig. 2
that e-prop enables RSNNs to learn to understand speech, and in Fig. 4 that e-prop enables
reward-based learning of the control of complex arm movements, e-prop promises to support
a qualitative jump in on-chip learning capabilities of neuromorphic chips.

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Methods

To exhibit the theory around e-prop and preceding related work, we structure the methods
section in the following way:

• Comparison of e-prop with other online learning methods for recurrent neural networks
(RNNs)

• Network models

• Conventions

• Mathematical basis for e-prop

• Eligibility traces

• Eligibility traces for concrete neuron models

• Derivation of the synaptic plasticity rules resulting from e-prop

• Reward-based e-prop: application of e-prop to policy gradient RL.

Comparison of e-prop with other online learning methods for
recurrent neural networks (RNNs)

In this section we compare e-prop with other learning algorithms implementing gradient
descent in RNNs without BPTT. A well-known alternative to BPTT is real time recur-
rent learning (RTRL). RTRL was derived for networks of rate-based (sigmoidal) neurons
in Williams and Zipser (1989). There, the loss gradients are computed forward in time

by multiplying the full Jacobian Jtkk′ =
dhtk
dht−1

k′
of the network dynamics with the tensor

dhtk
dWji

that computes the dependency of the state variables with respect to the parameters:

dhtk
dWji

=
∑
k′ Jtkk′ ·

dht−1
k′

dWji
+

∂htk
∂Wji

(see equation (12) in Williams and Zipser (1989)). Denoting

with n the number of neurons, this requires O(n4) multiplications, which is computationally
prohibitive. Unbiased Online Recurrent Optimization (Tallec and Ollivier, 2018) (UORO)
used an unbiased estimator of Jtkk′ of rank one that can be computed online. The authors
report that the variance of this estimator increases with the network size and simulations
were only carried out for a network size up to 64. Another unbiased estimator of Jtkk′ (Mujika
et al., 2018) based on Kronecker factors solved this issue and made it possible to approach
the performance of BPTT on harder tasks. Yet this method requires O(n3) operations per
time step, which is one order more than UORO, e-prop or BPTT.

In e-prop, the eligibility traces are just d× d matrices (d being the dimension of htj), since
they are restrictions of the full Jacobian Jtkk′ to the internal dynamics of a neuron (k = k′).
As a consequence, only O(n2) multiplications are required for the forward propagation of
eligibility traces. Hence their computation is not more costly than BPTT or the simulation
of the RNN.

The learning rule called Superspike (Zenke and Ganguli, 2018) was derived by applying
RTRL in spiking neural networks without recurrent connections. In the absence of these
connections RTRL is practicable and the resulting learning rule uses eligibility traces similar
to those arising in e-prop with LIF neurons. Two other algorithms, Roth et al. (2019) and
Murray (2019), were introduced to train recurrent neural networks of sigmoidal units by
approximating RTRL with another form of eligibility traces. Random Feedback Local Online
(RFLO) learning(Murray, 2019) is equivalent to random e-prop in the particular case of leaky
sigmoidal neurons for regression tasks. But the performance of RFLO was not compared
to BPTT on published benchmarks for RNNs, or for spiking neurons. In contrast to the
eligibility traces in e-prop, the eligibility traces in kernel RNN learning (keRNL)(Roth et al.,
2019) are viewed as components of an estimator of the tensor Jtkk′ , and are not related to
the specific definition of the neuron model. This approach requires non-local communication
within the RNN, which we wanted to avoid in e-prop. In contrast to e-prop, none of the
papers above (Zenke and Ganguli, 2018; Murray, 2019; Roth et al., 2019) derived a theory
or a definition of eligibility traces that can be applied to neuron models with a non-trivial
internal dynamics, such as adaptive neurons or LSTM units, that appear to be essential for
solving tasks with demanding temporal credit assignment of errors.

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Network models

To exhibit the generality of the e-prop approach, we define the dynamics of recurrent neu-
ral networks using a general formalism that is applicable to many recurrent neural network
models, not only to RSNNs and LSNNs. Also non-spiking models such as LSTM networks fit
under this formalism (see Section S4.3 in the Supplement). The network dynamics is sum-
marized by the computational graph in Fig. 5. It uses the function M to define the update
of the hidden state: htj = M(ht−1

j , zt−1,xt,W ), and f to define the update of the observable

state: ztj = f(htj , z
t−1,xt,W ) (f simplifies to ztj = f(htj) for LIF and ALIF neurons).

RSNNs. RSNNs are recurrently connected networks of leaky integrate-and-fire (LIF) neu-
rons. Each LIF neuron has a one dimensional internal state htj that consists only of the
membrane potential vtj . The observable state ztj ∈ {0, 1} is binary, indicating a spike (ztj = 1)
or no spike (ztj = 0) at time t. The dynamics of the LIF model is defined by the equations:

vt+1
j = αvtj +

∑
i6=j

W rec
ji z

t
i +

∑
i

W in
ji x

t+1
i − ztjvth (3)

ztj = H

(
vtj − vth

)
, (4)

where xti = 1 indicates a spike from the input neuron i at time step t (xti = 0 otherwise)
and W rec

ji (W in
ji ) is the synaptic weight from network (input) neuron i to neuron j. The

decay factor α in (3) is given by e−δt/τm , where δt is the discrete time step size (1 ms in our
simulations) and τm = 20 ms is the membrane time constant. H denotes the Heaviside step
function.

Due to the term −ztjvth in equation (3), the neurons membrane potential is reduced
by a constant value after an output spike, which relates our model to the spike response
model(Gerstner et al., 2014). To introduce a simple model of neuronal refractoriness, we
further assume that ztj is fixed to 0 after each spike of neuron j for a short refractory period
of 2 to 5ms depending on the simulation.

LSNNs. LSNNs are recurrently connected networks that consist of LIF neurons and of
adaptive LIF (ALIF) neurons. An ALIF neuron has a time-dependent threshold adaptation

atj . As a result, their internal state is a 2 dimensional vector htj
def
= [vtj , a

t
j ]. Their threshold

potential Atj increases with every output spike and decreases exponentially back to the baseline
threshold vth. This can be described by

Atj = vth + βatj , (5)

ztj = H(vtj −Atj) , (6)

with a threshold adaptation according to

at+1
j = ρatj + ztj , (7)

where the decay factor ρ is given by e−δt/τa , and τa is the adaptation time constant that is
typically chosen to be in the range of the time span of the length of the working memory that
is a relevant for a given task. This is a very simple model for a neuron with spike frequency
adaptation. We refer to (Gerstner et al., 2014; Pozzorini et al., 2015; Gouwens et al., 2018)
for experimental data and other neuron models.

In relation to the more general formalism represented in the computational graph in Fig.
5, equations (3) and (7) define M(ht−1

j , zt−1,xt,W ), and equations (4) and (6) define f(htj).

Gradient descent for RSNNs. Gradient descent is problematic for spiking neurons be-
cause of the step function H in equation (4). We overcome this issue as in (Esser et al., 2016;

Bellec et al., 2018): the non-existing derivative
∂ztj
∂vtj

is replaced in simulations by a simple non-

linear function of the membrane potential that is called the pseudo-derivative. Outside of the

refractory period, we choose a pseudo-derivative of the form ψtj = 1
vth
γpd max

(
0, 1−

∣∣∣∣ vtj−Atjvth

∣∣∣∣)
where γpd = 0.3. During the refractory period the pseudo derivative is set to 0.

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Figure 5: Computational graph and gradient propagations A) Assumed mathematical
dependencies between hidden neuron states ht

j , neuron outputs zt, network inputs xt, and the
loss function E through the mathematical functions E(·), M(·), f(·) are represented by coloured
arrows. B-C) The gradient computation can be represented in similar graphs, where coloured
arrows represent partial derivatives. B) Following equation (19), the derivatives involved in the
computation of eligibility traces etji are shown in blue in the case where i is an input neuron.
C) Unlike the eligibility traces, the ideal learning signals required to back-propagate gradients as
represented here with green arrows.

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Network output and loss functions. We assume that network outputs ytk are real-
valued and produced by leaky output neurons (readouts), which are not recurrently connected:

ytk = κyt−1
k +

∑
j

W out
kj z

t
j + boutk , (8)

where κ ∈ [0, 1] defines the leak and boutk denotes the output bias. The leak factor κ is given
for spiking neurons by e−δt/τout , where τout is the membrane time constant. Note that for
non-spiking neural networks (such as for LSTM networks), temporal smoothing of the network
observable state is not necessary. In this case, one can use κ = 0.

The loss function E quantifies the network performance. We assume that it depends only
on the observable states E(z1, . . . , zT ). For instance, for a regression problem we define E
as the mean square error E = 1

2

∑
t,k(ytk − y∗,tk )2 between the network outputs ytk and target

values y∗,tk . For classification or RL tasks the loss function E has to be re-defined accordingly.

Conventions

Notation for derivatives. We distinguish the total derivative dE
dzt

(z1, . . . , zT ), which
takes into account how E depends on zt also indirectly through influence of zt on the other
variables zt+1, . . . , zT , and the partial derivative ∂E

∂zt
(z1, . . . , zT ) which quantifies only the

direct dependence of E on zt.
Analogously ∂M

∂h
denotes for htj = M(ht−1

j , zt−1,xt,W ), the partial derivative of M

with respect to h. It only quantifies the direct influence of htj on ht−1
j and it does not

take into account the dependency of htj on ht−1
j via the observable states zt. To im-

prove readability we also use the following abbreviations:
∂htj

∂ht−1
j

def
= ∂M

∂h
(ht−1
j , zt−1,xt,W ),

∂htj
∂Wji

def
= ∂M

∂Wji
(ht−1
j , zt−1,xt,W ), and

∂ztj
∂htj

def
= ∂f

∂h
(htj , z

t−1,xt,W ).

Notation for temporal filters. For ease of notation we use the operator Fα to denote
the low-pass filter such that, for any time series xt:

Fα(xt) = αFα(xt−1) + xt , (9)

and Fα(x0) = x0. In the specific case of the time series ztj and etji, we simplify notation
further and write z̄tj and ētji for Fα(zj)

t and Fκ(eji)
t

Mathematical basis for e-prop

We provide here the proof of the fundamental equation (1) for e-prop

dE

dWji
=
∑
t

dE

dztj
etji . (10)

This equation shows that the total derivative of the loss function E with respect to the
synaptic weights W can be written as a product of learning signals Ltj and eligibility traces
etji for the “ideal” learning signal Ltj = dE

dzj
. The eligibility traces are defined at the end of

the proof below.
We start from a factorization of the loss gradient that arises in equation (12) of (Werbos,

1990) to describe BPTT in recurrent sigmoidal neural networks. Using our notation, this
classical factorization of loss gradient can be rewritten as:

dE

dWji
=
∑
t′

dE

dht
′
j

·
∂ht

′
j

∂Wji
. (11)

We now show how one can derive from this to the new factorization (10) of the loss gradient
that underlies e-prop. dE

dht
′
j

can be expressed recursively as a function of the same derivative

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


at the next time step dE

dht
′+1
j

by applying the chain rule at the node htj for t = t′ of the

computational graph shown in Figure 5C:

dE

dht
′
j

=
dE

dzt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

(12)

= Lt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

, (13)

where we defined the learning signal Lt
′
j as dE

dzt
′
j

. The resulting recursive expansion ends at

the last time step T of the computation of the RNN, i.e., dE

dhT+1
j

= 0. If one substitutes the

recursive formula (13) into the definition of the loss gradients (11), one gets:

dE

dWji
=

∑
t′

(
Lt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji
(14)

=
∑
t′

(
Lt
′
j

∂zt
′
j

∂ht
′
j

+
(
Lt
′+1
j

∂zt
′+1
j

∂ht
′+1
j

+ (· · · )
∂ht

′+2
j

∂ht
′+1
j

)∂ht′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji
. (15)

The following equation is the main equation for understanding the transformation from BPTT
into e-prop. The key idea is to collect all terms which are multiplied with the learning signal
Ltj at a given time t. These are only terms that concern events in the computation of neuron
j up to time t, and they do not depend on other future losses or variable values. We collect
them into an eligibility trace etji for each neuron j and i, which can be computed locally in
an online manner.

To this end, we write the term in parentheses in equation (15) into a second sum indexed
by t and exchange the summation indices to pull out the learning signal Ltj . This expresses
the loss gradient of E as a sum of learning signals Ltj multiplied by some factor indexed by
ji, which we define as the eligibility trace etji ∈ R and eligibility vectors εtji ∈ Rd, which have
the same dimension as the hidden states htji

dE

dWji
=

∑
t′

∑
t≥t′

Ltj
∂ztj
∂htj

∂htj

∂ht−1
j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji
(16)

=
∑
t

Ltj
∂ztj
∂htj

∑
t′≤t

∂htj

∂ht−1
j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji︸ ︷︷ ︸
def
= εtji

. (17)

Here, we use the identity matrix for
∂htj

∂ht−1
j

· · ·
∂ht
′+1
j

∂ht
′
j

if t = t′. After defining the eligibility

vector εtji, we also define

etji
def
=

∂ztj
∂htj
· εtji , (18)

so that equation (17) proves the factorization of e-prop in (1).

Eligibility traces

Online computation of eligibility traces. The eligibility vectors as defined in (17)
can be computed recursively for efficiency and in order to avoid the back-propagation of
signals through time:

εtji =
∂htj

∂ht−1
j

· εt−1
ji +

∂htj
∂Wji

, (19)

where · denotes the dot product. The eligibility traces can be computed with their definition
in equation (18).

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Derivation of eligibility traces for concrete neuron models

The eligibility traces for LSTMs are provided in the supplementary materials. Below we
provide the derivation of eligibility traces for spiking neurons.

Eligibility traces for LIF neurons. We compute the eligibility trace of a LIF neuron
without adaptive threshold (equation (3)). Here the hidden state htj consists just of the

membrane potential vtj and we have
∂ht+1
j

∂htj
=

∂vt+1
j

∂vtj
= α and

∂vtj
∂Wji

= zt−1
i (for a derivation

of the eligibility traces taking the reset into account we refer to section S1.2). Using these
derivatives and equation (19), one obtains that the eligibility vector is the low-pass filtered
pre-synaptic spike-train,

εt+1
ji = Fα(zti)

def
= z̄ti . (20)

and following equation (18), the eligibility trace is:

et+1
ji = ψt+1

j z̄ti . (21)

For LIF neurons as well as for ALIF neurons in the following section the derivation applies to
the input connections by substituting the network spikes zt−1

i by the input spikes xti (the time
index switches from t− 1 to t because the hidden state htj = M(ht−1

j , zt−1,xt,W ) is defined
as a function of the input at time t but the preceding recurrent activity). For simplicity we
have focused on the case where transmission delays between neurons in the RSNN are just
1ms. If one uses more realistic length of delays d, this −d appears in equations (21)–(23)
instead of −1 as the most relevant time point for pre-synaptic firing (see Section S1.3). This
moves resulting synaptic plasticity rules closer to experimentally observed forms of STDP.

Eligibility traces for ALIF neurons. The hidden state of an ALIF neuron htj =
[vtj , a

t
j ] is a two dimensional vector to capture the state of the adaptive threshold atj besides

the membrane potential vtj . Hence a two dimensional eligibility vector εtji
def
= [εtji,v, ε

t
ji,a] is

associated with each weight, and the matrix
∂ht+1
j

∂htj
is a 2 × 2 matrix. The derivatives

∂at+1
j

∂atj

and
∂at+1
j

∂vtj
capture the dynamics of the adaptive threshold. Hence to derive the computation

of eligibility traces we substitute the spike zj in equation (7) by its definition given in equation

(6). With this convention one finds that the diagonal of the matrix
∂ht+1
j

∂htj
is formed by the

terms
∂vt+1
j

∂vtj
= α and

∂at+1
j

∂atj
= ρ− ψtjβ. Above and below the diagonal, one finds respectively

∂vt+1
j

∂atj
= 0,

∂at+1
j

∂vtj
= ψtj . One can finally compute the eligibility traces using equation (18).

The component of the eligibility vector associated with the membrane potential remains the
same as in the LIF case and only depends on the presynaptic neuron: εtji,v = z̄t−1

i . For the
component associated with the adaptive threshold we find the following recursive update:

εt+1
ji,a = ψtj z̄

t−1
i + (ρ− ψtjβ)εtji,a , (22)

and this results in an eligibility trace of the form:

etji = ψtj

(
z̄t−1
i − βεtji,a

)
. (23)

Recall that the constant ρ = exp(− δt
τa

) arises from the adaptation time constant τa, which
typically lies in the range of hundreds of milliseconds to a few seconds in our experiments,
yielding values of ρ between 0.995 and 0.9995. The constant β is typically of the order of 0.07
in our experiments.

To provide a more interpretable form of eligibility trace that fits into the standard form of
local terms considered in 3-factor learning rules (Gerstner et al., 2018), one may drop the term
−ψtjβ in equation (22). This approximation ε̂tji,a of equation (22) becomes an exponential
trace of the post-pre pairings accumulated within a time window as large as the adaptation
adaptation time constant:

ε̂t+1
ji,a = Fρ

(
ψtj z̄

t−1
i

)
. (24)

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


The eligibility traces are computed with equation (22) in most experiments but the perfor-
mance obtained with symmetric e-prop and this simplification were indistinguishable on the
evidence accumulation task of Fig. 3.

Synaptic plasticity rules resulting from e-prop

An exact computation of the ideal learning signal dE
dztj

in equation (1) requires to back-

propagate gradients through time (see Fig. 5C). To compute the loss gradients with e-prop
we replace it with the partial derivative ∂E

∂ztj
which can be computed online. Implementing

the weight updates with gradient descent and learning rate η, all the following plasticity rules
are derived from the formula

∆W rec
ji = −η

∑
t

∂E

∂ztj
etji . (25)

Note that the weight updates derived for the recurrent weights W rec
ji also applies to the inputs

weights W in
ji . For the output weights and biases the derivation does not rely on the theory of

e-prop, and the weight updates can be found in the Section S3.1.

Case of regression tasks. In the case of a regression problem with targets y∗,tk and
outputs ytk defined in equation (8), we define the loss function E = 1

2

∑
t,k(ytk − y∗,tk )2 which

results in a partial derivative of the form ∂E
∂ztj

=
∑
kW

out
kj

∑
t′≥t(y

t′
k − y∗,t

′

k )κt
′−t. This seem-

ingly provides an obstacle for online learning, because the partial derivative is a weighted sum
over future errors. But this problem can be resolved as one interchange two sum indices in the
expression of the weight updates (see section S3.1). It results that the sum over future events
transforms into a low-pass filtering of the eligibility traces ētji = Fκ(etji), and the resulting
weight update can be written as

∆W rec
ji = −η

∑
t

(∑
k

Bjk(ytk − y∗,tk )
)

︸ ︷︷ ︸
=Ltj

ētji . (26)

Here, Bjk denote broadcast weights in analogy to (Lillicrap et al., 2016), where we note that
Bjk = W out

kj as the ideal values.

Case of classification tasks. We assume that K target categories are provided in the
form of a one-hot encoded vector π∗,t with K dimensions. We define the probability for class
k predicted by the network as πtk = softmaxk(yt1, . . . , y

t
K) = exp(ytk)/

∑
k′ exp(ytk′), and the

loss function for classification tasks as the cross-entropy error E = −
∑
t,k π

∗,t
k log πtk. The

plasticity rule resulting from e-prop reads (see derivation in Section S3.1):

∆W rec
ji = −η

∑
t

(∑
k

Bjk(πtk − π∗,tk )
)

︸ ︷︷ ︸
=Ltj

ētji . (27)

Reward-based e-prop: application of e-prop to policy gradient
RL

For reinforcement learning, the network interacts with an external environment. Based on
the observations xt that are perceived, the network has to commit to actions at0 , · · · ,atn , · · ·
at certain decision times t0, · · · , tn, · · · . Each action atn is sampled from a probability dis-
tribution π(atn |ytn) which is also referred to as the policy of the RL agent. The policy is
defined as function of the network output ytn , and is chosen here to be a vector of Gaussians
with means yt and variance σ2 (see section S5.1 for discrete actions). At any time t the
environment can provide a positive or negative reward rt.

The goal of reinforcement learning is to maximize the expected sum of discounted rewards.
That is, we want to maximize the expected return at time t = 0 E[R0], where the return at

time t is defined as Rt =
∑
t′≥t γ

t′−trt
′

with γ ≤ 1 and the expectation is taken over the

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


agent actions at, the rewards rt and the observation from the environment xt. We approach
this optimization problem using the actor-critic variant of the policy gradient algorithm which
applies gradient ascent to maximize E[R0]. The form of the estimated gradient relies on a
corollary of the policy gradient theorem shown in section 13.3 in (Sutton and Barto, 2018):

the gradient
dE[R0]
dWji

is proportional to E
[∑

tn
Rtn d log π(atn |ytn )

dWji

]
which is easier to compute

because the expectation can be estimated by an average over one or many trials. Following
this strategy, we define the per-trial loss function Eπ as a function of the sequences actions
at0 , · · · ,atn , · · · and rewards r0, · · · , rT sampled during this trial:

Eπ(z0, · · · ,zT ,at0 , · · ·atn , · · · , r0, · · · , rT )
def
= −

∑
n

Rtn log π(atn |ytn) , (28)

and it results from the policy gradient theorem (Sutton and Barto, 2018) that:

dE
[
R0
]

dWji
∝ E

[∑
tn

Rtn
d log π(atn |ytn)

dWji

]
= −E

[
dEπ
dWji

]
. (29)

Intuitively, given a trial with high rewards, policy gradient changes the network output y to
increase the probability of the actions atn that occurred. Note in particular that atn and
rtn are samples of stochastic variables and their values do not depend on the parameters Wji

(only the probabilities π(atn |ytn) depend on the parameters). Hence, Eπ can be viewed as a
function of the observable states z0, · · · ,zT from the view point of the optimization algorithm
and Eπ is a well defined loss. In practice, the gradient dEπ

dWji
is known to have high variance

and the efficiency of the learning algorithm can be improved using the actor-critic variant of
the policy gradient algorithm. It involves the policy π (the actor) and an additional output
neuron V t which predicts the value function E[Rt] (the critic). The actor and the critic are
learnt simultaneously by defining the loss function

E = Eπ + cV EV , (30)

where Eπ = −
∑
nR

tn log π(atn |ytn) measures the performance of the stochastic policy π,
and EV =

∑
t

1
2
(Rt−V t)2 measures the accuracy of V t. Using that V t is independent of the

action at one can show that 0 = E
[
V tn d log π(atn |ytn )

dWji

]
, and use that to define an estimator

d̂E
dWji

of the loss gradient with reduced variance

−
dE
[
R0
]

dWji
+ cV

dE [EV ]

dWji
∝ E

[
dE

dWji

]
(31)

= E
[
−
∑
tn

(Rtn − V tn)
d log π(atn |ytn)

dWji
+ cV

dEv
dWji︸ ︷︷ ︸

def
= d̂E
dWji

]
. (32)

Until now this derivation follows the classical definition of the actor-critic variant of policy

gradient, and the gradient d̂E
dWji

has be computed with BPTT. To derive reward-based e-

prop we follow instead the generic online approximation of e-prop as in equation (25) and

approximate d̂E
dWji

as d̂E
dzj

etji with

∂̂E

∂ztj
= −

∑
n

(Rtn − V tn)
∂ log π(atn |ytn)

∂ztj
+ cV

∂EV
∂ztj

. (33)

We derive below the resulting synaptic plasticity rule for the case of multiple continuous
actions as needed to solve the task of Fig. 4. For the case of a single discrete action as used
in Fig. S4 we refer to section S5.1.

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Case of continuous actions. This task is more difficult when there is a delay between
the action and the reward or, even harder, when a sequence of many actions lead together
to a delayed reward. There the loss function E cannot be computed online because the
evaluation of Rtn requires knowledge of future rewards. To overcome this, we introduce
temporal difference errors δt = rt+γV t+1−V t (see Fig. S3), and use the equivalence between
the forward and backward view in reinforcement learning (Sutton and Barto, 2018) to arrive
at the following synaptic plasticity rules for a general actor-critic algorithm with e-prop (see
Section S5.1):

∆W rec
ji = −η

∑
t

δtFγ
(
Ltj ē

t
ji

)
for (34)

Ltj = −cVBVj +
∑
k

Bajk
ytk − atk
σ2

, (35)

where we define the term ytk − atk to have value zero when no action is taken at time t. The
combination of reward prediction error and neuron-specific learning signal was also used in a
plasticity rule for feedforward networks inspired by neuroscience (Roelfsema and Holtmaat,
2018), here it arises from the approximation of BPTT by e-prop in RSNNs solving RL prob-
lems. Note that the filtering Fγ requires an additional eligibility trace per synapse. This
arises from the temporal difference learning in RL(Sutton and Barto, 2018). It depends on
the learning signal and does not have the same function as the eligibility trace etji.

Acknowledgments

This research/project was supported by the Human Brain Project (Grand Agreement number
785907) and the SYNCH project (Grand Agreement number 824162) of the European Union.
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Quadro P6000 GPU used for this research. Computations were carried out on the Human
Brain Project PCP Pilot Systems at the Juelich Supercomputing Centre, which received co-
funding from the European Union (Grand Agreement number 604102) and on the Vienna
Scientific Cluster (VSC).

We thank Thomas Bohnstingl, Wulfram Gerstner, Christopher Harvey, Martin Vinck, Ja-
son MacLean, Adam Santoro, Christopher Summerfield, and Yuqing Zhu for helpful comments
on an earlier version of the manuscript.

Authors contributions GB, FS, AS and WM conceived the work, GB, FS, AS, EH and
DS carried out experiments and all authors contributed to the writing of the paper.

References

Allen Institute: Cell Types Database (2018). c© 2018 Allen Institute for Brain Science. Allen
Cell Types Database, cell feature search. Available from: celltypes.brain-map.org/data.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-term
memory and learning-to-learn in networks of spiking neurons. In NeurIPS 32.

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2019). Biologically
inspired alternatives to backpropagation through time for learning in recurrent neural nets.
arXiv:1901.09049 [cs]. arXiv: 1901.09049.

Cassenaer, S. and Laurent, G. (2012). Conditional modulation of spike-timing-dependent
plasticity for olfactory learning. Nature, 482(7383):47.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding:
a model of voltage-based STDP with homeostasis. Nature Neuroscience, 13(3):344–52.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi,
P., Imam, N., Jain, S., et al. (2018). Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99.

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., Koay, S. A.,
Thiberge, S. Y., Daw, N. D., Tank, D. W., et al. (2019). Specialized coding of sensory,
motor and cognitive variables in vta dopamine neurons. Nature, page 1.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., Andreopoulos,
A., Berg, D. J., McKinstry, J. L., Melano, T., Barch, D. R., di Nolfo, C., Datta, P., Amir,
A., Taba, B., Flickner, M. D., and Modha, D. S. (2016). Convolutional networks for fast,
energy-efficient neuromorphic computing. PNAS, 113(41):11441–11446.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., and Pallett, D. S. (1993). DARPA
TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA
STI/Recon Technical Report N, 93.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press.

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018). Eligibility Traces
and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-
Factor Learning Rules. Frontiers in Neural Circuits, 12.

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J., Koch, C.,
and Arkhipov, A. (2018). Systematic generation of biophysically detailed models for diverse
cortical neuron types. Nature communications, 9(1):710.

Graves, A., Mohamed, A.-R., and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In ICASSP, pages 6645–6649.

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., and Schmidhuber, J. (2017).
Lstm: A search space odyssey. IEEE TNNLS, 28(10):2222–2232.

Huh, D. and Sejnowski, T. J. (2018). Gradient descent for spiking neural networks. In
NeurIPS, pages 1433–1443.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., and
Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients. arXiv
preprint arXiv:1608.05343.

Kappel, D., Legenstein, R., Habenschuss, S., Hsieh, M., and Maass, W. (2018). A dynamic
connectome supports the emergence of stable computational function of neural circuits
through reward-based learning. eNeuro.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications,
7:13276.

Lillicrap, T. P. and Santoro, A. (2019). Backpropagation through time and the brain. Current
Opinion in Neurobiology, 55:82–89.

MacLean, S. J., Hassall, C. D., Ishigami, Y., Krigolson, O. E., and Eskes, G. A. (2015). Using
brain potentials to understand prism adaptation: the error-related negativity and the p300.
Frontiers in human neuroscience, 9:335.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In ICML,
pages 1928–1937.

Morcos, A. S. and Harvey, C. D. (2016). History-dependent variability in population dynamics
during evidence accumulation in cortex. Nature Neuroscience, 19(12):1672.

Mujika, A., Meier, F., and Steger, A. (2018). Approximating real-time recurrent learning with
random kronecker factors. In NeurIPS, pages 6594–6603.

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385


Murray, J. M. (2019). Local online learning in recurrent networks with random feedback.
eLife, 8:e43299.

Nicola, W. and Clopath, C. (2017). Supervised learning in spiking neural networks with force
training. Nature Communications, 8(1):2208.

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural networks. In
NIPS, pages 1037–1045.

Pozzorini, C., Mensi, S., Hagens, O., Naud, R., Koch, C., and Gerstner, W. (2015). Automated
high-throughput characterization of single neurons by means of simplified spiking models.
PLoS computational biology, 11(6):e1004275.

Roelfsema, P. R. and Holtmaat, A. (2018). Control of synaptic plasticity in deep cortical
networks. Nature Reviews Neuroscience, 19(3):166–180.

Roeper, J. (2013). Dissecting the diversity of midbrain dopamine neurons. Trends in neuro-
sciences, 36(6):336–342.

Roth, C., Kanitscheider, I., and Fiete, I. (2019). Kernel rnn learning (kernl). ICLR.

Runyan, C. A., Piasini, E., Panzeri, S., and Harvey, C. D. (2017). Distinct timescales of
population coding across cortex. Nature, 548:92–96.

Sajad, A., Godlove, D. C., and Schall, J. D. (2019). Cortical microcircuitry of performance
monitoring. Nature Neuroscience, 22(2):265.

Sanhueza, M. and Lisman, J. (2013). The camkii/nmdar complex as a molecular memory.
Molecular brain, 6(1):10.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

Tallec, C. and Ollivier, Y. (2018). Unbiased online recurrent optimization. ICLR.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270–280.

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C., Urakubo, H., Ishii, S., and Kasai, H.
(2014). A critical time window for dopamine actions on the structural plasticity of dendritic
spines. Science, 345(6204):1616–1620.

Zenke, F. and Ganguli, S. (2018). Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541.

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2019. ; https://doi.org/10.1101/738385doi: bioRxiv preprint 

https://doi.org/10.1101/738385

