
A solution to the learning dilemma for recurrent1

networks of spiking neurons2

Guillaume Bellec1,◦, Franz Scherr1,◦, Anand Subramoney1, Elias Hajek1,3

Darjan Salaj1, Robert Legenstein1 & Wolfgang Maass1,∗
4

1Institute of Theoretical Computer Science, Graz University of Technology,5

Inffeldgasse 16b, Graz, Austria6

◦ Equal contributions.7

∗ To whom correspondence should be addressed; E-mail: maass@igi.tugraz.at.8

Abstract9

Recurrently connected networks of spiking neurons underlie the astounding infor-10

mation processing capabilities of the brain. But in spite of extensive research, it has11

remained open how they can learn through synaptic plasticity to carry out complex12

network computations. We argue that two pieces of this puzzle were provided by13

experimental data from neuroscience. A new mathematical insight tells us how these14

pieces need to be combined to enable biologically plausible online network learning15

through gradient descent, in particular deep reinforcement learning. This new learn-16

ing method – called e-prop – approaches the performance of BPTT (backpropagation17

through time), the best known method for training recurrent neural networks in ma-18

chine learning. In addition, it suggests a method for powerful on-chip learning in19

novel energy-efficient spike-based hardware for AI.20

Introduction21

Networks of neurons in the brain differ in at least two essential aspects from deep neural22

networks in machine learning: They are recurrently connected, forming a giant number23

of loops, and they communicate via asynchronously emitted stereotypical electrical pulses,24

called spikes, rather than bits or numbers that are produced in a synchronized manner25

by each layer of a feedforward deep network. Models that capture primary information26

processing capabilities of spiking neurons in the brain are well known, and we consider27

the arguably most prominent one: leaky integrate-and-fire (LIF) neurons, where spikes28

that arrive from other neurons through synaptic connections are multiplied with the corre-29

sponding synaptic weight, and are linearly integrated by a leaky membrane potential. The30

neuron fires – i.e., emits a spike – when the membrane potential reaches a firing threshold.31

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

But it is an open problem how recurrent networks of spiking neurons (RSNNs) can learn,32

i.e., how their synaptic weights can be modified by local rules for synaptic plasticity so that33

the computational performance of the network improves. In deep learning this problem34

is solved for feedforward networks through gradient descent for a loss function E that35

measures imperfections of current network performance [1]. Gradients of E are propagated36

backwards through all layers of the feedforward network to each synapse through a process37

called backpropagation. Recurrently connected networks can compute more efficiently38

because each neuron can participate several times in a network computation, and they are39

able to solve tasks that require integration of information over time or a non-trivial timing40

of network outputs according to task demands. But since each synaptic weight can affect41

the network computation at several time points during a recurrent network computation,42

its impact on the loss function (see Fig. 1a) is more indirect, and learning through gradient43

descent becomes substantially more difficult. This learning problem is aggravated if there44

are slowly changing hidden variables in the neuron model, such as neurons with spike-45

frequency adaptation (SFA). Neurons with SFA are quite common in the neocortex [2],46

and it turns out that their inclusion in the RSNN significantly increases the computational47

power of the network [3]. In fact, RSNNs trained through gradient descent acquire then48

similar computing capabilities as networks of LSTM (Long Short-Term Memory) units,49

the state of the art for recurrent neural networks in machine learning. Because of this50

functional relation to LSTM networks these RSNN models are referred to as LSNNs [3].51

In machine learning one trains recurrent neural networks by unrolling the network into52

a virtual feedforward network [1], see Fig. 1b, and applying the backpropagation algorithm53

to that (Fig. 1c). This learning method for recurrent neural networks is called backpropa-54

gation through time (BPTT) since it requires propagation of gradients backwards in time55

with regard to the network computation.56

With a careful choice of the pseudo-derivative for handling the discontinuous dynamics57

of spiking neurons one can apply BPTT also to RSNNs, and RSNNs were able to learn in58

this way for the first time to solve really demanding computational tasks (see [3], [4] for59

preceding results). But the dilemma is that BPTT requires storing the intermediate states60

of all neurons during a network computation, and merging these in a subsequent offline61

process with gradients that are computed backwards in time (see Fig. 1c, Movie S1 and62

Movie S2). This makes it very unlikely that BPTT is used by the brain [5].63

We present a solution to this dilemma in the form of a biologically plausible method for64

online network learning through gradient descent: e-prop (Fig. 1d, see Movie S3). E-prop65

is motivated by two streams of experimental data from neuroscience:66

i) Neurons in the brain maintain traces of preceding activity on the molecular level, for67

example in the form of calcium ions or activated CaMKII enzymes [6]. In particular,68

they maintain a fading memory of events where the presynaptic neuron fired before69

the postsynaptic neuron, which is known to induce synaptic plasticity if followed by70

a top-down learning signal [7, 8, 9]. Such traces are often referred to as eligibility71

traces.72

ii) In the brain there exists an abundance of top-down signals such as dopamine, acetyl-73

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 1: Schemes for RSNNs, BPTT, and e-prop. a) RSNN with network inputs
x, neuron spikes z, and output targets y∗, for each time step t of the RSNN computation.
Output neurons y provide a low-pass filter of a weighted sum of network spikes z. b)
BPTT computes gradients in the unrolled version of the network. It has a new copy of
the neurons of the RSNN for each time step t. A synaptic connection from neuron i to
neuron j of the RSNN is replaced by an array of feedforward connections, one for each
time step t, that goes from the copy of neuron i in the layer for time step t to a copy
of neuron j in the layer for time step t + 1. All synapses in this array have the same
weight: the weight of this synaptic connection in the RSNN. c) Loss gradients of BPTT
are propagated backwards in time and retrograde across synapses in an offline manner, long
after the forward computation has passed a layer. d) Online learning dynamics of e-prop.
Feedforward computation of eligibility traces is indicated in blue. These are combined with
online learning signals according to equation (1).

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

choline, and neural firing [10] related to the event-related negativity (ERN), that74

inform local populations of neurons about behavioral results. Furthermore dopamine75

signals [11, 12] have been found to be specific for different target populations of neu-76

rons, rather than being global. We refer in our learning model to such top-down77

signals as learning signals.78

A re-analysis of the mathematical basis of gradient descent in recurrent neural networks79

tells us how local eligibility traces and top-down learning signals should be optimally com-80

bined to enable network learning through gradient descent – without requiring backpro-81

gation of signals through time. The resulting new learning method, e-prop, learns slower82

than BPTT, but tends to approximate the performance of BPTT, thereby providing a first83

solution to the learning dilemma for RSNNs. Furthermore e-prop also works for RSNNs84

with more complex neuron models, such as LSNNs. This new learning paradigm for brain-85

like network models elucidates how the brain could learn to recognize phonemes in spoken86

language (Fig. 2), solve temporal credit assignment problems (Fig. 3), and acquire new87

behaviors just from rewards (Fig. 4, 5).88

In such reinforcement learning (RL) tasks the learner needs to explore its environment,89

and find out which action gets rewarded in what state [13]. There is no “teacher” that90

tells the learner what action would be optimal; in fact, the learner may never find that91

out. Nevertheless learning methods such as BPTT are essential for a powerful form of92

RL that is often referred to as Deep RL [14]. There one trains recurrent artificial neural93

networks with internally generated teaching signals. We show here that Deep RL can in94

principle also be carried out by neural networks of the brain, since e-prop approximates the95

performance of BPTT also in this RL context. However another new ingredient is needed96

to prove that. Previous work on Deep RL for solving complex tasks, such as winning97

Atari games [14], required additional mechanisms to avoid well-known instabilities that98

arise from using nonlinear function approximators, such as the use of several interacting99

learners in parallel. Since this parallel learning scheme does not appear to be biologically100

plausible, we introduce here a new method for avoiding learning instabilities: We show that101

a suitable schedule for the lengths of learning episodes and learning rates also alleviates102

learning instabilities in Deep RL.103

We are not aware of previous work on online gradient descent learning methods for104

RSNNs, neither for supervised learning nor for RL. There exists however preceding work105

on online approximations of gradient descent for non-spiking neural networks based on106

[15], which we review in the Discussion section.107

The previous lack of powerful learning methods for RSNNs also affected the develop-108

ment and use of neuromorphic computing hardware, which aims at a drastic reduction109

in the energy consumption of AI implementations. A substantial fraction of this neuro-110

morphic hardware, such as SpiNNaker [16] or Intel’s Loihi chip [17], implements RSNNs111

and aims at on-chip training of these RSNNs. Although it does not matter here whether112

the learning algorithm is biologically plausible, the excessive storage and offline processing113

demands of BPTT make this option unappealing for neuromorphic hardware. Hence there114

also exists a learning dilemma for RSNNs in neuromorphic hardware, which can be solved115

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

with e-prop.116

Results117

Mathematical basis for e-prop118

Spikes are modeled as binary variables ztj that assume value 1 if neuron j fires at time t,119

otherwise value 0. It is common in models to let t vary over small discrete time steps, e.g.120

of 1 ms length. The goal of network learning is to find synaptic weights W that minimize121

a given loss function E. E may depend on all or a subset of the spikes in the network.122

E measures in the case of regression or classification learning the deviation of the actual123

output ytk of each output neuron k at time t from its given target value y∗,tk (Fig. 1a).124

In reinforcement learning (RL), the goal is to optimize the behavior of an agent in order125

to maximize obtained rewards. In this case, E measures deficiencies of the current agent126

policy to collect rewards.127

The gradient dE
dWji

for the weight Wji of the synapse from neuron i to neuron j tells128

us how this weight should be changed in order to reduce E. The key innovation is that129

a rigorous proof (see Methods) shows that this gradient can be represented as a sum over130

the time steps t of the RSNN computation, where the second factor is just a local gradient131

that does not depend on E:132

dE

dWji

=
∑
t

dE

dztj
·
[
dztj
dWji

]
local

. (1)

This local gradient can be represented as a sum of products of partial derivatives concern-133

ing the hidden state of neuron j up to time t (equation (13)), which can be updated during134

the forward computation of the RNN by a simple recursion (equation (14)). This term135 [
dztj
dWji

]
local

is not an approximation. Rather, it collects the maximal amount of informa-136

tion about the network gradient dE
dWji

that can be computed locally in a forward manner.137

Therefore it is the key-factor of e-prop. Since it reduces for simple neuron models – whose138

internal state is fully captured by its membrane potential – to a variation of terms that139

are commonly referred to as eligibility traces for synaptic plasticity [9], we also refer to140

etji
def
=

[
dztj
dWji

]
local

(2)

as eligibility trace. But most biological neurons have additional hidden variables that141

change on a slower time scale, such as for example the firing threshold of a neuron with142

firing threshold adaptation. Furthermore these slower processes in neurons are essential143

for attaining with spiking neurons similarly powerful computing capabilities as LSTM144

networks [3]. Hence the form that this eligibility trace etji takes for adapting neurons145

(see equation (25)) is essential for understanding e-prop, and it is the main driver behind146

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

the resulting qualitative jump in computing capabilities of RSNNs which are attainable147

through biologically plausible learning. Equations (1) and (2) yield the representation148

dE

dWji

=
∑
t

Ltj e
t
ji (3)

of the loss gradient, where we refer to Ltj
def
= dE

dztj
as the learning signal for neuron j. This149

equation defines a clear program for approximating the network loss gradient through local150

rules for synaptic plasticity: Change each weight Wji at step t proportionally to −Ltjetji, or151

accumulate these “tags” in a hidden variable that is translated occasionally into an actual152

weight change. Hence e-prop is an online learning method in a strict sense (see Fig. 1d153

and Movie S3). In particular, there is no need to unroll the network as for BPTT.154

Since the ideal value dE
dztj

of the learning signal Ltj also captures influences which the155

current spike output ztj of neuron j may have on E via future spikes of other neurons, its156

precise value is in general not available at time t. We replace it by an approximation, such157

as ∂E
∂ztj

, which ignores these indirect influences. This approximation takes only currently158

arising losses at the output neurons k of the RSNN into account, and routes them with159

neuron-specific weights Bjk to the network neurons j (see Fig. 2a):160

Ltj =
∑
k

Bjk (ytk − y
∗,t
k)︸ ︷︷ ︸

deviation of output k
at time t

. (4)

Although this approximate learning signal Ltj only captures errors that arise at the current161

time step t, it is combined in equation (3) with an eligibility trace etji that may reach162

far back into the past of neuron j (see Fig. 3b), thereby alleviating the need to solve163

the temporal credit assignment problem by propagating signals backwards in time (like in164

BPTT).165

There are several strategies for choosing the weights Bjk for this online learning signal.166

In symmetric e-prop we set it equal to the corresponding weight W out
kj of the synaptic167

connection from neuron j to output neuron k, as demanded by ∂E
∂ztj

. Note that this learning168

signal would actually implement dE
dztj

exactly in the absence of recurrent connections in the169

network. Biologically more plausible are two variants of e-prop that avoid weight sharing:170

In random e-prop the values of all weights Bjk – even for neurons j that are not synaptically171

connected to output neuron k – are randomly chosen and remain fixed, similar to Broadcast172

Alignment for feedforward networks [18, 19, 20]. In adaptive e-prop we let in addition Bjk173

for neurons j that are synaptically connected to output neuron k evolve through a simple174

local plasticity rule that mirrors the plasticity rule applied to W out
kj (see section S2.3).175

Resulting synaptic plasticity rules (see Methods) look similar to previously proposed176

plasticity rules [9] for the special case of LIF neurons without slowly changing hidden177

variables. In particular they involve postsynaptic depolarization as one of the factors,178

similarly as the data-based Clopath-rule in [21], see section S6.4 in the supplement for an179

analysis.180

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 2: Comparison of the performance of BPTT and e-prop for learning
phoneme recognition (TIMIT data set). a) Network architecture for e-prop, illus-
trated for an LSNN consisting of LIF and ALIF neurons. b) Input and target output for
the two versions of TIMIT. c) Performance of BPTT and symmetric e-prop for LSNNs
consisting of 800 neurons for framewise targets and 2400 for sequence targets (random
and adaptive e-prop produced similar results, see Fig. S2). To obtain the “Global learning
signal” baselines, the neuron specific feedbacks are replaced with global ones.

Comparing the performance of e-prop and BPTT for learning181

spoken phoneme recognition182

The phoneme recognition task TIMIT [22] is one of the most commonly used benchmarks183

for temporal processing capabilities of different types of recurrent neural networks and184

different learning approaches [23]. It comes in two versions. Both use, as input, acoustic185

speech signals from sentences that are spoken by 630 speakers from 8 dialect regions of the186

USA (see the top of Fig. 2b for a sample segment). In the simpler version, used for example187

in [23], the goal is to recognize which of 61 phonemes is spoken in each 10 ms time frame188

(“frame-wise classification”). In the more sophisticated version from [24], which achieved189

an essential step toward human-level performance in speech-to-text transcription, the goal190

is to recognize the sequence of phonemes in the entire spoken sentence independently191

of their timing (“sequence transcription”). RSNNs consisting of LIF neurons do not even192

reach with BPTT good performance for TIMIT [3]. Hence we are considering here LSNNs,193

where a random subset of the neurons is a variation of the LIF model with firing rate194

adaptation (ALIF neurons), see Methods. The name LSNN is motivated by the fact that195

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

this special case of the RSNN model can achieve through training with BPTT similar196

performance as an LSTM network [3].197

E-prop approximates the performance of BPTT on LSNNs for both versions of TIMIT198

very well, as shown in Fig. 2c. Furthermore LSNNs could solve the frame-wise classification199

task without any neuron firing more frequently than 12 Hz (spike count taken over 32200

spoken sentences), demonstrating that they operate in an energy efficient spike-coding –201

rather than a rate-coding – regime. For the more difficult version of TIMIT we trained as202

in [24] a complex LSNN consisting of a feedforward sequence of three recurrent networks.203

Our results show that e-prop can also handle learning for such more complex network204

structures very well. In Fig. S4 we show for comparison also the performance of e-prop205

and BPTT for LSTM networks on the same tasks. These data show that for both versions206

of TIMIT the performance of e-prop for LSNNs comes rather close to that of BPTT for207

LSTM networks. In addition, they show that e-prop provides also for LSTM networks a208

functionally powerful online learning method.209

E-prop performance for learning a task where temporal credit210

assignment is difficult211

A hallmark of cognitive computations in the brain is the capability to go beyond a purely212

reactive mode: to integrate diverse sensory cues over time, and to wait until the right213

moment arrives for an action. A large number of experiments in neuroscience analyze214

neural coding after learning such tasks (see e.g. [25, 11]). But it had remained unknown215

how one can model the learning of such cognitive computations in RSNNs of the brain. In216

order to test whether e-prop can solve this problem, we considered the same task that was217

studied in the experiments of [25] and [11]. There a rodent moved along a linear track in218

a virtual environment, where it encountered several visual cues on the left and right, see219

Fig. 3a and Movie S1. Later, when it arrived at a T-junction, it had to decide whether to220

turn left or right. It was rewarded when it turned to that side from which it had previously221

received the majority of visual cues. This task is not easy to learn since the subject needs222

to find out that it does not matter on which side the last cue was, or in which order the223

cues were presented. Instead, the subject has to learn to count cues separately for each224

side and to compare the two resulting numbers. Furthermore the cues need to be processed225

properly long before a reward is given. We show in Fig. S5 that LSNNs can learn this task226

via e-prop in exactly the same way just from rewards. But since the way how e-prop solves227

the underlying temporal credit assignment problem is easier to explain for the supervised228

learning version of this task, we discuss here the case where a teacher tells the subject at229

the end of each trial what would have been the right decision. This still yields a challenging230

scenario for any online learning method since non-zero learning signals Ltj arise only during231

the last 150 ms of a trial (Fig. 3b). Hence all synaptic plasticity has to take place during232

these last 150 ms, long after the input cues have been processed. Nevertheless, e-prop is233

able to solve this learning problem, see Fig. 3c and Movie S3. It just needs a bit more time234

to reach the same performance level as offline learning via BPTT (see Movie S2). Whereas235

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 3: Solving a task with difficult temporal credit assignment. a) Setup of
corresponding rodent experiments of [25] and [11], see Movie S1. b) Input spikes, spiking
activity of 10 out of 50 sample LIF neurons and 10 out of 50 sample ALIF neurons,
membrane potentials (more precisely: vtj − Atj) for two sample neurons j, 3 samples of
slow components of eligibility traces, sample learning signals for 10 neurons and softmax
network output. c) Learning curves for BPTT and two e-prop versions applied to LSNNs,
and BPTT applied to an RSNN without adapting neurons (red curve). Orange curve shows
learning performance of e-prop for a sparsely connected LSNN consisting of excitatory and
inhibitory neurons (Dale’s law obeyed). The shaded areas are the 95%-confidence intervals
of the mean accuracy computed with 20 runs. d) Correlation between the randomly drawn
broadcast weights Bjk for k = left/right for learning signals in random e-prop and resulting
sensitivity to “left” and “right” input components after learning. fj,left (fj,right) was the
resulting average firing rate of neuron j during presentation of left (right) cues after learning.

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

this task can not even be solved by BPTT with a regular RSNN that has no adapting236

neurons (red curve in Fig. 3c), all 3 previously discussed variations of e-prop can solve it237

if the RSNN contains adapting neurons. We explain in section S2.5 how this task can also238

be solved by sparsely connected LSNNs consisting of excitatory and inhibitory neurons:239

by integrating stochastic rewiring [26] into e-prop.240

But how can the neurons in the LSNN learn to record and count the input cues if all241

the learning signals are identically 0 until the last 150 ms of a 2250 ms long trial (see 2nd242

to last row of Fig. 3b)? For answering this question one should note that firing of a neuron243

j at time t can affect the loss function E at a later time point t′ > t in two different ways:244

i) By affecting future values of slow hidden variables of neuron j (e.g., its firing thresh-245

old), which may then affect the firing of neuron j at t′ , which in turn may directly246

affect the loss function at time t′.247

ii) By affecting the firing of other neurons j′ at t′, which directly affects the loss function248

at time t′.249

In symmetric and adaptive e-prop one uses the partial derivative ∂E
∂ztj

as learning signal250

Ltj for e-prop – instead of the online not available total derivative dE
dztj

. This blocks the251

flow of gradient information along route ii. But the eligibility trace keeps the flow along252

route i open. Therefore even symmetric and adaptive e-prop can solve the temporal credit253

assignment problem of Fig. 3 through online learning: The gradient information that flows254

along route i enables neurons to learn how to process the sensory cues at time points t255

during the first 1050 ms, although this can affect the loss only at time points t′ > 2100 ms256

when the loss becomes non-zero. This is illustrated in the 3rd last row of Fig. 3b: The257

slow component εtji,a of the eligibility traces eji of adapting neurons j decays with the258

typical long time constant of firing rate adaptation (see equation (24) and Movie S3).259

Since these traces stretch from the beginning of the trial into its last phase, they enable260

learning of differential responses to “left” and “right” input cues that arrived over 1050 ms261

before any learning signals become non-zero, as shown in the 2nd to last row of Fig. 3b.262

Hence eligibility traces provide “highways into the future” for the propagation of gradient263

information. These can be seen as biologically realistic replacements for the highways into264

the past that BPTT employs during its backwards pass (see Movie S2).265

This analysis also tells us when symmetric e-prop is likely to fail to approximate the266

performance of BPTT : If forward propagation of gradient information cannot reach along267

route i those later time points t′ when the value of the loss function becomes salient. One268

can artificially induce this in the experiment of Fig. 3 by adding to the LSNN – which has269

the standard architecture shown in Fig. 2a – hidden layers of a feedforward SNN through270

which the communication between the LSNN and the readout neurons has to flow. The271

neurons j′ of these hidden layers block route i, while leaving route ii open. Hence the task272

of Fig. 3 can still be learnt with this modified network architecture by BPTT, but not by273

symmetric e-prop, see Fig. S8.274

Identifying tasks where the performance of random e-prop stays far behind that of275

BPTT is more difficult, since error signals are sent there also to neurons that have no direct276

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

connections to readout neurons. For deep feedforward networks it has been shown in [27]277

that Broadcast Alignment, as defined in [20, 19], cannot reach the performance of Backprop278

for difficult image classification tasks. Hence we expect that random e-prop will exhibit279

corresponding deficiencies for difficult classification tasks with deep feedforward SNNs.280

We are not aware of corresponding demonstrations of failures of Broadcast Alignment for281

artificial RNNs, although they are likely to exist. Once they are found, they will probably282

point to tasks where random e-prop fails for RSNNs. Currently we are not aware of any.283

Fig. 3d provides insight into the functional role of the randomly drawn broadcast284

weights in random e-prop: The difference of these weights determines for each neuron285

j whether it learns to respond in the first phase of a trial more to cues from the left or286

right. This observation suggests that neuron-specific learning signals for RSNNs have the287

advantage that they can create a diversity of feature detectors for task-relevant network288

inputs. Hence a suitable weighted sum of these feature detectors is later able to cancel289

remaining errors at the network output, similarly as in the case of feedforward networks290

[18].291

We would like to point out that the use of the familiar actor-critic method in reward-292

based e-prop, which we will discuss in the next section, provides an additional channel by293

which information about future losses can gate synaptic plasticity of the e-prop learner at294

the current time step t: Through the estimate V (t) of the value of the current state, that295

is simultaneously learnt via internally generated reward-prediction errors.296

Reward-based e-prop297

Deep RL has significantly advanced the state of the art in machine learning and AI through298

clever applications of BPTT to RL [14]. We found that one of the arguably most powerful299

RL methods within the range of deep RL approaches that are not directly biologically300

implausible, policy gradient in combination with actor-critic, can be implemented with301

e-prop. This yields the biologically plausible and hardware friendly deep RL algorithm302

reward-based e-prop. The LSNN learns here both an approximation to the value function303

(the “critic”) and a stochastic policy (the “actor”). Neuron-specific learning signals are304

combined in reward-based e-prop with a global signal that transmits reward prediction305

errors (Fig. 4b). In contrast to the supervised case, where the learning signals Ltj depend306

on the deviation from an external target signal, the learning signals communicate here how307

a stochastically chosen action deviates from the action mean that is currently proposed by308

the network.309

The resulting online synaptic plasticity rule (5) for deep RL is similar to equation (3),310

except that a fading memory filter Fγ is applied here to the term Ltj ē
t
ji, where γ is the given311

discount factor for future rewards and ētji denotes a low-pass filtered copy of the eligibility312

trace etji (see Methods). This term is multiplied in the synaptic plasticity rule with the313

reward prediction error δt = rt + γV t+1 − V t, where rt is the reward received at time t.314

This yields an instantaneous weight change of the form:315

∆W t
ji = −η δtFγ

(
Ltj ē

t
ji

)
. (5)

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 4: Application of e-prop to the Atari game Pong. a) Here the player (green
paddle) has to outplay the opponent (light brown). A reward is acquired when the opponent
cannot bounce back the ball (a small white square). To achieve this, the agent has to learn
to hit the ball also with the edges of his paddle, which causes a less predictable trajectory.
b) The agent is realized by an LSNN. The pixels of the current video frame of the game
are provided as input. During processing of the stream of video frames by the LSNN,
actions are generated by the stochastic policy in an online manner. At the same time,
future rewards are predicted. The current error in prediction is fed back both to the LSNN
and the spiking CNN that preprocesses the frames. (caption continued on next page)

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 4: (continued caption) c) Sample trial of the LSNN after learning with reward-
based e-prop. From top to bottom: probabilities of stochastic actions, prediction of future
rewards, learning dynamics of a random synapse (arbitrary units), spiking activity of 10
out of 240 sample LIF neurons and 10 out of 160 sample ALIF neurons, and membrane
potentials (more precisely: vtj−Atj) for the two sample neurons j at the bottom of the spike
raster above. d) Learning progress of the LSNN trained with reward-based e-prop, reported
as the sum of collected rewards during an episode. The learning curve is averaged over 5
different runs and the shaded area represents the standard deviation. More information
about the comparison between our results and A3C are given in section S5.3.

Previous 3-factor learning rules for RL were usually of the form ∆W t = ηδtētji [28, 9].316

Hence they estimated gradients of the policy just by correlating the output of network317

neurons with the reward prediction error. The learning power of this approach is known to318

be quite limited due to high noise in the resulting gradient estimates. In contrast, in the319

plasticity rule (5) for reward-based e-prop the eligibility traces are first combined with a320

neuron specific feedback Ltj, before they are multiplied with the reward prediction error δt.321

We show in Methods analytically that this yields estimates of policy- and value gradients322

similarly as in deep RL with BPTT. Furthermore, in contrast to previously proposed 3-323

factor learning rules, this rule (5) is also applicable to LSNNs.324

We tested reward-based e-prop on a classical benchmark task [14] for learning intelligent325

behavior from rewards: Winning Atari video games provided by the Arcade Learning326

Environment [29]. To win such game, the agent needs to learn to extract salient information327

from the pixels of the game screen, and to infer the value of specific actions, even if rewards328

are obtained in a distant future. In fact, learning to win Atari games is a serious challenge329

for reinforcement learning even in machine learning [14]. Besides artificial neural networks330

and BPTT, previous solutions also required experience replay (with a perfect memory of331

many frames and action sequences that occurred much earlier) or an asynchronous training332

of numerous parallel agents sharing synaptic weight updates. We show here that also an333

LSNN can learn via e-prop to win Atari games, through online learning of a single agent.334

This becomes possible with a single agent and without episode replay if the agent uses335

a schedule of increasing episode lengths –with a learning rate that is inversely related to336

that length. Using this scheme, an agent can experience diverse and uncorrelated short337

episodes in the first phase of learning, producing useful skills. Subsequently, the agent can338

fine-tune its policy using longer episodes.339

First, we considered the well-known Atari game Pong (Fig. 4a). Here, the agent has to340

learn to hit a ball in a clever way using up and down movements of his paddle. A reward341

is obtained if the opponent cannot catch the ball. We trained an agent using reward-based342

e-prop for this task, and show a sample trial in Fig. 4c and Movie S5. In contrast to343

common deep RL solutions, the agent learns here in a strict online manner, receiving at344

any time just the current frame of the game screen. In Panel d of Fig. 4 we demonstrate345

that also this biologically realistic learning approach leads to a competitive score.346

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 5: Application of e-prop to learning to win the Atari game Fishing Derby.
a) Here the player has to compete against an opponent, and try to catch more fish from
the sea. b) Once a fish has bit, the agent has to avoid that the fish gets touched by a shark.
c) Sample trial of the trained network. From top to bottom: probabilities of stochastic
actions, prediction of future rewards, learning dynamics of a random synapse (arbitrary
units), spiking activity of 20 out of 180 sample LIF neurons and 20 out of 120 sample ALIF
neurons. d) Learning curves of an LSNN trained with reward-based e-prop as in Fig. 4d.

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

If one does not insist on an online setting where the agent receives just the current347

frame of the video screen but the last 4 frames, winning strategies for about half of the348

Atari games can already be learnt by feedforward neural networks (see table S3 of [14]).349

However, for other Atari games, such as Fishing Derby (Fig. 5a), it was even shown in [14]350

that deep RL applied to LSTM networks achieves a substantially higher score than any deep351

RL method for feedforward networks which was considered there. Hence, in order to test352

the power of online reward-based e-prop also for those Atari games that require enhanced353

temporal processing, we tested it on the Fishing Derby game. In this game, the agent has354

to catch as many fish as possible while avoiding that the shark touches the fish with any355

part of its body, and that the opponent catches the fish first. We show in Fig. 5c that356

online reward-based e-prop applied to an LSNN does in fact reach the same performance357

as reference offline algorithms applied to LSTM networks. We show a random trial after358

learning in Fig. 5d, where we can identify two different learnt behaviors: 1) evading the359

shark, 2) collecting fish. The agent has learnt to switch between these two behaviors as360

required by the situation.361

In general, we conjecture that variants of reward-based e-prop will be able to solve most362

deep RL tasks that can be solved by online actor-critic methods in machine learning.363

Discussion364

We propose that in order to understand the computational function and neural coding of365

neural networks in the brain, one needs to understand the organization of the plasticity366

mechanisms that install and maintain these. So far BPTT was the only candidate for367

that, since no other learning method provided sufficiently powerful computational function368

to RSNN models. But since BPTT is not viewed to be biologically realistic [5], it does369

not help us to understand learning in the brain. E-prop offers a solution to this dilemma,370

since it does not require biologically unrealistic mechanisms, but still enables RSNNs to371

learn difficult computational tasks, in fact almost as well as BPTT. Furthermore it enables372

RSNNs to solve these tasks in an energy efficient sparse firing regime, rather than resorting373

to rate coding.374

E-prop relies on two types of signals that are abundandly available in the brain, but375

whose precise role for learning have not yet been understood: eligibility traces and learning376

signals. Since e-prop is based on a transparent mathematical principle (see equation (3)),377

it provides a normative model for both types of signals, as well as for synaptic plasticity378

rules. Interestingly, the resulting learning model suggests that a characteristic aspect of379

many biological neurons – the presence of slowly changing hidden variables – provides a380

possible solution to the problem how a RSNN can learn without error signals that propagate381

backwards in time: Slowly changing hidden variables of neurons cause eligibility traces382

that propagate forward over longer time spans, and are therefore able to coincide with383

later arising instantaneous error signals (see Fig. 3b).384

The theory of e-prop makes a concrete experimentally testable prediction: that the385

time constant of the eligibility trace for a synapse is correlated with the time constant for386

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

the history-dependence of the firing activity of the postsynaptic neuron. It also suggests387

that the experimentally found diverse time constants of the firing activity of populations388

of neurons in different brain areas [30] are correlated with their capability to handle corre-389

sponding ranges of delays in temporal credit assignment for learning.390

Finally, e-prop theory provides a hypothesis for the functional role of the experimentally391

found diversity of dopamine signals to different populations of neurons [11]. Whereas392

previous theories of reward-based learning required that the same learning signal is sent393

to all neurons, the basic equation (1) for e-prop postulates that ideal top-down learning394

signals to a population of neurons depend on its impact on the network performance (loss395

function), and should therefore be target specific (see Fig. 2c and section S6.2). In fact, the396

learning-to-learn result for e-prop in [31] suggests that prior knowledge about the possible397

range of learning tasks for a brain area could optimize top-down learning signals even398

further on an evolutionary time scale, thereby enabling for example learning from few or399

even a single trial.400

Previous methods for training RSNNs did not aim at approximating BPTT. Instead401

some of them were relying on control theory to train a chaotic reservoir of spiking neurons402

[32, 33, 34]. Others used the FORCE algorithm [35, 36] or variants of it [37, 38, 39,403

35]. However the FORCE algorithm was not argued to be biologically realistic, since the404

plasticity rule for each synaptic weight requires knowledge of the current values of all other405

synaptic weights. The generic task considered in [35] was to learn with supervision how406

to generate patterns. We show in Figs. S1, S7, and Movie S4 that RSNNs can learn such407

tasks also with a biologically plausible learning method: e-prop.408

Several methods for approximating stochastic gradient descent in feedforward networks409

of spiking neurons have been proposed, see e.g. [40, 41, 42, 43, 44]. These employ –410

like e-prop – a pseudo-gradient to overcome the non-differentiability of a spiking neuron,411

as proposed previously in [45, 46]. [40, 42, 43] arrive at a synaptic plasticity rule for412

feedforward networks that consists – like e-prop – of the product of a learning signal and413

a derivative (eligibility trace) that describes the dependence of a spike of a neuron j on414

the weight of an afferent synapse Wji. But in a recurrent network the spike output of j415

depends on Wji also indirectly, via loops in the network that allow that a spike of neuron416

j contributes to the firing of other neurons, which in turn affect firing of the presynaptic417

neuron i. Hence the corresponding eligibility trace can no longer be locally computed if418

one transfers these methods for feedforward networks to recurrently connected networks.419

Therefore [40] suggests the need to investigate extensions of their approach to RSNNs.420

Previous work on the design of online gradient descent learning algorithms for non-421

spiking RNNs was based on real-time recurrent learning (RTRL) [15]. RTRL itself has422

rarely been used since its computational complexity per time-step is O(n4), if n is the423

number of neurons. But interesting approximations to RTRL have subsequently been pro-424

posed (see [47] for a review): some stochastic approximations [48] which are O(n3) or only425

applicable for small networks [49], and also recently two deterministic O(n2) approxima-426

tions [50, 51]. The latter were in fact written at the same time as the first publication427

of e-prop [31]. A structural difference between this paper and [50] is that their approach428

requires that learning signals are transmitted between the neurons in the RNN, with sepa-429

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

rately learnt weights. [51] derived for rate based neurons a learning rule similar to random430

e-prop. But this work did not address other forms of learning than supervised regression,431

such as RL, nor learning in networks of spiking neurons, or in more powerful types of RNNs432

with slow hidden variables such as LSTM networks or LSNNs.433

E-prop also has complexity O(n2), in fact O(S) if S is the number of synaptic connec-434

tions. This bound is optimal -except for the constant factor- since this is the asymptotic435

complexity of just simulating the RNN. The key point of e-prop is that the general form (13)436

of its eligibility trace collects all contributions to the loss gradient that can be locally com-437

puted in a feedforward manner. This general form enables applications to spiking neurons438

with slowly varying hidden variables, such as neurons with firing rate adaptation, which439

are essential ingredients of RSNNs to reach the computational power of LSTM networks440

[3]. We believe that this approach can be extended in future work –with a suitable choice441

of pseudo-derivatives—to a wide range of biologically more realistic neuron models. It also442

enables the combination of these rigorously derived eligibility traces with – semantically443

identical but algorithmically very different – eligibility traces from RL for reward-based444

e-prop (equation (5)), thereby bringing the power of deep RL to RSNNs. As a result, we445

were able to show in Fig. 2 - 5 that RSNNs can learn with the biologically plausible rules446

for synaptic plasticity that arise from the e-prop theory to solve tasks such as phoneme447

recognition, integrating evidence over time and waiting for the right moment to act, and448

winning Atari games. These are tasks that are fundamental for modern learning-based AI,449

but have so far not been solved with RSNNs. Hence e-prop provides a new perspective of450

the major open question how intelligent behavior can be learnt and controlled by neural451

networks of the brain.452

Apart from obvious consequences of e-prop for research in neuroscience and cognitive453

science, e-prop also provides an interesting new tool for approaches in machine learning454

where BPTT is replaced by approximations in order to improve computational efficiency.455

We have already shown in Fig. S4 that e-prop provides a powerful online learning method456

for LSTM networks. Furthermore, the combination of eligibility traces from e-prop with457

synthetic gradients from [52] even improves performance of LSTM networks for difficult458

machine learning problems such as the copy-repeat task and the Penn Treebank word459

prediction task [31]. Other future extensions of e-prop could explore a combination with460

attention-based models in order to cover multiple timescales.461

Finally, e-prop suggests a promising new approach for realizing powerful on-chip learn-462

ing of RSNNs on neuromorphic chips. Whereas BPTT is not within the reach of current463

neuromorphic hardware, an implementation of e-prop appears to offer no serious hurdle.464

Our results show that an implementation of e-prop will provide a qualitative jump in465

on-chip learning capabilities of neuromorphic hardware.466

Methods467

Table of Contents:468

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

• Network models469

• Conventions470

• Mathematical basis for e-prop471

• Eligibility traces472

• Derivation of eligibility traces for concrete neuron models473

• Synaptic plasticity rules resulting from e-prop474

• Reward-based e-prop: application of e-prop to deep RL475

Network models476

To exhibit the generality of the e-prop approach, we define the dynamics of recurrent neural477

networks using a general formalism that is applicable to many recurrent neural network478

models, not only to RSNNs and LSNNs. Also non-spiking models such as LSTM networks479

fit under this formalism (see section S4.3 in the supplement). The network dynamics is480

summarized by the computational graph in Fig. 6. It uses the function M to define the481

update of the hidden state of a neuron j: htj = M(ht−1j , zt−1,xt,Wj), where Wj gathers482

the weights of synapses arriving at neuron j, and f to define the update of the observable483

state of a neuron j: ztj = f(htj, z
t−1,xt,Wj) (f simplifies to ztj = f(htj) for LIF and ALIF484

neurons). We chose a discrete time step of δt = 1 ms for all our simulations. Control485

experiments with smaller time steps for the task of Fig. 3, reported in Fig. S6, suggest that486

the size of the time step has no significant impact on the performance of e-prop.487

LIF neurons. Each LIF neuron has a one dimensional internal state – or hidden variable488

– htj that consists only of the membrane potential vtj. The observable state ztj ∈ {0, 1} is489

binary, indicating a spike (ztj = 1) or no spike (ztj = 0) at time t. The dynamics of the LIF490

model is defined by the equations:491

vt+1
j = αvtj +

∑
i6=j

W rec
ji z

t
i +
∑
i

W in
ji x

t+1
i − ztjvth (6)

ztj = H
(
vtj − vth

)
. (7)

W rec
ji (W in

ji) is the synaptic weight from network (input) neuron i to neuron j. The decay492

factor α in (6) is given by e−δt/τm , where τm (typically 20 ms) is the membrane time493

constant. δt denotes the discrete time step size, which is set to 1 ms in our simulations. H494

denotes the Heaviside step function. Note that we deleted in equation (6) the factor 1−α495

that occured in the corresponding equation (4) in the supplement of [3]. This simplifies496

the notation in our derivations, and has no impact on the model if parameters like the497

threshold voltage are scaled accordingly.498

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Due to the term −ztjvth in equation (6), the neurons membrane potential is reduced499

by a constant value after an output spike, which relates our model to the spike response500

model [53]. To introduce a simple model of neuronal refractoriness, we further assume501

that ztj is fixed to 0 after each spike of neuron j for a short refractory period of 2 to 5 ms502

depending on the simulation.503

LSNNs. According to the database of the Allen Institute [2] a fraction of neurons be-504

tween roughly 20 % (in mouse visual cortex) and 40 % (in the human frontal lobe) exhibit505

spike frequency adaptation (SFA). It had been shown in [3] that the inclusion of neuron506

models with SFA – via a time-varying firing threshold as slow hidden variable – drastically507

enhances computing capabilities of RSNN models. Hence we consider here the same simple508

model for neurons with SFA as in [3], to which we refer as adaptive LIF (ALIF) neuron.509

This model is basically the same as the GLIF2 model in the Technical White paper on510

generalized LIF (GLIF) models from [2]. LSNNs are recurrently connected networks that511

consist of LIF and ALIF neurons. ALIF neurons j have a second hidden variable atj, which512

denotes the variable component of its firing threshold. As a result, their internal state is513

a 2 dimensional vector htj
def
= [vtj, a

t
j]. Their threshold potential Atj increases with every514

output spike and decreases exponentially back to the baseline threshold vth. This can be515

described by516

Atj = vth + βatj , (8)

ztj = H(vtj − Atj) , (9)

with a threshold adaptation according to517

at+1
j = ρatj + ztj , (10)

where the decay factor ρ is given by e−δt/τa , and τa is the adaptation time constant that is518

typically chosen to be in the range of the time span of the length of the working memory519

that is a relevant for a given task. This is a very simple model for a neuron with spike520

frequency adaptation [3]. We refer to [53, 54, 55] for experimental data and other neuron521

models. We refer to a recurrent network of spiking neurons (RSNN) as LSNN if some of522

its neurons are adaptive. We chose a fraction between 25 and 40 % of the neurons to be523

adapting, like in the data from neocortex [2], with time constants that are roughly on the524

same time scale as the tasks for which the network is trained.525

In relation to the more general formalism represented in the computational graph in526

Fig. 6, equations (6) and (10) define M(ht−1j , zt−1,xt,Wj), and equations (7) and (9)527

define f(htj).528

Gradient descent for RSNNs. Gradient descent is problematic for spiking neurons529

because of the step function H in equation (7). We overcome this issue as in [56, 3]: The530

non-existing derivative
∂ztj
∂vtj

is replaced in simulations by a simple nonlinear function of the531

membrane potential that is called the pseudo-derivative. Outside of the refractory period,532

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

we choose a pseudo-derivative of the form ψtj = 1
vth
γpd max

(
0, 1−

∣∣∣vtj−Atjvth

∣∣∣) where γpd = 0.3533

for ALIF neurons, and for LIF neurons Atj is replaced by vth. During the refractory period534

the pseudo derivative is set to 0.535

Network output and loss functions. We assume that network outputs ytk are real-536

valued and produced by leaky output neurons (readouts) k, which are not recurrently537

connected:538

ytk = κyt−1k +
∑
j

W out
kj z

t
j + boutk , (11)

where κ ∈ [0, 1] defines the leak and boutk denotes the output bias. The leak factor κ is539

given for spiking neurons by e−δt/τout , where τout is the membrane time constant. Note that540

for non-spiking neural networks (such as for LSTM networks), temporal smoothing of the541

network observable state is not necessary. In this case, one can use κ = 0.542

The loss function E(z1, . . . , zT) quantifies the network performance. We assume that543

it depends only on the observable states z1, . . . , zT of the network neurons. For instance,544

for a regression problem we define E as the mean square error E = 1
2

∑
t,k(y

t
k − y∗,tk)2545

between the network outputs ytk and target values y∗,tk . For classification or RL tasks the546

loss function E has to be re-defined accordingly.547

Conventions548

Notation for derivatives. We distinguish the total derivative dE
dzt

(z1, . . . , zT), which549

takes into account how E depends on zt also indirectly through influence of zt on the other550

variables zt+1, . . . , zT , and the partial derivative ∂E
∂zt

(z1, . . . , zT) which quantifies only the551

direct dependence of E on zt.552

Analogously for the hidden state htj = M(ht−1j , zt−1,xt,Wj) the partial derivative553

∂M
∂ht−1

j

denotes the partial derivative of M with respect to ht−1j . It only quantifies the554

direct influence of ht−1j on htj and it does not take into account how ht−1j indirectly in-555

fluences htj via the observable states zt−1. To improve readability we also use the follow-556

ing abbreviations:
∂htj

∂ht−1
j

def
= ∂M

∂ht−1
j

(ht−1j , zt−1,xt,Wj),
∂htj
∂Wji

def
= ∂M

∂Wji
(ht−1j , zt−1,xt,Wj), and557

∂ztj
∂htj

def
= ∂f

∂ht
(htj, z

t−1,xt,Wj).558

Notation for temporal filters. For ease of notation we use the operator Fα to denote559

the low-pass filter such that, for any time series xt:560

Fα(xt) = αFα(xt−1) + xt , (12)

and Fα(x0) = x0. In the specific case of the time series ztj and etji, we simplify notation561

further and write z̄tj and ētji for Fα(zj)
t and Fκ(eji)t.562

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Figure 6: Computational graph and gradient propagations a) Assumed mathemat-
ical dependencies between hidden neuron states htj, neuron outputs zt, network inputs xt,
and the loss function E through the mathematical functions E(·), M(·), f(·) are repre-
sented by coloured arrows. b-c) The flow of computation for the two components et and
Lt that merge into the loss gradients of equation (3) can be represented in similar graphs.
b) Following equation (14), the flow of the computation of the eligibility traces etji is going

forward in time. c) Instead the ideal learning signals Ltj = dE
dztj

require to propagate gradi-

ents backward in time. Hence while etji is computed exactly, Ltj is approximated in e-prop
applications to yield an online learning algorithm.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Mathematical basis for e-prop563

We provide here the proof of the fundamental equation (1) for e-prop564

dE

dWji

=
∑
t

dE

dztj
·
[
dztj
dWji

]
local

,

with the new eligibility trace

etji
def
=

[
dztj
dWji

]
local

def
=

∂ztj
∂htj

∑
t′≤t

∂htj

∂ht−1j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji︸ ︷︷ ︸
def
= εtji

.

(13)

For spiking neurons j we replace the first factor
∂ztj
∂htj

of etji by the pseudo-derivative, see565

[3, 4, 56]. The second factor εtji, which we call eligibility vector, obviously satisfies the566

recursive equation567

εtji =
∂htj

∂ht−1j

· εt−1ji +
∂htj
∂Wji

, (14)

where · denotes the dot product. This provides the rule for the online computation of εtji,568

and hence of etji =
∂ztj
∂htj
· εtji.569

We start from a classical factorization of the loss gradients in recurrent neural networks570

that arises for instance in equation (12) of [57] to describe BPTT. This classical factor-571

ization can be justified by unrolling an RNN into a large feedforward network where each572

layer (l) represents one time step. In a feedforward network the loss gradients with respect573

to the weights W
(l)
ji of layer l are given by dE

dW
(l)
ji

= dE

dh
(l)
j

∂h
(l)
j

∂W
(l)
ji

. But as the weights are shared574

across the layers when representing a recurrent network, the summation of these gradients575

over the layers l of the unrolled RNN yields this classical factorization of the loss gradients:576

dE

dWji

=
∑
t′

dE

dht
′
j

·
∂ht

′
j

∂Wji

. (15)

Note that the first factor dE

dht
′
j

in these products also needs to take into account how the577

internal state hj of neuron j evolves during subsequent time steps, and whether it influences578

firing of j at later time steps. This is especially relevant for ALIF neurons and other579

biologically realistic neuron models with slowly changing internal states. Note that this580

first factor of (15) is replaced in the e-prop equation (13) by the derivative dE

dzt
′
j

of E with581

regard to the observable variable zt
′
j . There the evolution of the internal state of neuron j582

is pushed into the second factor, the eligibility trace eji, which collects in e-prop all online583

computable factors of the loss gradient that just involve neurons j and i.584

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

Now we show that one can re-factorize the expression (15) and prove that the loss585

gradients can also be computed using the new factorization (13) that underlies e-prop. In586

the steps of the subsequent proof until equation (19), we decompose the term dE

dht
′
j

into a587

series of learning signals Ltj = dE
dztj

and local factors
∂ht+1

j

∂htj
for t ≥ t′. Those local factors588

will later be used to transform the partial derivative
∂ht
′
j

∂Wji
from equation (15) into the589

eligibility vector εtji that integrates the whole history of the synapse up to time t, not just590

a single time step. To do so, we express dE

dht
′
j

recursively as a function of the same derivative591

at the next time step dE

dht
′+1
j

by applying the chain rule at the node htj for t = t′ of the592

computational graph shown in Fig. 6c:593

dE

dht
′
j

=
dE

dzt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

(16)

= Lt
′

j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

, (17)

where we defined the learning signal Lt
′
j as dE

dzt
′
j

. The resulting recursive expansion ends at594

the last time step T of the computation of the RNN, i.e., dE

dhT+1
j

= 0. If one repeatedly sub-595

stitutes the recursive formula (17) into the classical factorization (15) of the loss gradients,596

one gets:597

dE

dWji

=
∑
t′

(
Lt
′

j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji

(18)

=
∑
t′

(
Lt
′

j

∂zt
′
j

∂ht
′
j

+
(
Lt
′+1
j

∂zt
′+1
j

∂ht
′+1
j

+ (· · ·)
∂ht

′+2
j

∂ht
′+1
j

)∂ht′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji

. (19)

The following equation is the main equation for understanding the transformation from598

BPTT into e-prop. The key idea is to collect all terms
∂ht
′+1
j

∂ht
′
j

which are multiplied with599

the learning signal Ltj at a given time t. These are only terms that concern events in600

the computation of neuron j up to time t, and they do not depend on other future losses601

or variable values. To this end, we write the term in parentheses in equation (19) into602

a second sum indexed by t and exchange the summation indices to pull out the learning603

signal Ltj. This expresses the loss gradient of E as a sum of learning signals Ltj multiplied604

by some factor indexed by ji, which we define as the eligibility trace etji ∈ R. The main605

factor of it is the eligibility vector εtji ∈ Rd, which has the same dimension as the hidden606

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

state htj:607

dE

dWji

=
∑
t′

∑
t≥t′

Ltj
∂ztj
∂htj

∂htj

∂ht−1j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji

(20)

=
∑
t

Ltj
∂ztj
∂htj

∑
t′≤t

∂htj

∂ht−1j

· · ·
∂ht

′+1
j

∂ht
′
j

·
∂ht

′
j

∂Wji︸ ︷︷ ︸
def
= εtji

. (21)

This completes the proof of equations (1), (3), (13).608

Derivation of eligibility traces for concrete neuron models609

The eligibility traces for LSTMs are derived in the supplementary materials. Below we610

provide the derivation of eligibility traces for spiking neurons.611

Eligibility traces for LIF neurons. We compute the eligibility trace of a synapse of612

a LIF neuron without adaptive threshold (equation (6)). Here the hidden state htj of a613

neuron consists just of the membrane potential vtj and we have
∂ht+1

j

∂htj
=

∂vt+1
j

∂vtj
= α and614

∂vtj
∂Wji

= zt−1i (for a derivation of the eligibility traces taking the reset into account we refer615

to section S1.2). Using these derivatives and equation (14), one obtains that the eligibility616

vector is the low-pass filtered presynaptic spike-train,617

εt+1
ji = Fα(zti)

def
= z̄ti , (22)

and following equation (13), the eligibility trace is:618

et+1
ji = ψt+1

j z̄ti . (23)

For all neurons j the derivations in the next sections also hold for synaptic connections from619

input neurons i, but one needs to replace the network spikes zt−1i by the input spikes xti (the620

time index switches from t − 1 to t because the hidden state htj = M(ht−1j , zt−1,xt,Wj)621

is defined as a function of the input at time t but the preceding recurrent activity). For622

simplicity we have focused on the case where transmission delays between neurons in the623

RSNN are just 1 ms. If one uses more realistic length of delays d, this −d appears in624

equations (23)–(25) instead of −1 as the most relevant time point for presynaptic firing625

(see section S1.3). This moves resulting synaptic plasticity rules closer to experimentally626

observed forms of STDP.627

Eligibility traces for ALIF neurons. The hidden state of an ALIF neuron is a two628

dimensional vector htj = [vtj, a
t
j]. Hence a two dimensional eligibility vector εtji

def
= [εtji,v, ε

t
ji,a]629

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

is associated with the synapse from neuron i to neuron j, and the matrix
∂ht+1

j

∂htj
is a 2× 2630

matrix. The derivatives
∂at+1
j

∂atj
and

∂at+1
j

∂vtj
capture the dynamics of the adaptive threshold.631

Hence to derive the computation of eligibility traces we substitute the spike zj in equation632

(10) by its definition given in equation (9). With this convention one finds that the diagonal633

of the matrix
∂ht+1

j

∂htj
is formed by the terms

∂vt+1
j

∂vtj
= α and

∂at+1
j

∂atj
= ρ − ψtjβ. Above and634

below the diagonal, one finds respectively
∂vt+1
j

∂atj
= 0,

∂at+1
j

∂vtj
= ψtj. Seeing that

∂htj
∂Wji

=635 [
∂vtj
∂Wji

,
∂atj
∂Wji

]
=
[
zt−1i , 0

]
, one can finally compute the eligibility traces using equation (13).636

The component of the eligibility vector associated with the membrane potential remains637

the same as in the LIF case and only depends on the presynaptic neuron: εtji,v = z̄t−1i .638

For the component associated with the adaptive threshold we find the following recursive639

update:640

εt+1
ji,a = ψtj z̄

t−1
i + (ρ− ψtjβ)εtji,a , (24)

and, since
∂ztj
∂htj

=
[
∂ztj
∂vtj
,
∂ztj
∂atj

]
=
[
ψtj,−βψtj

]
, this results in an eligibility trace of the form:641

etji = ψtj

(
z̄t−1i − βεtji,a

)
. (25)

Recall that the constant ρ = exp(− δt
τa

) arises from the adaptation time constant τa, which642

typically lies in the range of hundreds of milliseconds to a few seconds in our experiments,643

yielding values of ρ between 0.995 and 0.9995. The constant β is typically of the order of644

0.07 in our experiments.645

To provide a more interpretable form of eligibility trace that fits into the standard form646

of local terms considered in 3-factor learning rules [9], one may drop the term −ψtjβ in647

equation (24). This approximation ε̂tji,a of equation (24) becomes an exponential trace648

of the post-pre pairings accumulated within a time window as large as the adaptation649

adaptation time constant:650

ε̂t+1
ji,a = Fρ

(
ψtj z̄

t−1
i

)
. (26)

The eligibility traces are computed with equation (24) in most experiments, but the per-651

formances obtained with symmetric e-prop and this simplification were indistinguishable652

in the task where temporal credit assignment is difficult of Fig. 3.653

Synaptic plasticity rules resulting from e-prop654

An exact computation of the ideal learning signal dE
dztj

in equation (1) requires to back-655

propagate gradients through time (see Fig. 6c). For online e-prop we replace it with the656

partial derivative ∂E
∂ztj

, which can be computed online. Implementing the weight updates657

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

with gradient descent and learning rate η, all the following plasticity rules are derived from658

the formula659

∆W rec
ji = −η

∑
t

∂E

∂ztj
etji . (27)

Note that in the absence of the superscript t, ∆Wji denotes the cumulated weight change660

over one trial or batch of consecutive trials but not the instantaneous weight update. This661

can be implemented online by accumulating weight updates in a hidden synaptic variable.662

Note also that the weight updates derived in the following for the recurrent weights W rec
ji663

also apply to the inputs weights W in
ji . For the output weights and biases the derivation does664

not require the theory of e-prop, and the weight updates can be found in the section S3.1.665

Case of regression tasks. In the case of a regression problem with targets y∗,tk and out-666

puts ytk defined in equation (11), we define the loss function E = 1
2

∑
t,k(y

t
k − y

∗,t
k)2. This667

results in a partial derivative of the form ∂E
∂ztj

=
∑

kW
out
kj

∑
t′≥t(y

t′

k − y
∗,t′
k)κt

′−t. This seem-668

ingly provides an obstacle for online learning, because the partial derivative is a weighted669

sum over future errors. But this problem can be resolved since one can interchange the670

two summation indices in the expression for the weight updates (see section S3.1). In this671

way the sum over future events transforms into a low-pass filtering of the eligibility traces672

ētji = Fκ(etji), and the resulting weight update can be written as673

∆W rec
ji = −η

∑
t

(∑
k

Bjk(y
t
k − y

∗,t
k)
)

︸ ︷︷ ︸
=Ltj

ētji . (28)

Case of classification tasks. We assume that K target categories are provided in the674

form of a one-hot encoded vector π∗,t with K dimensions. We define the probability for675

class k predicted by the network as πtk = softmaxk(y
t
1, . . . , y

t
K) = exp(ytk)/

∑
k′ exp(ytk′), and676

the loss function for classification tasks as the cross-entropy error E = −
∑

t,k π
∗,t
k log πtk.677

The plasticity rule resulting from e-prop reads (see derivation in section S3.1):678

∆W rec
ji = −η

∑
t

(∑
k

Bjk(π
t
k − π

∗,t
k)
)

︸ ︷︷ ︸
=Ltj

ētji . (29)

Reward-based e-prop: application of e-prop to deep RL679

For reinforcement learning, the network interacts with an external environment. At any680

time t the environment can provide a positive or negative reward rt. Based on the ob-681

servations xt that are perceived, the network has to commit to actions at0 , · · · , atn , · · · at682

certain decision times t0, · · · , tn, · · · . Each action at is sampled from a probability distri-683

bution π(· |yt) which is also referred to as the policy of the RL agent. The policy is defined684

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

as function of the network outputs yt, and is chosen here to be a categorical distribution685

of K discrete action choices. We assume that the agent chooses action k with probability686

πtk = π(at = k|yt) = softmaxk(y
t
1, . . . , y

t
K) = exp(ytk)/

∑
k′ exp(ytk′).687

The goal of reinforcement learning is to maximize the expected sum of discounted688

rewards. That is, we want to maximize the expected return at time t = 0, E[R0], where689

the return at time t is defined as Rt =
∑

t′≥t γ
t′−trt

′
with a discount factor γ ≤ 1. The690

expectation is taken over the agent actions at, the rewards rt and the observations from the691

environment xt. We approach this optimization problem by using the actor-critic variant of692

the policy gradient algorithm, which applies gradient ascent to maximize E[R0]. The basis693

of the estimated gradient relies on an estimation of the policy gradient, as shown in section694

13.3 in [13]. There, the resulting weight update is given in equation (13.8), where Gt refers695

to the return Rt. Hence, the gradient
dE[R0]
dWji

is proportional to E
[∑

tn
Rtn d log π(a

tn |ytn)
dWji

]
,696

which is easier to compute because the expectation can be estimated by an average over697

one or many trials. Following this strategy, we define the per-trial loss function Eπ as a698

function of the sequence of actions at0 , · · · , atn , · · · and rewards r0, · · · , rT sampled during699

this trial:700

Eπ(z0, · · · , zT , at0 , · · · atn , · · · , r0, · · · , rT)
def
= −

∑
n

Rtn log π(atn|ytn) . (30)

And thus:701

dE [R0]

dWji

∝ E

[∑
tn

Rtn
d log π(atn|ytn)

dWji

]
= −E

[
dEπ
dWji

]
. (31)

Intuitively, given a trial with high rewards, policy gradient changes the network output y702

to increase the probability of the actions atn that occurred during this trial. In practice, the703

gradient dEπ
dWji

is known to have high variance and the efficiency of the learning algorithm704

can be improved using the actor-critic variant of the policy gradient algorithm. It involves705

the policy π (the actor) and an additional output neuron V t which predicts the value706

function E[Rt] (the critic). The actor and the critic are learnt simultaneously by defining707

the loss function as708

E = Eπ + cVEV , (32)

where Eπ = −
∑

nR
tn log π(atn|ytn) measures the performance of the stochastic policy π,709

and EV =
∑

t
1
2
(Rt − V t)2 measures the accuracy of the value estimate V t.710

Since V t is independent of the action at one can show that 0 = E
[
V tn d log π(a

tn |ytn)
dWji

]
.711

We can use that to define an estimator d̂E
dWji

of the loss gradient with reduced variance:712

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

−dE [R0]

dWji

+ cVE
[
dEV
dWji

]
∝ E

[
dE

dWji

]
(33)

=E
[
−
∑
tn

(Rtn − V tn)
d log π(atn|ytn)

dWji

+ cV
dEV
dWji︸ ︷︷ ︸

def
= d̂E
dWji

]
, (34)

similarly as in equation (13.11) of section 13.4 in [13]. A difference in notation is that b(St)713

refers to our value estimation V t. In addition, equation (34) already includes the gradient714

dEV
dWji

that is responsible for learning the value prediction. Until now this derivation follows715

the classical definition of the actor-critic variant of policy gradient, and the gradient d̂E
dWji

716

can be computed with BPTT. To derive reward-based e-prop we follow instead the generic717

online approximation of e-prop as in equation (27) and approximate d̂E
dWji

by a sum of terms718

of the form ∂̂E
∂ztj
etji with719

∂̂E

∂ztj
= −

∑
n

(Rtn − V tn)
∂ log π(atn |ytn)

∂ztj
+ cV

∂EV
∂ztj

. (35)

We choose this estimator ∂̂E
∂ztj

of the loss derivative because it is unbiased and has a low720

variance, more details are given in section S5.1. We derive below the resulting synaptic721

plasticity rule as needed to solve the task of Fig. 4, 5. For the case of a single action as722

used in Fig. S5 we refer to section S5.1.723

When there is a delay between the action and the reward or, even harder, when a724

sequence of many actions lead together to a delayed reward, the loss function E cannot be725

computed online because the evaluation of Rtn requires knowledge of future rewards. To726

overcome this, we introduce temporal difference errors δt = rt+γV t+1−V t (see Fig. 4), and727

use the equivalence between the forward and backward view in reinforcement learning [13].728

Using the one-hot encoded action 1at=k at time t, which assumes the value 1 if and only if729

at = k (else it has value 0), we arrive at the following synaptic plasticity rules for a general730

actor-critic algorithm with e-prop (see section S5.1):731

∆W rec
ji = −η

∑
t

δtFγ
(
Ltj ē

t
ji

)
for (36)

Ltj = −cVBV
j +

∑
k

Bπ
jk(π

t
k − 1at=k) , (37)

where we define the term πtk − 1at=k to have value zero when no action is taken at time t.732

BV
j is here the weight from the output neuron for the value function to neuron j, and the733

weights Bπ
jk denote the weights from the outputs for the policy.734

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

A combination of reward prediction error and neuron-specific learning signal was pre-735

viously used in a plasticity rule for feedforward networks inspired by neuroscience [58, 59].736

Here it arises from the approximation of BPTT by e-prop in RSNNs solving RL problems.737

Note that the filtering Fγ requires an additional eligibility trace per synapse. This arises738

from the temporal difference learning in RL [13]. It depends on the learning signal and739

does not have the same function as the eligibility trace etji.740

Code availability741

An implementation of e-prop solving the tasks of Fig. 2 to 5 is made public together with742

the publication of this paper https://github.com/IGITUGraz/eligibility propagation.743

Data availability744

Data for the TIMIT and ATARI benchmark tasks were published in previous works [22, 29].745

Data for the temporal credit assignment task are generated by a custom code provided in746

the abovementioned code repository.747

Acknowledgments748

This research/project was supported by the Human Brain Project (Grand Agreement num-749

ber 785907) and the SYNCH project (Grand Agreement number 824162) of the European750

Union. We gratefully acknowledge the support of NVIDIA Corporation with the donation751

of the Quadro P6000 GPU used for this research. Computations were carried out on the752

Human Brain Project PCP Pilot Systems at the Juelich Supercomputing Centre, which753

received co-funding from the European Union (Grand Agreement number 604102) and on754

the Vienna Scientific Cluster (VSC).755

We thank Thomas Bohnstingl, Wulfram Gerstner, Christopher Harvey, Martin Vinck,756

Jason MacLean, Adam Santoro, Christopher Summerfield, and Yuqing Zhu for helpful757

comments on an earlier version of the manuscript. Special thanks go to Arjun Rao for758

letting us use his code for the regularization of membrane voltages.759

Authors contributions GB, FS, AS and WM conceived the work, GB, FS, AS, EH760

and DS carried out experiments and all authors contributed to the writing of the paper.761

References762

[1] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature (2015).763

[2] Allen Institute: Cell Types Database. c© 2018 Allen Institute for Brain Science. Allen764

Cell Types Database, cell feature search. Available from: celltypes.brain-map.org/data765

(2018).766

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

[3] Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long short-term767

memory and learning-to-learn in networks of spiking neurons. NeurIPS (2018).768

[4] Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks. NeurIPS769

(2018).770

[5] Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain. Current771

Opinion in Neurobiology (2019).772

[6] Sanhueza, M. & Lisman, J. The CAMKII/NMDAR complex as a molecular memory.773

Molecular Brain 6, 10 (2013).774

[7] Cassenaer, S. & Laurent, G. Conditional modulation of spike-timing-dependent plas-775

ticity for olfactory learning. Nature (2012).776

[8] Yagishita, S. et al. A critical time window for dopamine actions on the structural777

plasticity of dendritic spines. Science (2014).778

[9] Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility Traces and779

Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-780

Factor Learning Rules. Frontiers in Neural Circuits (2018).781

[10] Sajad, A., Godlove, D. C. & Schall, J. D. Cortical microcircuitry of performance782

monitoring. Nature Neuroscience (2019).783

[11] Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in784

VTA dopamine neurons. Nature (2019).785

[12] Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends in neuro-786

sciences (2013).787

[13] Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT press,788

2018).789

[14] Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In ICML,790

1928–1937 (2016).791

[15] Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recur-792

rent neural networks. Neural computation 1, 270–280 (1989).793

[16] Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project.794

Proceedings of the IEEE 102, 652–665 (2014).795

[17] Davies, M. et al. Loihi: A neuromorphic manycore processor with on-chip learning.796

IEEE Micro (2018).797

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

[18] Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic798

feedback weights support error backpropagation for deep learning. Nature Communi-799

cations (2016).800

[19] Nøkland, A. Direct feedback alignment provides learning in deep neural networks. In801

NIPS (2016).802

[20] Samadi, A., Lillicrap, T. P. & Tweed, D. B. Deep learning with dynamic spiking803

neurons and fixed feedback weights. Neural computation 29, 578–602 (2017).804

[21] Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a805

model of voltage-based STDP with homeostasis. Nature Neuroscience (2010).806

[22] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G. & Pallett, D. S. DARPA807

TIMIT acoustic-phonetic continous speech corpus CD-ROM. NASA STI/Recon Tech-808

nical Report N (1993).809

[23] Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R. & Schmidhuber, J. LSTM:810

A search space odyssey. IEEE TNNLS (2017).811

[24] Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep recurrent812

neural networks. ICASSP (2013).813

[25] Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics814

during evidence accumulation in cortex. Nature Neuroscience (2016).815

[26] Kappel, D., Legenstein, R., Habenschuss, S., Hsieh, M. & Maass, W. A dynamic816

connectome supports the emergence of stable computational function of neural circuits817

through reward-based learning. eNeuro (2018).818

[27] Bartunov, S. et al. Assessing the scalability of biologically-motivated deep learning819

algorithms and architectures. In Advances in Neural Information Processing Systems820

(2018).821

[28] Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and822

theory of three-factor learning rules. Frontiers in neural circuits 9, 85 (2016).823

[29] Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning envi-824

ronment: An evaluation platform for general agents. Journal of Artificial Intelligence825

Research 47, 253–279 (2013).826

[30] Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of popu-827

lation coding across cortex. Nature (2017).828

[31] Bellec, G. et al. Biologically inspired alternatives to backpropagation through time829

for learning in recurrent neural nets. arXiv:1901.09049 (2019).830

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

[32] Gilra, A. & Gerstner, W. Predicting non-linear dynamics by stable local learning in831

a recurrent spiking neural network. Elife 6, e28295 (2017).832

[33] Thalmeier, D., Uhlmann, M., Kappen, H. J. & Memmesheimer, R.-M. Learning833

universal computations with spikes. PLoS computational biology 12 (2016).834

[34] Alemi, A., Machens, C. K., Deneve, S. & Slotine, J.-J. Learning nonlinear dynamics835

in efficient, balanced spiking networks using local plasticity rules. In Thirty-Second836

AAAI Conference on Artificial Intelligence (2018).837

[35] Nicola, W. & Clopath, C. Supervised learning in spiking neural networks with force838

training. Nature Communications (2017).839

[36] Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic840

neural networks. Neuron 63, 544–557 (2009).841

[37] Abbott, L. F., DePasquale, B. & Memmesheimer, R.-M. Building functional networks842

of spiking model neurons. Nature neuroscience 19, 350 (2016).843

[38] Ingrosso, A. & Abbott, L. Training dynamically balanced excitatory-inhibitory net-844

works. PloS one 14 (2019).845

[39] Kim, C. M. & Chow, C. C. Learning recurrent dynamics in spiking networks. eLife846

7, e37124 (2018).847

[40] Zenke, F. & Ganguli, S. Superspike: Supervised learning in multilayer spiking neural848

networks. Neural computation (2018).849

[41] Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassignment in time. In850

Bengio, S. et al. (eds.) NeurIPS (2018).851

[42] Neftci, E. O., Augustine, C., Paul, S. & Detorakis, G. Event-driven random back-852

propagation: Enabling neuromorphic deep learning machines. Frontiers in neuro-853

science 11, 324 (2017).854

[43] Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous855

local learning. arXiv preprint arXiv:1811.10766 (2018).856

[44] Emre O. Neftci, F. Z., Hesham Mostafa. Surrogate gradient learning in spiking neu-857

ral networks: Bringing the power of gradient-based optimization to spiking neural858

networks. IEEE Signal Processing Magazine (2019).859

[45] Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating gradients through860

stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432861

(2013).862

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

[46] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. & Bengio, Y. Binarized neural863

networks: Training deep neural networks with weights and activations constrained864

to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016).865

[47] Marschall, O., Cho, K. & Savin, C. A unified framework of online learning algorithms866

for training recurrent neural networks. arXiv preprint arXiv:1907.02649 (2019).867

[48] Mujika, A., Meier, F. & Steger, A. Approximating real-time recurrent learning with868

random kronecker factors. NeurIPS (2018).869

[49] Tallec, C. & Ollivier, Y. Unbiased online recurrent optimization. ICLR (2018).870

[50] Roth, C., Kanitscheider, I. & Fiete, I. Kernel rnn learning (kernl). ICLR (2019).871

[51] Murray, J. M. Local online learning in recurrent networks with random feedback.872

eLife (2019).873

[52] Jaderberg, M. et al. Decoupled neural interfaces using synthetic gradients. arXiv874

preprint arXiv:1608.05343 (2016).875

[53] Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal dynamics: From sin-876

gle neurons to networks and models of cognition (Cambridge University Press, 2014).877

[54] Pozzorini, C. et al. Automated high-throughput characterization of single neurons by878

means of simplified spiking models. PLoS Computational Biology (2015).879

[55] Gouwens, N. W. et al. Systematic generation of biophysically detailed models for880

diverse cortical neuron types. Nature Communications (2018).881

[56] Esser, S. K. et al. Convolutional networks for fast, energy-efficient neuromorphic882

computing. PNAS (2016).883

[57] Werbos, P. J. Backpropagation through time: what it does and how to do it. Pro-884

ceedings of the IEEE (1990).885

[58] Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical886

networks. Nature Reviews Neuroscience (2018).887

[59] Pozzi, I., Bohté, S. & Roelfsema, P. A biologically plausible learning rule for deep888

learning in the brain. arXiv preprint arXiv:1811.01768 (2018).889

33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/738385doi: bioRxiv preprint

https://doi.org/10.1101/738385

