
Saderi et al., August 16, 2019 – bioRxiv 

1 

Streaming of repeated noise in primary and secondary fields  

of auditory cortex
 

Daniela Saderi1,2, Brad N. Buran2, Stephen V. David2 

1Neuroscience Graduate Program, 2Oregon Hearing Research Center, Oregon Health and Science University 

 
1 Correspondence: S.V.D., 3181 SW Sam Jackson Park Road, MC L335A, Portland, OR 97239. Email: davids@ohsu.edu
 

Abstract 
Statistical regularities in natural sounds facilitate the perceptual segregation of auditory sources, or streams. Repetition is one cue 
that drives stream segregation in humans, but the neural basis of this perceptual phenomenon remains unknown. We trained ferrets 
to detect a stream of repeating noise samples (foreground) embedded in a stream of random noise samples (background). While 
they listened passively, we recorded neural activity in primary (A1) and secondary (PEG) fields of auditory cortex. We used 
context-dependent encoding models to test for evidence of streaming of the repeating stimulus in these brain areas. Separate models 
tested whether time-varying neural spike rates were better predicted by scaling the response to both streams of the repeating 
stimulus equally (global response gain), or by scaling the response of one stream relative to another (stream-specific response gain). 
Consistent with adaptation, we found an overall reduction in global gain when the stimulus was repeated. However, when we 
measured stream-specific changes in gain, neural responses to the foreground stream were enhanced relative to the background. 
This enhancement was stronger in PEG than in A1. In A1, the degree of enhancement depended on auditory tuning. It was strongest 
in units that displayed low sparseness (i.e., broad sensory tuning) and were tuned preferentially to the repeated sample. Thus, while 
overall auditory responses were reduced by the repeating sound, enhancement of responses to the foreground stream relative to the 
background provides evidence for stream segregation that emerges in A1 and is refined in PEG. 
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Introduction 
Sounds generated by different sources, or auditory objects, impinge on 
the ear as a complex mixture, with acoustic energy generated by each 
source overlapping in both time and frequency. The auditory system has 
the remarkable ability to group these dynamically changing spectro-
temporal sound features into percepts of their distinct sources, in a 
process known as auditory streaming (1, 2). Streaming requires statistical 
analysis of sound sources: streams that come from the same sound source 
share statistical regularities, and the brain uses these properties as cues 
for stream integration or segregation (2–6). 
Basic acoustic features, such as separation in frequency and time, are key 
perceptual cues for segregating simple, alternating sequences of pure 
tones (7–10). However, more complex natural sounds often overlap in 
frequency. Segregating spectrally overlapping sounds requires use of 
perceptual cues such as pitch (11, 12), timbre (13–15), spatial location (3, 
12–16), common onset (17, 18), and temporal regularity (19–22). In a 
relevant study, McDermott et al. (2011) tested specifically for the benefit 
of temporal regularity with a set of naturalistic noise samples that lacked 
other cues for streaming (23). While non-repeating samples could not be 
distinguished from background noise, humans could identify these same 
samples when they were repeated. The neural bases of this perceptual 
pop-out remain unknown. 
In contrast to the robust perceptual enhancement reported for a repeating 
foreground stream, studies of neurophysiological activity in auditory 
cortex have emphasized a suppressive effect of repetition (24). Single 
neurons undergo stimulus-specific adaptation (SSA), where responses to 
repeated tones adapt, but responses to an oddball stimulus, such as a tone 
at a different frequency, are less adapted or even facilitated, reflecting 

perceptual pop-out of the oddball sound (25, 26). In human 
electroencephalography (EEG), a possibly related phenomenon is 
observed in a late event-related component, called the mismatch 
negativity (MMN). Although the dynamics are slower than SSA, MMN 
is also elicited by rare deviant sounds randomly interspersed among 
frequent standard sounds (27). There is no evidence that links SSA or 
MMN with repetition-based grouping, but it is possible that these 
processes share some of the same neural circuits. How the brain might 
use adaptation to a repeating sound to enhance its perception is not 
known. 
In this study, we investigated neural correlates of streaming induced by 
repetition of complex sounds in primary (A1) and secondary (PEG) fields 
of the auditory cortex. We first established the ferret as an animal model 
for streaming of repeating noise sounds, by designing a behavioral 
paradigm that assessed animals’ ability to detect repetitions embedded in 
mixtures. We then recorded single- and multi-unit activity in A1 and PEG 
of un-anesthetized, passively listening ferrets, either trained or naïve to 
the detection task. We tested the prediction that auditory cortical neurons 
facilitate stream segregation by selectively enhancing their response to 
the repeating (i.e., foreground) stream. We used context-dependent sound 
encoding models to quantify the relative contribution of the two 
overlapping streams to the evoked neural response (28). We found that 
neural responses to the repeated stimuli were reduced overall in both 
areas, consistent with previous studies that reported adaptation for a 
single repeating stream (25). Additionally, some neurons in both cortical 
fields displayed foreground-specific responses that were enhanced with 
respect to responses to the simultaneous background stream. These 
results provide evidence for a model of streaming cued by repetition that 
starts in primary and is refined in secondary fields of the auditory cortex.  
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Results 
Ferrets perceive repeated patterns embedded in noise 
To investigate the physiological underpinnings of repetition-based 
streaming in an animal model, we first developed a behavioral paradigm 
to assess ferrets’ ability to detect repetitions embedded in noise. Repeated 
embedded noise stimuli were composed of two overlapping continuous 
streams of brief (250- or 300-ms) broadband noise samples. The noise 
samples had second-order statistics (i.e., spectral and temporal envelope 
correlations) matched to natural sounds (23). Consistent with the goal of 
this study, the only streaming cue was repetition. These stimuli lacked 
other conventional streaming cues such as harmonicity and common 
onset time. 
During the initial, random phase of each trial, samples for both streams 
were drawn randomly from a pool of 20 distinct noise samples (1-2.5-sec 
duration, Figure 1B). When all the samples are drawn randomly, they are 
perceived as a single stream. The random phase was followed 
immediately by the repeating phase, in which a target noise sample, 
different for each behavioral block, started to repeat in one sequence but 
not in the other. In humans, this repetition leads to perceptual separation 
of the two sequences into discrete streams (23). We refer to the sequence 
that contains the repeating target sample as the foreground stream, and 
the concurrent sequence with no repetition as the background stream 
(Figure 1B). 
Two ferrets (O and H) were trained to report when they detected the 
repetition of the target using a go/no-go detection paradigm. Head-fixed 
animals were required to withhold from licking a waterspout during the 
random phase and to lick after the onset of the repeating phase (Figure 
1A-B). In each behavioral block (~50-100 trials), two noise samples were 
chosen as targets from a pool of 20, each with 50% chance of occurring 
in a trial. Changing the identity of the targets between blocks avoided 
overtraining on a specific target. To measure behavioral performance in 
a task with continuous distractors and variable target times, we used a 
discrimination index (DI). This metric uses hit rate, false alarm rate, and 
reaction time to compute the area under the receiver operating 
characteristic (ROC) curve for target detection (29, 30). A DI greater than 
0.5 indicates above-chance behavior. Both ferrets were able to learn the 
task and perform above chance within two months of training, indicating 
that they were able to perceive the repeating noise stream (Ferret O: mean 
DI = 0.61±0.004 SEM, n = 327; Ferret H: mean DI = 0.55±0.005 SEM, 
n = 171; Figure 1C). 
 

Neuronal responses are suppressed during the repeating phase  
We recorded multi- and single-unit neural activity in primary (A1, n = 
152) and secondary (PEG, n = 138) regions of the auditory cortex of five 
ferrets passively listening to the task stimuli. Two animals were trained 
on the repetition embedded noise task (behavior described above), and 
three were naïve to the task. Although all physiological data presented 
here were recorded in passively-listening ferrets, for consistency we refer 
to the same trial structure terminology as in the previous section. During 
electrophysiological recordings, one of the target noise samples was 
chosen to match each unit’s tuning (eliciting a relatively strong response) 
while the other was chosen at random. The two targets had equal 
probability of occurring on each trial. 
To investigate the neurophysiological underpinnings of streaming due to 
repetition, we first looked at the raw firing rates of the recorded units in 
response to the repeated noise stimuli. Given the enhanced representation 
of repeating stimuli observed in behavioral experiments (22, 23, 31), we 
reasoned that evidence for the selective enhancement of foreground 
representation should be observed at the level of the auditory cortex. If 
this were true, we would expect the neural response to a target sample to 
change between random and repeating contexts.  
To test this prediction, we computed the average peristimulus time 
histogram (PSTH) response across all occurrences of the target noise 
samples in the random phase (excluding any occurrences during first 
250ms of the trial), and compared it to the average PSTH response to a 
balanced number of targets in the repeating phase (Figure 2A). Since the 
background sample was randomly selected for each presentation of the 
target, responses to the background sample were averaged out, and the 
PSTH primarily reflected responses to the target. To quantify changes in 
the response, we computed the gain term that scaled the PSTH for the 
random phase to best match the PSTH for the repeating phase. To allow 
for a direct comparison between gains generated by encoding models (see 
below), gain terms were log-transformed. Thus, negative values indicated 
suppressed responses during repetition and positive values indicated 
enhanced responses. For most units in A1 and PEG, log gain was less 
than zero (Figure 2B), indicating that the average target response in the 
repeating phase was suppressed with respect to the average target 
response in the random phase. Considering previous observations of 
neural adaptation to repeated stimuli in auditory cortex (24, 25), a 
decreased response to the target in the repeating phase is not unexpected. 
 
 

Figure 1: Ferrets are sensitive to repetitions embedded in mixtures. 
A. Ferrets were trained to respond to sound repetition by licking a 
waterspout. B. Schematic of the go/no-go task and spectrograms of 
repetition embedded noise stimuli from an example behavioral trial. 
Animals were exposed to the combination (bottom spectrogram) of two 
overlapping streams: a foreground stream containing a target sample (top), 
and a background stream, a non-repeating sequence of noise samples 
(middle). In this example, the target sample (orange boxes, bottom panel) 
starts repeating after three random noise samples (grey boxes). The grey 
dashed line marks the first occurrence of the target sample (pale orange), 
which is included in the random phase for analysis. The transition between 
random and repeating phase is marked by the orange dashed line and occurs 
when the target sample is first repeated. Animals were trained to withhold 
licking from a waterspout during the random phase (4-6 sec). To receive a 
water reward, they had to lick the waterspout following repetition onset. C. 
Distribution of discrimination index (DI) across behavior sessions for ferret 
O and ferret H after training was completed. Dashed line (0.5 DI), indicates 
chance performance. 
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Relative enhancement of responses to the repeating foreground stream 
Simply comparing the average neural response to the target in the 
repeating phase to the random phase does not provide insight into any 
stream-specific effect that might emerge as a consequence of the 
repetition. To test for evidence of streaming in the neural response, we 
needed to independently assess the responses to the two streams. We 
reasoned that, even if the total response was suppressed, activity in the 
foreground stream in response to the repetition could be enhanced or 
suppressed relative to the background stream. 
To test this prediction, we developed an encoding model in which the 
neural response was computed as the sum of responses to samples in each 
stream (stream-dependent model, see Materials and Methods). Using 
regression analysis, the relative contribution of each noise sample to the 
PSTH response was computed from the response to the noise streams. In 
the random phase the response was modeled as the sum of responses to 
each of the two concurrent samples and a baseline firing rate (Eqn. 1). In 
the repeating phase, the response to each sample was scaled according to 
whether it occurred in the foreground or background stream before 
summing (respectively, gain terms 𝑅𝐺#$  and 𝑅𝐺%$ , Eqn. 3). We 
compared this model to a stream-independent model, in which responses 
to samples in both streams were scaled equally by a single gain term in 
the repeating phase (𝑅𝐺$&'%(&, Eqn. 2). Responses were predicted relative 
to baseline firing rate, and the gain terms were log-scaled. Thus, positive 
gain indicates stronger modulation of the unit’s response (i.e., greater 

excitation and inhibition), and negative gain indicates weaker modulation 
of the unit’s response relative to baseline firing rate.  
Figure 3 plots the average response to the target stimuli and predictions 
by the stream-dependent model for example units in A1 (top) and PEG 
(bottom). In both examples, the repetition gain for the background stream 
was negative (𝑅𝐺%$   = -1.0 in A1 and -1.6 in PEG). This means that 
neural responses to the background stream in the repeating phase were 
suppressed 64% and 80% relative to the random phase in A1 and PEG, 
respectively (Figure 3, black dotted line). Conversely, the foreground 
repetition gain term positively scaled the target sample response in the 
repeating phase (𝑅𝐺#$ = 0.47 in A1 and 0.79 in PEG; blue dashed line), 
increasing the response compared to the random phase by 60% and 79% 
increase in A1 and PEG, respectively (Figure 3, orange solid line).  
Across the population, repetition gain was negative in the majority of 
unit-target pairs for both foreground and background streams (Figure 4A; 
A1: n = 304 unit-target pairs, mean 𝑅𝐺%$ = -0.609 ± 0.041 SEM, mean 
𝑅𝐺#$ = -0.485 ± 0.035 SEM; PEG: n = 276, mean 𝑅𝐺%$ = -0.935 ± 0.038 
SEM, mean 𝑅𝐺#$= -0.518 ± 0.040 SEM). Similarly, in the stream-
independent mode, units in both A1 and PEG usually had a negative 
𝑅𝐺$&'%(& (Figure 4B). This global suppression was consistent with the 
decrease observed in the average target response described above (Figure 
2B; r = 0.63 between 𝑅𝐺$&'%(&  and target response gain, p < 0.0001, 
Student’s t-test). 

Figure 2: Activity in both A1 and PEG was suppressed during the repeating phase 
A. Schematic of two trials. The background stream consisted entirely of random noise samples 
(gray). The foreground stream contained random samples during the random phase, which 
sometimes included the target sample (T). The final pair of noise samples in the random phase 
includes the target (light orange) as it had not yet begun to repeat. Average PSTH responses to 
each pair of samples that contained the target (thick rectangles) were computed separately for 
the random phase (black) and repeating phase (dark red). Pairs containing a target sample in the 
repeating phase were excluded to ensure that the number of appearances match between 
random/repeating (see Material and Methods). B. Distribution of observed repetition gain 
(𝑅𝐺'%)) for A1 and PEG. The majority of target responses were suppressed (𝑅𝐺'%)	< 0) during 
the repeating phase. Red dashed line indicates 0 (i.e., no difference between phases). Since 
results may depend on how well the unit responded to the target, all analyses of neural responses 
were performed separately for each unique unit-target pair (n = 304 A1, n = 276 PEG). Median 
𝑅𝐺'%) values, A1: -0.64 (95% CI [-0.74, -0.54]); PEG: -0.70 (95% CI [-0.81, 0.60]). 

Figure 3: Example activity A1 and PEG 
Example PSTH responses of units in A1 (top) and 
PEG (bottom) to the target sample (T) in the 
random versus repeating phase. Spontaneous rate 
( 𝑆𝑅 ) is shown (1st column) for reference. 
Predictions from the stream-dependent model 
(orange) broken down into the contribution of the 
foreground (blue, dashed) and background 
(black, dotted) streams, shown for the average 
responses to the target in the random phase (2nd 
column), and the first three repetitions of the 
target sample in the repeating phase (3rd, 4th, and 
5th columns). 
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To test for relative enhancement of responses to the repeated foreground, 
we measured foreground enhancement, the difference between 
foreground and background repetition gain in each fit of the stream-
dependent model (Figure 4B). Foreground enhancement was considered 
significant if the 95% confidence interval for the fitted parameter did not 
bracket 0 (see Materials and Methods). A subset of unit-target pairs 
displayed significant foreground enhancement (41/304 in A1, 58/276 in 
PEG, Figure 4B), meaning that in the repeating phase responses in the 
foreground stream were less suppressed or enhanced relative to responses 
in the background stream. In contrast, fewer units showed foreground 
suppression in either area (26/304 in A1, 12/276 in PEG). Across the set 
of unit-target pairs, mean foreground enhancement was significantly 
greater than zero in A1 (0.124, p = 0.004, Wilcoxon signed-rank) and 
PEG (0.416, p < 0.0001, Wilcoxon signed-rank) (Figure 4B). Mean 
foreground enhancement was stronger in PEG than in A1 (p < 0.0001, 
independent two-sample t-test). 
Despite the overall suppression of activity during the repeating phase, 
these results support a model of selective enhancement of responses to 
the repeated foreground stream, consistent with the enhanced perception 
of the repeated stream relative to the random background (23).  

 

Auditory tuning properties predict the degree of repetition enhancement 
Next, we wondered if the units showing significant foreground 
enhancement had distinct sensory encoding properties. For each unit, we 
quantified lifetime sparseness, a measure of selectivity for any one 
sample relative to the others (see Materials and Methods, Eqn. 4) (32). 
This metric is bounded between 0 and 1, where 0 indicates low sparseness 
(equal responses to all stimuli) and 1 indicates high sparseness (non-zero 
response to only one stimulus). Example responses to each noise sample 
in our collection for a unit with roughly average sparseness are plotted in 
Figure 5A. For each unit-target pair, we also computed target preference, 
the ratio of evoked response to the target sample versus the average 
response to all samples (see Materials and Methods, Eqn. 5). A target 
preference of 1 indicates that the modulation by the target is equivalent 
to the average response for all samples. 
The relationship between each unit’s sparseness, target preference, and 
auditory area (A1 or PEG) and its foreground enhancement (Figure 5C) 
was quantified by a general linear mixed model (see Materials and 
Methods, Eqn. 6) with area, target preference, and sparseness as fixed 
effects and unit as a random effect. All two- and three-way interactions 
between the fixed parameters were included, and complete results are 
shown in Table 1. This model identified a significant relationship 
between target preference and foreground enhancement in A1 (e.g., for 
every increase in target preference by 1, foreground enhancement 
increased by 0.46), which was significantly modulated by sparseness. 
That is, foreground enhancement was stronger in units with high target 
preference, and this effect decreased with increasing sparseness (Figure 
5C; e.g., for a unit with a sparseness of 0.05, the effect of target 
preference on foreground enhancement would be 0.41, whereas for a unit 
with a sparseness of 0.4, the effect of target preference on foreground 
enhancement would be 0.04). In contrast, in PEG there was no significant 
relationship between foreground enhancement and either sparseness, 
target preference, or the interaction of target preference and sparseness 
(Table 1).  
Thus, in A1, units that responded to many stimuli (low sparseness) but 
had a relatively strong preference to a target (high target preference) 
tended to show the most foreground enhancement. In PEG, enhancement 
was stronger overall and affects responses more uniformly, regardless of 
auditory selectivity. These differences between PEG than A1 suggest a 
gradual emergence of repetition-related streaming along the cortical 
auditory pathway. 
 
Foreground enhancement increases accuracy of spectro-temporal 
receptive field models 
To validate the gain changes observed in the PSTH-based model and to 
quantify their effect on sound-evoked activity, we modeled the same data 
with a spectro-temporal receptive field (STRF). In the classic linear-
nonlinear (LN) STRF (see Material and Methods, Eqns. 7-9), the time-
varying neural response is modeled as a linear weighted sum of the 
stimulus spectrogram (33, 34). We developed a context-dependent 
model, in which spectrograms for each stream were scaled separately by 
a gain term before input to the STRF (Eqns. 10-11). This stream-
dependent scaling followed the same logic as the PSTH-based model 
described above. That is, a separate spectrogram for each stream was 
scaled by free parameters that depended on phase (random or repeating) 
and, during the repeating phase, stream identity (foreground or 
background). The rescaled spectrograms were summed and provided 
input to a traditional LN STRF. Context gain parameters and STRF 
parameters were fit simultaneously (Figure 6A) (28). We refer to this 
model as the phase+stream STRF. 

Figure 4: Selective foreground enhancement in A1 and PEG 
A. Foreground (𝑅𝐺#$) versus background (𝑅𝐺%$) repetition gain measured 
in the stream-dependent model in A1 and PEG. Color indicates unit-target 
pairs in which values of 𝑅𝐺#$	are significantly higher (dark purple) or lower 
(light purple) than values of 𝑅𝐺%$ (95% credible interval for the difference 
does not overlap with 0). Grey indicates no significant difference. Dashed 
line indicates equality. B. Foreground enhancement (𝑅𝐺#$ − 𝑅𝐺%$) plotted 
against overall gain change (𝑅𝐺$&'%(&) during the target phase for A1. Colors 
are as in B. Number of data points with significant foreground enhancement, 
significant background enhancement and no change are shown above each 
plot. Mean foreground enhancement was significantly greater than zero in 
both areas. Data for examples in Figure 3 are highlighted for A1 (cyan) and 
PEG (green). 
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We used 20-fold cross validation to compare the prediction accuracy of 
the phase+stream STRF to two control models: a phase-only STRF, in 
which stream identity was shuffled in time before fitting, and a baseline 
STRF, in which both phase and stream identity were shuffled. The phase-
only STRF accounted for changes in gain due to repetition but 
independent of foreground versus background stream identity, analogous 
to the stream-independent model above. The phase+stream STRF 
predicted time-varying responses more accurately than the phase-only 
STRF in both A1 and PEG, confirming a significant influence of stream 
identity on relative gain (A1: p < 0.0001, PEG: p < 0.0001, Wilcoxon 
signed-rank test, Figure 6B).  
To measure the relative enhancement of the two streams, we compared 
the stream-specific gain terms from the model fits, equivalent to 𝑅𝐺#$ 
and 𝑅𝐺%$ discussed above. We observed a significant relative increase in 
foreground versus background gain in both A1 (mean foreground 
enhancement 0.159; p < 0.0001, Wilcoxon signed-rank test) and PEG 
(mean 0.291; p < 0.0001, Wilcoxon signed-rank test). This result 
provided further evidence for stream-dependent changes in gain. These 
changes in gain followed the same pattern as mean foreground 
enhancement in the stream-dependent model above (correlation 
coefficient measured between foreground enhancement for PSTH- and 
STRF-based models in A1: Pearson's r 0.39, p < 0.0001 and PEG: 
Pearson's r 0.22, p = 0.0005; Figure 6C). 
The comparison of phase-only and baseline STRFs measured the effect 
of repetition alone on evoked activity (independent of stream identity). 
On average, the phase-only STRF had greater prediction accuracy than 
the baseline STRF in both areas (A1: p < 0.0001, PEG: p < 0.0001, 
Wilcoxon signed-rank test, Figure 6B). Thus, the STRF-based models 
confirmed an effect of repetition on evoked activity. Moreover, overall 
gain was suppressed during the repeating phase (mean A1: -0.11, PEG: -
0.042, data not shown), as observed in the PSTH-based models above 
(Figure 4). Thus, this approach provides additional evidence for a 
streaming mechanism in which repetition leads to overall suppression of 
the neural responses, but with less prominent suppression of the 
foreground stream relative to the background.  
 

Discussion 
In natural environments, temporally co-varying sound features tend to be 
grouped by the brain into a single object (35). Sound repetition is one 
such feature that can induce stream segregation in human listeners. 
Subjects are able to identify individual, previously unheard noise samples 
if they are repeated simultaneously to a mixture of different non-
repeating samples  (23). The goal of the current study was to investigate 
the neural underpinnings of streaming cued by sound repetition. We 
developed an animal model for repetition detection and found evidence 
for enhanced representation of a repeating foreground stream in single-
unit activity in auditory cortex. This representation appears to emerge 
hierarchically, as streaming effects were stronger in secondary (PEG) 
than in primary (A1) auditory cortical fields. 
 
Mechanisms of repetition-induced stream segregation 
Previous studies that have explored the neural signature of streaming at 
the single-unit level have primarily used alternating sequences of pure 
tones (36, 37). Relevant to the current study, Micheyl and collaborators 
presented sequences of “ABA_” tone triplets to awake macaques and 
examined the pattern of activity evoked in A1 (36). Tone A was chosen 
to be on the best frequency of the recorded unit, while tone B was placed 
at a frequency of 1-9 semitones from tone A. The authors found that, even 
if responses to both tones decreased relative to their presentation in 
isolation, responses to the non-preferred B tones decreased to a greater 
extent. In the current study, we observed a similar effect, that relative 
enhancement of the foreground stream was more pronounced in units 
well-tuned to the repeated noise sample. Thus, our results are consistent 
with observations based on the ABA tone paradigm. They also provide 
evidence that the same principles generalize to streaming of 
simultaneous, naturalistic sounds, a situation that more closely relates to 
animals’ everyday sound experience. 
Sound features that belong to the same source tend to begin and end at 
the same time. This phenomenon has been formalized for streaming in 
the temporal coherence model (17, 18). Teki et al. (2016) demonstrated 

Figure 5: Relationship between target preference and sparseness 
in A1 and PEG units 
A. PSTH responses to each of the 20 noise samples presented 
individually to a unit with relatively high sparseness (S = 0.13). Units 
such this one, responded well to only a few samples. Numbers indicate 
unit’s preference for that particular sample with respect to the others. 
Responses to target samples are indicated in orange. B. Scatter plot of 
target preference versus lifetime sparseness for each unit recorded 
from A1 and PEG. Target preference quantifies the response of a given 
unit to a target sample compared to the other 19 noise samples. 
Lifetime sparseness measures selectivity for the noise samples. Values 
of sparseness near 0 indicate units that responded similarly to all noise 
samples, and values near 1 indicate units that responded preferentially 
to a small number of samples. Units with high sparseness tended to 
have a greater variability in target preference. C. Scatter plots of 
foreground enhancement as a function of target preference and 
sparseness in A1 and PEG. Because sparseness and target preference 
are correlated, possible relationships with foreground enhancement 
were tested using a regression model, which is detailed in Table 1. No 
significant relationship was observed between sparseness and 
foreground enhancement in either area (p > 0.05, linear hypothesis test 
(75)). However, units in A1 with strong target preference tended to 
show stronger foreground enhancement (A1: p < 0.0001, PEG: p = 
0.06; linear hypothesis test).   
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that human listeners are highly sensitive to repetition of sounds presented 
in the context of a random mixture of chords. Similar to our findings, the 
authors observed that repeating sounds tend to fuse together into a 
“foreground” that emerges from a randomly changing background (38, 
39). Here, we propose that foreground enhancement contributes to 
streaming repeating sounds in the context of a random background.  
However, it is important to note that an expectation of enhanced 
responses to “foreground” stimuli may reflect a biased expectation. There 
is no a priori requirement for sounds that perceptually pop out as a 
foreground to evoke an enhanced (or less suppressed) neural response. 
For example, Bar-Yosef and collaborators, investigated the interactions 
in A1 of anesthetized cats during simultaneous presentation of bird chirps 
and background noise, simulating a naturalistic auditory scene (40, 41). 
To their surprise, neural responses were in fact dominated by the 
background noise, despite it being presented at a lower intensity than the 
foreground bird chirp. The authors interpreted this finding in an 
evolutionary context, in which it is advantageous for prey to pay attention 
to subtle changes in the background to avoid predators which might be 
using foreground sounds to mask the sound of their own approach. This 
example suggests that the brain might enhance different components of a 
sound depending on the context and identity of that sound. Thus, it is 
important to consider the traditional ecosystem niche of the animal model 
when interpreting our findings. More experiments testing streaming 
effects in natural contexts will be needed to further elucidate how the 
brain streams repeated sound features with behavioral relevance. 
 
Streaming analysis 
To capture differences in responses to simultaneous repeated and non-
repeated noise samples, we relied on model predictions. In this paradigm, 
the neural response is the sum of responses to two simultaneous stimuli, 
and the component responses cannot be separated in the raw neural firing 
rate. Therefore, we constructed encoding models that teased apart stream-
dependent activity computationally. This analysis showed that, even 
though most neural responses were suppressed by repetition—likely due 
to adaptation (24, 42, 43), responses to the foreground stream where less 
suppressed than the background or even enhanced. This approach 
established a methodology that could be used in other datasets where 

there is a need to separate effects on neural responses to simultaneously 
occurring inputs.  
The challenge of separating responses to simultaneously occurring 
sounds has been previously addressed for neural population activity using 
a similar modeling approach (44). Ding and Simon asked human subjects 
to listen to one of two competing speakers and recorded brain activity via 
magnetoencephalography (MEG). To investigate the neural encoding 
process, they fit a separate STRF (or more precisely a “TRF”, since the 
MEG data did not resolve spectral tuning) for each of the two 
simultaneously presented speech streams. Neural activity was found to 
preferentially synchronize to the speech envelope of the attended speaker. 
Furthermore, the latency and source location of the two components 
suggested a hierarchy of auditory processing in which the representation 
of the attended object emerges from core to posterior auditory cortex 
(44). These results are largely consistent with the foreground 
enhancement observed in the current study, suggesting that top-down 
attention and bottom-up pop-out effects could be mediated by common 
mechanisms. 
Another approach used to investigate the neural signature of streaming is 
by stimulus decoding, or reconstruction (12, 44, 45). A decoding model 
describes the relationship between stimulus and response similarly to the 
STRF, but in the opposite direction. That is, decoding uses neural 
population activity to reconstruct the sound stimulus input. If the 
reconstruction of the envelope has a higher correlation to the envelope of 
the attended stream rather than the non-attended stream or the two 
streams combined, it would suggest enhanced coding of the attended 
stream. In a human MEG study, Ding and Simon (2012) found that this 
was indeed the case. Similar results were also obtained by Mesgarani and 
Chang (2012) using data collected from non-primary auditory cortex via 
electrocorticography (ECoG) (12). 
In our study, a decoding analysis could complement the encoding 
approach, potentially revealing how the relative enhancement of the 
repeating stream allows for the separation of the two streams. 
Specifically, we would predict that for units with positive foreground 
enhancement stimulus reconstruction would be more accurate for the 
foreground stream compared to the background stream, matching 
perception.  

Figure 6: STRF-based model corroborates PSTH-based model findings 
of stream-specific gain changes in A1 and PEG. 
A. Schematic of the spectro-temporal receptive field (STRF)-based encoding 
model. Spectrograms of the foreground and background streams are scaled by 
context-dependent gain. Separate gain terms are applied to the foreground and 
background streams during the repeating phase. The sum of the scaled 
spectrograms provides input to a traditional linear-nonlinear STRF, which 
predicts the time-varying response to the repeated noise stimuli, r(t), as a 
weighted sum of the spectrogram. B. Mean prediction correlation coefficient 
(Pearson’s r) between the predicted and actual time-varying neural response 
for A1 and PEG units, plotted for the baseline STRF-based model (both stream 
identity and repetition permuted in time prior to fitting), for the phase-only 
model (stream identity shuffled), and for the full phase+stream model. 
Asterisks indicate p-values associated with Wilcoxon signed-rank test within-
area model comparisons (A1, n = 152; PEG, n = 138). C. Mean foreground 
enhancement for A1 and PEG and for STRF- and PSTH-based models. 
Asterisks indicate p-values associated with independent two-sample t-test 
between values of foreground enhancement in A1 and PEG. **p <0.01, 
****p<0.0001. 
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Relation of repetition enhancement to stimulus-specific adaptation 
The ability of the brain to detect regularities is not only crucial for 
identifying an auditory object embedded in a noisy scene, but also for 
making predictions about the environment, thereby making the system 
sensitive to deviance (6, 19). Substantial effort has been devoted to 
understanding the mechanisms of deviance detection, with a focus on the 
mismatch negativity (MMN) in human studies (27) and on stimulus-
specific adaptation (SSA) in animals (24, 25, 46). Evidence for SSA has 
been found in the inferior colliculus and thalamus (47–49), but the first 
lemniscal region in which SSA has been shown to be prominent is A1 
(50, 51). Mechanistically, SSA is thought to arise from a combination of 
feedforward synaptic depression and local cortical inhibition (52–54). 
Selective enhancement of the neural response to a repeating sound might 
seem like an intuitive prediction, based on behavioral studies of 
repetition-induced streaming (22, 23). However, this enhancement may 
be surprising when viewed in the context of SSA (25, 55). If SSA affects 
responses to simultaneous stimuli the same way as responses to 
sequential stimuli, one would expect a relative suppression of responses 
to the foreground stream in repeated embedded noise. However, our 
results show the opposite effect, i.e., relative suppression of the non-
repeating background stream, especially for target-preferring neurons. 
We propose that while SSA can account for the overall decreased 
response to both streams (24, 43), a separate mechanism must be 
responsible for the further suppression of sounds that occur 
simultaneously to the repeating foreground. Furthermore, the fact that 
foreground enhancement is more prominent in secondary auditory 
cortical fields (PEG) than primary areas (A1), suggests a hierarchical 
mechanism by which the enhancement emerges along the auditory 
cortical pathways. 
 
Animal models for streaming 
Most behavioral studies of auditory streaming have been performed in 
humans (2–4, 56, 57). This is not surprising, as perceptual measurement 
of streaming in nonhuman species is challenging (for recent reviews on 
nonhuman behavioral studies of auditory streaming see 58, 59). Within a 
small number of such animal studies, however, the ferret has been 
identified as a model for streaming of alternating tone sequences and tone 
clouds (16, 60), and had been used to study its neurophysiological bases 
(18). 
Here, we developed the ferret as a model for streaming repeated 
sequences of simultaneously presented complex sounds. We designed an 
auditory task where animals had to report the occurrence of a repetition 
emerging from random overlapping noise samples. Ferrets were able to 
perform this task, suggesting that they could perceive repetition of 
complex sound features as a distinct component of the stimulus. Since 
the identity of the repeated sample was changed across behavioral blocks, 

we could exclude the possibility that the animals used specific spectro-
temporal features of the target sample to perform the task. While the 
ability to report the occurrence of repetitions in one stream is not a direct 
proof that ferrets perceived two separate streams in the same way as 
humans, it confirms that they did perceive the occurrence of repetitions. 
 
The role of attention in repetition-induced streaming 
Our physiological experiments were conducted on passively listening 
ferrets without explicit control of attention. While attention is known to 
modulate sensory responses across multiple brain areas (61–63), the role 
of attention on repetition-based streaming is controversial. Masutomi, 
McDermott et al. tested this question directly by asking human subjects 
to perform the same task as in McDermott et al., 2011, but while also 
performing a decoy visual task (31). The authors found that human 
listeners were equally able to recover the identity of the repeating noise 
sample even when their attention was directed away from the sound, 
indicating that repetition-based streaming is a bottom-up process. 
Several other studies have shown that human listeners are extremely 
sensitive to regular patterns rapidly emerging from complex sequences 
of sound (38, 64). Barascud et al. investigated how human listeners 
discover temporal patterns and statistical regularities in complex sound 
sequences (64). They found that subjects’ behavior matched the one of 
an ideal observer, even when distracted by a decoy visual task, again 
suggesting that detection of sound repetition might be a phenomenon that 
does not require attentional focus. 
Streaming of more complex sounds (e.g., speech) is facilitated by 
directing attention to specific sound features that distinguish a foreground 
from a background (65). For example, Mesgarani & Chang, 2012 
presented human listeners with two streams of speech. What was referred 
to as foreground or background changed across trials in response to a 
specific word that cued participants to either listen to the female or the 
male voice. The authors found that listeners were much better at reporting 
the content of sentences that they were cued to pay attention to with 
respect to non-cued sentences presented simultaneously. Furthermore, 
the signature of this “foreground enhancement” is present at the level of 
neural activity measured by ECoG (12) and MEG (44). Future 
experiments incorporating behavior into neurophysiological recordings 
may explain whether the pre-attentive foreground enhancement effects 
reported here are mediated by the same mechanisms as those that enhance 
actively attended streams. 
 
Materials and Methods 
All procedures were approved by the Oregon Health and Science 
University Institutional Animal Care and Use Committee and conform to 
the United States Department of Agriculture standards. 

Table 1: Regression analysis of auditory tuning 
effects on foreground enhancement. 
Results of the mixed linear model for foreground 
enhancement, with target preference and 
sparseness as fixed effects, computed separately 
for A1 and PEG data. Significance was assessed 
using a two-tailed t-test. 
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Surgical procedure 
Animal care and procedures were similar to those described previously 
for neurophysiological recordings from awake ferrets (66). Five spayed, 
de-scented young adult ferrets (two females, three males) were obtained 
from an animal supplier (Marshall Farms, New York). Normal auditory 
thresholds were confirmed by measuring auditory brainstem responses. 
A sterile surgery was then performed under isoflurane anesthesia to 
mount a post for subsequent head fixation and to expose a 10-mm2 
portion of the skull over the auditory cortex where the craniotomy would 
be subsequently opened. A light-cured composite (Charisma, Heraeus 
Kulzer) anchored a custom stainless-steel head-post on the midline in the 
posterior region of the skull. The stability of the implant was also 
supported by 8-10 stainless self-tapping set screws mounted in the skull 
(Synthes). The whole implant was then built up to its final shape with 
layers of Charisma and acrylic pink cement (AM Systems). 
During the first week post-surgery, the animal was treated 
prophylactically with broad-spectrum antibiotics (10 mg/kg Baytril). For 
the first two weeks the wound was cleaned with antiseptics (Betadine and 
Chlorexidine) and bandaged daily. After the wound margin was healed, 
cleaning and bandaging occurred every 2-3 days through the life of the 
animal. This method revealed to be effective in minimizing infections of 
the wound margin. 
 
Stimuli and Acoustics 
Repeated embedded noise stimuli used in the present study were 
generated using the algorithm from McDermott et al. (2011) (23). Brief, 
250- or 300-ms duration samples of broadband Gaussian noise were 
filtered to have spectro-temporal correlations matched to natural sounds 
but without common grouping cues, such as harmonic regularities and 
common onsets (23). The spectral range of the noise (125-16,000 Hz or 
250-20,000 Hz) was chosen to span the tuning of the current recording 
site. An experimental trial consisted of continuous sequences of 10-12 
noise samples (0 ms inter-sample interval) drawn randomly from a pool 
of twenty distinct samples (Figure 1). The order of samples varied 
between trials. Either one stream of samples was presented (single stream 
trial) or two streams were overlaid and presented simultaneously (dual 
stream trial). At a random time (after 3-11 samples, median 6 samples), 
the sample in one stream (target sample) began to repeat. In dual stream 
trials, this repetition occurred only in one of the two streams, while 
samples in the other stream continued to be drawn randomly. In human 
studies, the repeating sample has been shown to pop out perceptually as 
a salient stream (23). Thus, the stream containing the repeated sample is 
referred to here as the foreground, and the non-repeating stream as the 
background (Figure 1B). The period of the trial containing only random 
samples is referred to as the random phase, and the segment starting with 
the first repetition of the target sample, where the two streams 
perceptually diverge, is referred to as the repeating phase (Figure 1B). 
With the exception of the spectro-temporal receptive field analysis, the 
first sample of the random phase was excluded from analysis to minimize 
the effect of onset-related adaptation on our analysis.  
All behavioral and physiological experiments were conducted inside a 
custom double-walled sound-isolating chamber with inside dimensions 
of 8’ × 8’ × 6’ (L × W × H). A custom second wall was added to a single-
walled factory chamber (Professional Model, Gretch-Ken Inc.) with a 
wooden frame and an inner wall composed of ¾” MDF board. The air 
gap between the outer and inner walls was 1.5”. The inside wall was lined 
with 3” sound absorbing foam (Pinta Acoustics). The chamber attenuated 
sounds above 2 kHz by more than 60dB. Sounds from 0.2-2 kHz were 
attenuated 30-60 dB, falling off approximately linearly with log-
frequency. 

Stimulus presentation and behavioral control were provided by custom 
MATLAB software (Mathworks Inc.). Digitally generated sounds were 
D/A converted (100 kHz, National Instruments PCI-6229), and presented 
through a sound transducer (Manger W05) driven with a power amplifier 
(Crown D-75A). The speaker was placed one meter from the animal’s 
head, 30° contralateral to the cortical hemisphere under study. Sound 
level was calibrated using a ½” microphone (Bruel & Kjaer 4191). 
Stimuli were presented with 10ms cos2 onset and offset ramps. 
 
Behavior 
Two ferrets (one male, ferret H, and a female, ferret O) were trained to 
report the occurrence of repeated target noise samples in the repeated 
embedded noise stimuli using a go/no-go paradigm (29). Starting two 
weeks after the implant surgery, each ferret was gradually habituated to 
head fixation by a custom stereotaxic apparatus in a plexiglass tube. 
Habituation sessions initially lasted for 5 minutes and increased by 
increments of 5-10 minutes until the ferret lay comfortably for at least 
one hour. At this time the ferret was placed on a restricted water schedule 
and began behavioral training. During training and physiological 
recording sessions that involved behavior, the ferret was kept in water 
restriction for five days/week, and almost all the daily water intake (40-
80 ml) was delivered through behavior. Their diet was supplemented with 
20 ml/day of high protein Ensure (Abbott). Water restriction was to be 
discontinued if weight dropped below 20% of the initial weight, but this 
did not happen with either ferret. Water rewards were delivered through 
a spout positioned close to the ferret’s nose. Delivery was controlled 
electronically with a solenoid valve. Each time the ferret licked the 
waterspout, it caused a beam formed by an infrared LED and photo-diode 
placed across the spout to be discontinued (Figure 1A). This system 
allowed us to precisely record the timing of each lick relative to stimulus 
presentation. 
After trial onset, animals were required to refrain from licking until the 
onset of the repeating phase, i.e., after the occurrence of a repeated 
sample. Licks during the random phase were recorded as false alarms and 
punished with a 4-6 sec time-out. Licks that occurred in the repeating 
phase were recorded as hits and always rewarded with one to two drops 
of water (Figure 2.1B). Each behavioral session had two target samples 
whose identity varied from session to session to avoid ferret 
overexposure to a given target spectro-temporal features. 
To shape the animal's behavior, training started with a high signal-to-
noise ratio (SNR) between random and repeating phases. SNR was then 
slowly decreased until 0dB SNR was reached. Parameters such as 
spectral modulation depth of the two streams and length of the random 
phase/false alarm window were also adjusted over the training period. 
Performance was assessed by a discrimination index (DI) computed from 
the area under the receiver operating characteristic (ROC) curve for 
detection of the target in the repeating phase (29, 30). DI combines 
information about hit rate, false alarm rate, and reaction time, and has a 
higher value for the higher, lower, and faster these scores are, 
respectively. A DI greater than 0.5 indicates above-chance performance. 
Criterion was reached as the ferret performed at DI > 0.5, with 0 SNR 
and 0 modulation depth difference for four consecutive days. 
 
Electrophysiology 
Single- and multi-unit neural recordings were performed in the two 
trained animals and in three additional task-naïve animals. A small (~1-
2 mm diameter) craniotomy was opened over the auditory cortex, in a 
location chosen based on stereotaxic coordinates and superficial 
landmarks on the skull marked during surgery. Initial recordings targeted 
primary regions of the ferret auditory cortex (A1), and recording location 
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was confirmed by characteristic short-latency responses to tone stimuli 
and by tonotopic organization of frequency selectivity (67). Recordings 
in secondary auditory cortex (PEG) were then performed in the field 
ventral to A1, identified by a reversal in the tonotopic gradient. 
On each recording day, 1 to 4 high-impedance tungsten microelectrodes 
(FHC or A-M Systems, impedance 1-5 MΩ) were slowly advanced into 
cortex with independent motorized microdrives (Alpha-Omega). The 
electrodes were positioned (Kopf Instruments) such that the angle was 
roughly normal to the surface of the brain (~28-40°). Stimulus 
presentation and electrode advancement were controlled from outside the 
sound booth, and animals were monitored through a video camera. 
Neural signals were recorded using open-source data acquisition software 
(MANTA, (68)) Raw traces were bandpass-filtered (0.3-10 kHz), 
amplified (10k, A-M Systems 1800 or 3600 AC amplifier), digitized (20 
kHz, National Instruments PCI-6052E) and stored for subsequent offline 
analysis. Putative spikes were extracted from the continuous signal by 
collecting all events ≥4 standard deviations from zero. Different spike 
waves were separated from each other and from noise using principle 
component analysis and k-means clustering (69). Single units (>95% 
isolation) and stable multiunits (>70% isolation) were included in this 
study, resulting in a total of 141 A1 and 136 PEG units. 
Between recording sessions, the exposed recording chamber surrounding 
the craniotomy was covered with polysiloxane impression material (GC 
America). After several electrophysiological penetrations (usually about 
5-10), the craniotomy was expanded or a new craniotomy was opened to 
expose new regions of auditory cortex. When possible, old craniotomies 
were covered with a layer of bone wax and allowed to heal. Multiple 
craniotomies were performed on both hemispheres. 
 
Analysis 
 
Effect of repetition on target responses 
To assess the effect of repetition on overall responsiveness, we first 
measured changes in the response to the target sample between random 
and repeating trial phases. We computed the peristimulus time histogram 
(PSTH) response to each occurrence of target sample in the stimulus 
separately for the random phase and repeating phase, using data from 
dual-stream trials only. Spontaneous rate was subtracted from the PSTH 
to ensure the fraction term reflected changes in the evoked response. We 
then computed the gain term that minimized the least squares difference 
between evoked responses in the two phases. Log of the measured gain 
is reported to allow for direct comparison with the results of subsequent 
modeling analysis (see below).  
 
PSTH-based models 
Auditory cortical neurons could support segregation of the repeated 
stream either by changing the overall gain of their response to the 
repeating stream (stream-independent) or by differentially enhancing 
responses to one or the other stream (stream-dependent). To test these 
alternative predictions, we fit the data using stream-independent and 
stream-dependent models. In both models, responses were predicted 
using a weighted sum of time-varying responses to each noise sample. 
During the random phase, the time-varying response was the linear sum 
of a response to the foreground stream, response to the background 
stream, and spontaneous spike rate: 
 

 

Here, 𝑆#$	 and 𝑆%$  are the identity of samples in the foreground and 
background streams, respectively, and 𝑟. is the spontaneous rate. �̅�(𝑆, 𝑖) 

is the contribution of sample S to the evoked spike count in i-th time bin 
following sample onset.  
For the stream-independent model, responses during the repeated phase 
were computed, 

where 𝑅𝐺$&'%(&  scales responses to both streams. For the stream-
dependent model, responses during the repeated phase were computed, 
 

 

where 𝑅𝐺#$  and 𝑅𝐺%$  modulate the respective stream responses 
separately before they are summed. The use of an exponent simplifies 
interpretation of gain changes such that values of 𝑅𝐺 > 0  indicate 
enhancement and values of 𝑅𝐺 < 0 indicate suppression. �̅�(𝑆, 𝑖) can be 
negative, which allows for suppressed responses relative to the 
spontaneous rate. In this case, if a unit has both enhanced and suppressed 
responses, 𝑅𝐺 will scale both responses equally (e.g., if 𝑅𝐺 > 0, there 
will be a decrease in spike rate during negative responses and an increase 
in spike rate during enhanced responses). The difference 𝑅𝐺#$ − 𝑅𝐺%$ 
is the relative enhancement between streams, here referred to as 
foreground enhancement. If 𝑅𝐺#$ > 𝑅𝐺%$ , then the neural response to 
the foreground stream is enhanced relative to the background stream. 
The repeating phase had many more presentations of the target sample 
than the random phase. To minimize potential bias when fitting the data, 
we randomly discarded target samples from the repeating phase such that 
the number of target samples in the repeating phase matched the number 
of target samples in the random phase. As mentioned earlier, the first 
sample of the random phase (i.e., the very first sample in the trial) was 
excluded from analysis to minimize the effect of onset-adaptation in our 
analysis. 
Models were fit to maximize Poisson likelihood of free parameters using 
Bayesian regression. A normal prior with mean 0 and standard deviation 
10 was set on both 𝑟. and �̅�. A normal prior with mean 0 and standard 
deviation 1 was set on all RG parameters. The model was fit three times 
using a different set of random starting values for each coefficient. Two 
thousand samples for each fit were acquired with a No-U-Turn Sampler, 
an extension to Hamiltonian Monte Carlo that eliminates the need to set 
a number of steps (70). Gelman-Rubin statistics were computed for each 
fit to ensure all the fits converged to the same final estimate (𝑟 < 1.1). 
The posteriors for 𝑅𝐺$&'%(& , 𝑅𝐺#$  and 𝑅𝐺%$  were extracted from the 
Bayes model. An 𝑅𝐺 parameter for which the 95% credible interval (as 
derived from the posterior) was less than 0 were considered to have 
significant suppression. Parameters with an interval greater than 0 were 
considered to have significant enhancement. For all data points shown, 
the means of the relevant posterior are plotted. 
 
Lifetime sparseness and target preference 
We quantified sparseness (S), a measure of unit selectivity for a given 
sample relative to the others in the collection (adapted from (32)), 
 

where 𝑟7 is the standard deviation of the PSTH (computed using the 
average of response to the token in the random phase of single-stream 
trials) for the ith sample and n is the total number of noise samples. We 

																				𝑟8(9:;𝑆#$, 𝑆%$, 𝑖< = 𝑟;𝑆#$, 𝑖< + 𝑟;𝑆%$, 𝑖< + 𝑟.									(Eqn. 1). 

𝑟8?@_79:;𝑆#$, 𝑆%$, 𝑖< = B𝑟;𝑆#$, 𝑖< + 𝑟;𝑆%$, 𝑖<C × 𝑒FGHIJKLI + 𝑟.	(Eqn. 2), 

𝑟8?M_:?@;𝑆#$, 𝑆%$, 𝑖< = 𝑟;𝑆#$, 𝑖< × 𝑒FG#$ + 

																																																																		+𝑟;𝑆%$, 𝑖<𝑒FG%$ + 𝑟.				(Eqn. 3), 
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quantified target preference (TP), a measure of how well the target 
sample modulates the unit’s response, 
 

 

where 𝑟](8 is the standard deviation of the target PSTH and the other 
terms are defined as for sparseness. The use of standard deviation to 
measure response magnitude means that strong suppression or 
enhancement yield similar response strength.  
To assess whether there was a significant effect of sparseness and/or 
target preference on foreground enhancement, we used a mixed linear 
model sparseness (S) and target preference (T) according to the following 
model design:  
 

 
Spectro-temporal receptive field models 
In addition to the PSTH-based models, which fit responses to individual 
noise samples, we confirmed that the same streaming effects were 
captured by a context-dependent spectro-temporal receptive field (STRF) 
model (28). The classic linear-nonlinear (LN) STRF models neural 
activity as the linear weighted sum of the preceding stimulus 
spectrogram, the output of which passes through a static nonlinearity to 
predict the time-varying spike rate response (71, 72). The STRF, ℎ(𝑥, 𝑢)  
is as a linear weight matrix that is convolved with the logarithm of the 
stimulus spectrogram, 𝑠(𝑥, 𝑡): 
 

 
 

(Eqn. 7), 
 
 

where x = 1…X are the frequency channels, t = 1…T is time, and 𝑢 is the 
time lag of the convolution kernel. Taking the log of the stimulus 
spectrogram accounts for nonlinear gain in the cochlea. Free parameters 
in the weight matrix, ℎ, indicate the gain applied to frequency channel x 
at time lag u to produce the predicted response. Positive values indicate 
components of the stimulus correlated with increased firing, and negative 
values indicate components correlated with decreased firing. 
The output of the linear STRF is passed through a static nonlinear 
sigmoid function to account for spike threshold and saturation (34), 
 

Free parameters here are 𝑥. , inflection point of the sigmoid, 𝑟. , 
spontaneous spike rate, A, maximum spike rate, and k, the slope of the 
sigmoid. 
We developed a modified LN STRF to account for stream-dependent 
changes in gain. The input spectrogram for each stream was scaled by a 
gain term that depended on stream identity (foreground or background) 
and trial phase (random or repeating). We refer to this model as the 
phase+stream model. The stimulus was modeled as the sum of two log 
spectrograms, computed separately for the foreground and background 
streams, s1 and s2, respectively. In the random phase, the total stimulus, 
𝑠(𝑥, 𝑡), was modeled as the linear sum of these two stimuli: 
 

In the repeating phase, each stimulus was scaled by a repetition gain for 
the respective stream, 
 

All model parameters were estimated by gradient descent (28, 34, 73). 
STRF parameters were initialized to have flat tuning (i.e., uniform initial 
values of h) and were iteratively updated using small steps in the direction 
that optimally reduced the mean squared error between the time-varying 
spike rate of the neuron and the model prediction. To maximize statistical 
power with the available data, the STRF was fit using both single- and 
dual-stream data. For single-stream trials, the second stimulus 
spectrogram was fixed at zero, 𝑠c(𝑥, 𝑡) = 0, and a separate gain term was 
fit for those trials to prevent bias in estimates of 𝑅𝐺#$		 and 𝑅𝐺%$ . 
Measurements of prediction accuracy were obtained by 20-fold cross 
validation, in which a separate model was fit to 95% of the data then used 
to predict the remaining 5%. Fit and test data were taken from interleaved 
trials. This procedure was repeated 20 times with non-overlapping test 
sets, so that the final result was a prediction of the entire time-varying 
response. Prediction accuracy was then measured as the correlation 
coefficient (Pearson’s r) between the predicted and actual response. 
Standard error on prediction correlation was measured by jackknifing 
(74), and only units with prediction error significantly greater than zero 
were included in model comparisons (p<0.05, jackknife t-test).  
To quantify effects of phase- and stream-dependent gain, we also fit 
models using the same data and fitting procedure, but where stream 
identity (phase-only model) or both phase and stream (baseline model) 
were shuffled in time. An improvement in prediction accuracy for a 
model with a non-shuffled over shuffled variable indicated a beneficial 
effect of the corresponding gain parameter on model performance, and 
thus of a stream-dependent change in sound encoding. Significant 
differences in model performance were assessed by a Wilcoxon rank sum 
test between prediction correlations for the set of units fit with each 
model. 
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