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Abstract

Previous studies have indicated that white matter hyperintensities (WMH) may evolve, i.e., shrink, grow,
or stay stable, over a period of time. However, predicting the evolution of WMH is challenging because
the rate and direction of WMH evolution varies greatly across studies. Evolution of WMH also has a non-
deterministic nature because some clinical factors that possibly influence it are still not known. In this study,
we attempt to predict the evolution of WMH from baseline to follow-up (i.e., 1-year later) using deep learning.
We name this proposed model “Disease Evolution Predictor” (DEP). The DEP model receives a baseline
image as input and produces a map called “Disease Evolution Map” (DEM), which represents the evolution
of WMH from baseline to follow-up. Two models of DEP are proposed, i.e., DEP-UResNet and DEP-GAN,
which represent supervised and unsupervised deep learning algorithms respectively. To simulate the non-
deterministic and unknown parameters involved in WMH evolution, we propose modulating a Gaussian
noise array to the DEP model as auxiliary input. This forces the DEP model to imitate a wider spectrum of
alternatives in the results. The alternatives of using other types of auxiliary input instead, such as baseline
WMH and stroke lesion loads were also tested. Based on our experiments, the supervised DEP-UResNet
regularly performed better than the DEP-GAN. However, DEP-GAN using probability map (PM) yielded
similar performances to the DEP-UResNet and performed best in clinical analysis. Furthermore, ablation
study showed that auxiliary input, especially the Gaussian noise, improved the performance of DEP models
regardless the model’s architecture. To the best of our knowledge, this is the first extensive study on
modelling WMH evolution using deep learning algorithms and dealing with the non-deterministic nature of
WMH evolution.

Keywords: white matter hyperintensities (WMH), WMH evolution, disease evolution predictor (DEP),
DEP Generative Adversarial Network (DEP-GAN), DEP U-Residual Network (DEP-UResNet).

1. Introduction

White matter hyperintensities (WMH) are neu-
roradiological features seen in T2-weighted and
T2-fluid attenuated inversion recovery (T2-FLAIR)
brain magnetic resonance images (MRI). Clinically,
WMH have been commonly associated with stroke,
ageing, and dementia progression (Wardlaw et al.,
2013; Prins and Scheltens, 2015). Furthermore, re-
cent studies have shown that WMH may decrease
(i.e., shrink/regress), stay unchanged (i.e., stable),
or increase (i.e., grow/progress) over a period of
time (Ramirez et al., 2016; Chappell et al., 2017;

Wardlaw et al., 2017). In this study, we refer to
theses changes as “evolution of WMH”.

Predicting the evolution of WMH is challeng-
ing because the rate and direction of WMH evo-
lution varies considerably across studies (Schmidt
et al., 2016; van Leijsen et al., 2017a,b) and several
risk factors, either commonly or not fully known,
could be involved in their progression (Wardlaw
et al., 2017). For example, some risk factors and
predictors that have been commonly associated
with WMH progression are baseline WMH vol-
ume (Schmidt et al., 2003; Sachdev et al., 2007;
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van Dijk et al., 2008; Wardlaw et al., 2017; Chap-
pell et al., 2017), blood pressure or hypertension
(Veldink et al., 1998; Schmidt et al., 2002b; van Dijk
et al., 2008; Godin et al., 2011; Verhaaren et al.,
2013), age (van Dijk et al., 2008), current smoking
status (Power C et al., 2015), previous stroke and
diabetes (Gouw et al., 2008; Wardlaw et al., 2017),
and genetic properties (Schmidt et al., 2002a, 2011;
Godin et al., 2009; Luo et al., 2017). Surrounding
regions of WMH that may appear like normal ap-
pearing white matter (NAWM) with less structural
integrity, usually called the “penumbra of WMH”
(Maillard et al., 2011), have also been reported as
having a high risk of becoming WMH over time
(Maillard et al., 2014; Pasi et al., 2016). On the
other hand, regression of WMH volume has been re-
ported in several radiological observations on MRI,
such as after cerebral infraction (Moriya et al.,
2009), strokes (Durand-Birchenall et al., 2012; Cho
et al., 2015; Wardlaw et al., 2017), improved hepatic
encephalopathy (Mı́nguez et al., 2007), lower blood
pressure (Wardlaw et al., 2017), liver transplan-
tation (Rovira Cañellas et al., 2007), and carotid
artery stenting (Yamada et al., 2010). While a re-
cent study suggested that areas of shrinking WMH
were actually still damaged (Jiaerken et al., 2018), a
more recent study showed that WMH regression did
not accompany brain atrophy and suggested that
WMH regression follows a relatively benign clinical
course (van Leijsen et al., 2019).

In this study, we propose an end-to-end train-
ing model for automatically predicting and spa-
tially estimating the dynamic evolution of WMH
from baseline to the following time point using deep
neural networks called “Disease Evolution Predic-
tor” (DEP) model (discussed in Section 2.2). The
DEP model produces a map named “Disease Evo-
lution Map” (DEM) which characterises each voxel
of WMH or brain tissues as progressing, regress-
ing, or stable WMH (discussed in Section 2.1). For
this study we have chosen deep neural networks
due to their exceptional performance on WMH seg-
mentation (Rachmadi et al., 2017; Li et al., 2018;
Kuijf et al., 2019). We use a Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) and the
U-Residual Network (UResNet) (Guerrero et al.,
2018) as base architectures for the DEP model.
These architectures represent the state-of-the-art
unsupervised and supervised deep neural network
models, respectively.

This study differs from previous studies on pre-
dictive modelling in the fact that we are interested

in predicting the evolution of specific neuroradio-
logical MRI features (i.e., WMH in T2-FLAIR),
not the progression of a disease as a whole and/or
its effect. For example, previous studies have pro-
posed methods for predicting the progression from
mild cognitive impairment to Alzheimer’s disease
(Spasov et al., 2019) and progression of cognitive
decline in Alzheimer’s disease patients (Choi et al.,
2018). Instead, our proposed DEP model generates
three outcomes: 1) prediction of WMH volumetric
changes (i.e., either progressing or regressing), 2)
estimation of WMH spatial changes, and 3) spatial
distribution of white matter evolution at the voxel-
level precision. Thus, using the DEP model, clini-
cians can estimate the size, extent, and location of
WMH in time to study their progression/regression
in relation to clinical health and disease indicators,
for ultimately design more effective therapeutic in-
terventions (Rachmadi et al., 2019a). Results and
evaluations can be seen in Section 4.

This study is an extension of our previous work
(Rachmadi et al., 2019a) in MICCAI 2019. The
main contributions of this study, not addressed in
our previous work are as follows.

1. We propose and evaluate the use of three dif-
ferent modalities for the DEM: 1) irregularity
map (IM) (Rachmadi et al., 2019a), 2) prob-
ability map (PM), and 3) binary WMH label
(LBL).

2. We performed an ablation study of using differ-
ent GAN architectures for DEP-GAN model,
namely 1) Wasserstein GAN with gradient
penalty (WGAN-GP), 2) visual attribution
GAN (VA-GAN), 3) DEP-GAN with 1 critic
(DEP-GAN-1C), and 4) DEP-GAN with 2
critics (DEP-GAN-2C).

3. We propose three different end-to-end DEP
learning approaches: 1) supervised learning us-
ing DEP-UResNet, 2) unsupervised learning
using DEP-GAN and IM (Rachmadi et al.,
2019a), and 3) indirectly supervised learning
using DEP-GAN and PM.

4. We performed an ablation study of four differ-
ent types of auxiliary input for DEP model: 1)
no auxiliary input, 2) baseline WMH load, 3)
baseline WMH and stroke lesions (SL) loads,
and 4) Gaussian noise.

5. We performed clinical plausibility analysis of
the WMH volumetric changes predicted by the
DEP models and risk factors of WMH evolu-
tion using analysis of covariance (ANCOVA).
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Figure 1: “Disease evolution map” (DEM) (right) is produced by subtracting baseline images (middle) from follow-up image
(left). In DEM produced by irregularity map (IM) (first row) and probability map (PM) (second row), bright yellow pixels
represent positive values (i.e., progression) while dark blue pixels represent negative values (i.e., regression). On the other hand,
DEM produced by binary WMH label (LBL) (third row) has three foreground labels which represent progression or “Grow”
(green), regression or “Shrink” (red), and “Stable” (blue). We named this special DEM as three-class DEM label (LBL-DEM).

2. Proposed Methods

2.1. Disease Evolution Map (DEM)

To produce a standard representation of WMH
evolution, a simple subtraction operation between
two irregularity maps from two time points (i.e.,
baseline assessment from follow-up assessment)
named “Disease Evolution Map” (DEM) was pro-
posed in our previous work (Rachmadi et al.,
2019a). In the present study, we evaluate the use of
three different modalities in the subtraction opera-
tion: irregularity map (i.e. as per (Rachmadi et al.,
2019a)), probability map, and binary WMH label.

Irregularity map (IM) is a map/image that de-
scribes the “irregularity” level of each voxel with
respect to the normal brain tissue using real val-
ues between 0 and 1 (Rachmadi et al., 2018b). The
IM is unique as it retains some of the original MRI
textures (e.g., from the T2-FLAIR image intensi-

ties), including gradients of WMH. IM is also in-
dependent from a human rater or training data,
as it is produced using an unsupervised method
(i.e., LOTS-IM) (Rachmadi et al., 2019b). Further-
more, previous studies have shown that IM can also
be used for WMH segmentation (Rachmadi et al.,
2018b), data augmentation of supervised WMH
segmentation (Jeong et al., 2019), and simulation of
WMH progression and regression (Rachmadi et al.,
2018c). DEM resulted from the subtraction of two
IMs has values ranging from -1 to 1 (first row of Fig-
ure 1). Note how both regression and progression
(i.e. blue for negative values and red for positive
values) are well represented at the voxel level pre-
cision on the DEM obtained from IMs.

Probability map (PM) in the present study refers
to the WMH segmentation output from a super-
vised machine learning method. Similar to IM, PM
has real values between 0 and 1 which describe the
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probability for each voxel of being WMH. How-
ever, PM differs from IM in the fact that PM only
has WMH gradients on the borders of WMH (note
that the centres of (big) WMH clusters mostly have
probability of 1). Thus, the DEM produced from
the subtraction of two PMs also has values ranging
from -1 to 1 representing regression and progression
respectively, but these are usually located on the
WMH clusters’ borders and/or representing small
WMH. On the other hand, the rest of DEM’s re-
gions (i.e., the centers of big WMH and non-WMH
regions) have probability value of 0 (see the second
row of Figure 1).

Lastly, binary WMH label (LBL) refers to the
WMH label produced by an expert’s manual seg-
mentation, which is often considered as gold stan-
dard (Valdés Hernández et al., 2015). DEM from
LBL can be produced by subtracting the baseline
LBL from the follow-up LBL, and each voxel of the
resulted image is then labelled as either “Shrink” if
it has value below zero, “Grow” if it has value above
zero, or “Stable” if it has value of zero. We refer
this DEM as three-class DEM label (LBL-DEM),
and its depiction can be seen in the bottom-right of
Figure 1.

2.2. Disease Evolution Predictor (DEP) Model us-
ing Deep Neural Networks

In this study, two learning approaches of Dis-
ease Evolution Predictor (DEP) model are pro-
posed and evaluated: 1) non-supervised DEP model
based on generative adversarial networks (DEP-
GAN) (Rachmadi et al., 2019a) and 2) supervised
DEP model based on UResNet (DEP-UResNet).
DEP-GAN uses either IM or PM to represent the
WMH while DEP-UResNet uses T2-FLAIR and
three-class DEM label (LBL-DEM). DEP-GAN us-
ing IM is categorised as unsupervised learning be-
cause the input modality (IM) is produced by an
unsupervised method: LOTS-IM. DEP-GAN using
PM is categorised as indirectly supervised learning
because the PM is produced by a supervised deep
learning algorithm, which is UResNet in this case
(see Section 3.2). Finally, DEP-UResNet is cate-
gorised as supervised learning as it simply learns
DEM labels from LBL-DEM.

2.2.1. DEP Generative Adversarial Network
(DEP-GAN)

DEP Generative Adversarial Network (DEP-
GAN) (Rachmadi et al., 2019a) is based on a GAN,

a well established unsupervised deep neural network
model commonly used to generate fake natural im-
ages (Goodfellow et al., 2014). Thus, in this study,
DEP-GAN is proposed to predict the evolution of
WMH when there are no longitudinal WMH labels
available. DEP-GAN is based on a visual attribu-
tion GAN (VA-GAN), originally proposed to detect
atrophy in T2-weighted MRI of Alzheimer’s disease
(Baumgartner et al., 2017). DEP-GAN consists of
a generator based on a U-Residual Network (URe-
sNet) (Guerrero et al., 2018) and two separate con-
volutional networks used as discriminators (here-
inafter will be referred as critics). The schematic of
DEP-GAN can be seen in Figure 2.

Figure 2: Schematic of the proposed DEP-GAN with 2 dis-
criminators (critics). DEP-GAN can take either irregularity
map (IM) or probability map (PM) as input. DEP-GAN also
has an auxiliary input to deal with the non-deterministic fac-
tors in WMH evolution (see Section 2.3 for full explanation).

Let x0 be the baseline (year-0) image and x1
be the follow-up (year-1) image. Then, the “real”
DEM (y) can be produced by a simple subtraction
(y = x1−x0). To generate the “fake” DEM (y′), i.e.
without x1, a generator function (M(x)) is used:
y′ = M(x0). Thus, a “fake” follow-up image (x′1)
can be produced by x′1 = x0 + y′. Once M(x) is
well/fully trained, the “fake” follow-up (x′1) and the
“real” follow-up (x1) should be indistinguishable
by a critic function D(x), while “fake” DEM (y′)
and “real” DEM (y) should be also indistinguish-
able by another critic function C(x). Full schematic
of DEP-GAN’s architecture (i.e., its generator and
critics) can be seen in Figure 3.

The DEP-GAN’s UResNet-based generator
(M(x)) has two parts, an encoder which encodes
the input image information to a latent represen-
tation and a decoder which decodes back image
information from the latent representation. The
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Figure 3: Architecture of DEP-GAN, which consists of one generator (upper side, “A”) and two critics (lower side, “C” and
“D”). Note how the proposed auxiliary input is feed-forwarded to convolutional layers (yellow, “B”) and then modulated to the
generator using FiLM layer (green) inside residual block (ResBlock) (light blue, “E”). Please see Section 2.3 for full explanation
about auxiliary input. On the other hand, DEP-UResNet (upper right side, “F”) is based on DEP-GAN’s generator, including
its auxiliary input, with modification of the last non-linear activation function (i.e., from tanh to softmax).

baseline IM/PM (x0) is feed-forwarded to this
generator to generate a “fake” DEM (y′). There
is also an auxiliary input modulated into the
generator using a FiLM layer (Perez et al., 2018)
inside the residual block (ResBlock) to deal with
non-deterministic factors of WMH evolution. This
auxiliary input and its modulation will be fully
discussed in Section 2.3. The architecture of the
DEP-GAN’s generator is depicted in the upper side
of Figure 3 (with “A”, “B”, and “E” annotations
for UResNet-based generator of M(x), auxiliary
input, and residual block (ResBlock) respectively).

Unlike VA-GAN that uses only one critic (i.e.,
only D(x)) (Baumgartner et al., 2017), DEP-GAN
uses two critics (i.e., D(x) and C(x)) to enforce
anatomically realistic modifications to the follow-up
images (Baumgartner et al., 2017) and encode real-
istic plausibility in the modifier (i.e., DEM) (Rach-
madi et al., 2019a). Anatomically realistic modifi-
cations to the follow-up images can be achieved by
optimising the critic D(x) and the anatomically re-
alistic plausibility of the modifier can be achieved
by optimising the critic C(x). In other words, we
argue that an anatomically realistic DEM is essen-
tial to produce anatomically realistic (fake) follow-
up images. The architecture of the DEP-GAN’s
critics and their connection to the generator are de-

picted in the lower side of Figure 3 (with “C” and
“D” annotations for critic C(x) and D(x) respec-
tively).

The DEP-GAN’s optimisation process is the
same as the optimisation of VA-GAN, where the op-
timisation processes of Wasserstein GAN (WGAN-
GP) using a gradient penalty factor of 10 is used
(Gulrajani et al., 2017). The optimisation of M(x)
is given by the following function

M∗ = arg min
M

max
D∈D

Lcritic(M,D)+

arg min
M

max
C∈C
Lcritic(M,C) + Lreg(M)

(1)

where

Lcritic(M,D) = Ex1∼P1
[D(x1)]−

Ex0∼P0
[D(x0 +M(x0))],

(2)

Lcritic(M,C) = Ex0,x1∼P0,P1 [C(x1 − x0)]−
Ex0∼P0 [C(M(x0))],

(3)

Lreg(M) = [λ1 ‖x′1 − x1‖1 +

λ2(1−DSC(x′1, x1))+

λ3 ‖vol(x′1)− vol(x1)‖2],

(4)

x0 is the baseline image that has an underlying dis-
tribution P0, x1 is the follow-up image that has an
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underlying distribution P1, M(x0) represents the
“fake” DEM, x′1 = x0 +M(x0) is the “fake” follow-
up image, D and C are the critics (i.e. a set of 1-
Lipschitz functions (Baumgartner et al., 2017; Gul-
rajani et al., 2017)), and ‖·‖1 and ‖·‖2 are the L1
and L2 norms respectively. The optimisation is per-
formed by updating the parameters of the gener-
ator and critics alternately, where (each) critic is
updated 5 times per generator update. Also, in
the first 25 iterations and every 100 iterations, the
critics are updated 100 times per generator update
(Baumgartner et al., 2017; Gulrajani et al., 2017).

In summary, to optimise the generator (M(x)),
we need to optimise Equation 1, which optimises
both critics (D(x) and C(x)) using Equations 2 and
3 respectively based on WGAN-GP’s optimisation
process (Gulrajani et al., 2017), and use the regu-
larisation function described in Equation 4. Each
term in the Equation 4 simply says:

1. Intensities of “fake” follow-up images (x′1) have
to be similar to the “real” follow-up images
(x1) based on L1 norm.

2. The WMH segmentation estimated from x′1
has to be spatially similar to the WMH seg-
mentation estimated from x1 based on the Dice
similarity coefficient (DSC) (see Equation 6).

3. The WMH volume (in ml) estimated from x′1
has to be similar to the WMH volume esti-
mated from x1 based on L2 norm.

The WMH segmentation of x′1 and x1 is esti-
mated by either thresholding IM values (i.e., irreg-
ularity values) to be above 0.178 (Rachmadi et al.,
2019b) or PM values (i.e., probability values) to be
above 0.5. Furthermore, each term in Equation 4
is weighted by λ1, λ2, and λ3 which equals to 100
(Baumgartner et al., 2017), 1 and 100 respectively.

2.2.2. DEP U-Residual Network (DEP-UResNet)

In the case of WMH binary labels (LBL) for both
time points (i.e., baseline and follow-up in longitu-
dinal data set) are available, a simple supervised
deep neural network method can be used to au-
tomatically estimate WMH evolution. As previ-
ously described in Section 2.1, DEM produced from
LBL (i.e., three-class DEM label (LBL-DEM)) con-
sists of 3 foreground labels (i.e., “Grow” (green),
“Shrink” (red), and “Stable” (blue)) and 1 back-
ground label (black). An example of LBL-DEM
can be seen in the bottom-right figure of Figure 1.

In this case, the DEP-GAN’s generator is de-
tached from the critics and modified into DEP U-

Residual Network (DEP-UResNet) by changing the
last non-linear activation layer of tanh (i.e., for re-
gression) to softmax (i.e., for multi-label segmen-
tation). Thus, the DEP-UResNet’s schematic is
similar to the DEP-GAN’s generator, whcih can be
seen in Figure 3 (with “A”, “B”, and “E” annota-
tions). DEP-UResNet uses T2-FLAIR as input and
LBL-DEM as target output. Note that this config-
uration makes all DEP models have similar genera-
tor networks based on UResNet. Furthermore, the
auxiliary input proposed in this study can be also
applied to the DEP-UResNet.

2.3. Auxiliary Input in DEP Model

The biggest challenge in modelling the evolution
of WMH is mainly the amount of factors involved
in WMH evolution. In our previous work, we pro-
posed an auxiliary input module which modulates
random noises from normal (Gaussian) distribution
to every layer of the DEP-GAN’s generator to sim-
ulate the unknown/missing factors (i.e., non-image
features) involved in WMH evolution and the non-
deterministic property of WMH evolution (Rach-
madi et al., 2019a). To modulate the auxiliary in-
put to every layer of the DEP-GAN’s generator we
used Feature-wise Linear Modulation (FiLM) layer
(Perez et al., 2018). The FiLM layer is depicted as
the green block inside the residual block (ResBlock)
in Figure 3 (annotated as “E”). In the FiLM layer,
γm and βm modulate feature maps Fm, where sub-
script m refers to mth feature map, via the following
affine transformation

FiLM(Fm|γm, βm) = γmFm + βm. (5)

where γm and βm for each ResBlock in each layer
are automatically determined by convolutional lay-
ers (depicted as yellow blocks in Figure 3 with “B”
annotation). Note that the proposed auxiliary in-
put module can be easily applied to any deep neural
network model. Thus, we applied the auxiliary in-
put module to the two DEP models proposed in the
present study: DEP-GAN and DEP-UResNet.

We perform an ablation study of auxiliary input
modalities for DEP model by using: 1) no auxiliary
input, 2) baseline WMH volume, 3) both baseline
WMH and SL volumes, and 4) Gaussian noise. The
WMH and SL volumes were obtained from WMH
and SL labels/masks (see Section 3.1). Whereas, an
array of 32 random noises which follow Gaussian
distribution (Gaussian noise) of z ∼ N (0, 1) was
used as per our previous work (Rachmadi et al.,
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2019a). It is worth to mention that changing the
auxiliary input modality from WMH and SL loads
to Gaussian noise changes the nature of the DEP
model from deterministic to non-deterministic.

3. Data and Experiments

3.1. Subjects and Data

We used MRI data from stroke patients (n = 152)
enrolled in a study of stroke mechanisms from which
full recruitment and assessments have been pub-
lished (Wardlaw et al., 2017). Written informed
consent was obtained from all patients on proto-
cols approved by the Lothian Ethics of Medical Re-
search Committee (REC 09/81101/54) and NHS
Lothian R+D Office (2009/W/NEU/14), on the
29th of October 2009. In the clinical study that
provided the data, patients were imaged at three
time points (i.e., first time (baseline) 1-4 weeks
after presenting to the clinic with stroke symp-
toms, at approximately 3 months, and a year after
(follow-up)). All images were acquired at a GE 1.5T
MRI scanner following the same imaging protocol
(Valdés Hernández et al., 2015). Ground truth seg-
mentations were performed using a multi-spectral
semi-automatic method (Valdés Hernández et al.,
2015) only from baseline and 1-year follow-up scan
visits in the image space of the T1-weighted scan
of the second visit, in n = 152 (out of 264) pa-
tients. T2-weighted, FLAIR, gradient echo, and
T1-weighted structural images at baseline and 1-
year scan visits were rigidly and linearly aligned
using FSL-FLIRT (Jenkinson et al., 2002). The re-
sulted resolution of the images is 256×256×42 with
slice thickness of 0.9375× 0.9375× 4 mm. We used
data from all patients who had the three scan visits
and ground truth generated as per above. Hence,
our sample consists on MRI data (i.e., s = n× 2 =
304 MRI scans) for baseline and 1-year follow-up
data. Out of all patients, there are 70 of them
that have stroke subtype lacunar (46%) with me-
dian small vessel disease (SVD) score of 1. Other
demographics and clinical characteristics of the pa-
tients that provided data for this study can be seen
in Table 1.

The primary study that provided the data used
a semi-automatic multi-spectral method to pro-
duce several brain masks including intracranial
volume (ICV), cerebrospinal fluid (CSF), stroke
lesions (SL), and WMH, all which were visu-
ally checked and manually edited by an expert

Table 1: Demographics and clinical characteristics of the
samples used in this study (n = 152). SVD and PV stand
for small vessel disease and periventricular respectively.

V
a
sc

u
la

r
ri

sk
fa

ct
o
rs

Diabetes (n, (%)) 18 (12)
Hypertension (n, (%)) 114 (75)
Hypercholesterolaemia (n, (%)) 86 (57)
Recent or present smoker (n, (%)) 96 (64)

R
el

ev
a
n
t

S
V

D
im

a
g
in

g
m

a
rk

er
s

Presence of at least 1 microbleed (n, (%)) 26 (17)
Presence of a previous lacune (n, (%)) 37 (24)
SVD score (median [IQR]) 1 [0 2]
PV WMH Fazekas score (median [IQR]) 1 [1 2]
Deep WMH Fazekas score (median [IQR]) 1 [1 2]

(Valdés Hernández et al., 2015). The image pro-
cessing protocol followed to generate these masks is
fully explained in (Valdés Hernández et al., 2015).
Extracranial tissues, SL, and skull were removed
from the baseline and follow-up T2-FLAIR im-
ages using the SL and ICV binary masks from
previous analyses (Chappell et al., 2017; Wardlaw
et al., 2017). Furthermore, binary WMH labels pro-
duced for the primary study that provided the data
(Valdés Hernández et al., 2015) were used as the
gold standard (i.e. ground truth) for evaluating the
DEP models. As per these labels, 98 and 54 out
of the 152 subjects have increasing and decreasing
volume of WMH respectively.

As previously explained, IM and PM are needed
for DEP-GAN (i.e., the non-supervised learning ap-
proach of DEP model). We used LOTS-IM with
128 target patches (Rachmadi et al., 2019b) to gen-
erate IM from each MRI data. To generate PM,
we trained a 2D UResNet (Guerrero et al., 2018)
with gold standard WMH and SL masks for WMH
and SL segmentation. For this training, we used all
subjects in our data set and a 4-fold cross valida-
tion training scheme. See Section 3.2 to see how the
4-fold cross validation is done for this study. Fur-
thermore, note that this UResNet is different from
the DEP-UResNet, which is newly proposed in this
study. Notice that we affix “DEP” key-word to any
model’s name used for prediction and delineation
of WMH evolution.

3.2. Experiment Setup

For the present study, we opted to use 2D archi-
tectures for all our networks rather than 3D ones.
This includes the DEP models (i.e., DEP-GAN and
DEP-UResNet) for estimating WMH evolution and
UResNet for WMH and stroke lesions segmenta-
tion. The main reason of this decision was the few
data available (i.e. only 152 subjects) in this study.
VA-GAN (i.e., the GAN scheme used as basis for

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/738641doi: bioRxiv preprint 

https://doi.org/10.1101/738641
http://creativecommons.org/licenses/by-nc-nd/4.0/


DEP-GAN) used roughly 4,000 subjects for training
its 3D network architecture, yet there was still an
evidence of over-fitting (Baumgartner et al., 2017).
The 2D version of VA-GAN has been previously
tested on synthetic data (Baumgartner et al., 2017).

To train DEP models (i.e., DEP-GAN and DEP-
UResNet) and also UResNet (i.e., for generating
PM), 4-fold cross validation was performed. Note
that cross validation was not used in the previous
study that introduced DEP-GAN (Rachmadi et al.,
2019a). In each fold, out of 304 MRI data (152 sub-
jects × 2 scans), 228 MRI data (114 subjects × 2
scans) were used for training and 76 MRI data (38
subjects × 2 scans) were used for testing. Note that
DEP models are subject-specific models, so pair-
wise MRI scans (i.e., baseline and follow-up) are
needed and necessary for both training and testing.
Out of all slices from the training set in each fold
(i.e., 114 pairwise MRI scans), 20% of them were
randomly selected for validation. Furthermore, we
omitted slices without any brain tissues. Thus,
around 4,000 slices were used in the training pro-
cess in each fold. Values of IM/PM did not need
to be normalised as these are between 0 and 1. Fi-
nally, each DEP model was trained for 200 epochs
(i.e., 200 generator updates for DEP-GAN).

In this study, we first performed an ablation
study using different GAN architectures for DEP
model, which are based on WGAN-GP, VA-GAN,
DEP-GAN with 1 critic (DEP-GAN-1C), and DEP-
GAN with 2 critics (DEP-GAN-2C). This ablation
study is intended to see the impact of the num-
ber of critics, the location of the critic(s), and the
additional losses proposed in this study. WGAN-
GP only generates DEM and has one critic for
DEM (C(x)). VA-GAN and DEP-GAN-1C gen-
erate both: DEM and the follow-up image, but
only have one critic for generating the follow-up im-
age (D(x)). The difference between VA-GAN and
DEP-GAN-1C is that DEP-GAN-1C has additional
losses for optimisation in the training (see Section
2.2.1). Lastly, DEP-GAN-2C has two critics (C(x)
and D(x)) and additional losses for the training.

Furthermore, we also performed an ablation
study using different types of auxiliary input their
effects to the DEP models (i.e., DEP-UResNet,
DEP-GAN using IM, and DEP-GAN using PM).
Note that DEP-GAN used in this ablation study
is the DEP-GAN-2C. The procedure of using auxil-
iary input depends on the input modality and train-
ing/testing process. If SL and WMH volumes were
used as auxiliary input, these (i.e., not the volumes

per slice, but the volume per subject) were feed-
forwarded together with one MRI slice. Thus, all
slices from one subject used the same number of
WMH and stroke lesion volumes. Note that WMH
and SL loads for the whole data set (i.e., all sub-
jects) were first normalised to zero mean unit vari-
ance before their use in training/testing.

If Gaussian noise were used as auxiliary input,
an array of Gaussian noise was feed-forwarded to-
gether with an MRI slice in the training process as
follows: 10 different sets of Gaussian noise were first
generated and only the “best” set (i.e., the set that
yielded the lowest M∗ loss (Equation 1)) was used
to update the DEP model’s parameters. Note that
this approach is similar to and inspired by Min-of-N
loss in 3D object reconstruction (Fan et al., 2017)
and variety loss in Social GAN (Gupta et al., 2018).
In the testing process, 10 different sets of Gaussian
noise were generated and the average performance
was calculated. Furthermore, in the evaluation, the
“best” prediction of WMH evolution based on Dice
similarity coefficient (DSC) was also reported.

3.3. Evaluation Metrics

In this study, we used the following tests to assess
the performance of DEP models:

1. Prediction error of WMH volumetric change
(i.e., whether WMH volume in a subject will
increase or decrease).

2. Volumetric agreement between ground
truth and predicted WMH volumes of the
follow-up assessment using Bland-Altman plot
(Bland and Altman, 1986).

3. Volumetric correlation between ground
truth and predicted WMH volumes of the
follow-up assessment.

4. Spatial agreement of the automatic map of
WMH evolution in a patient (i.e. after binari-
sation) using Dice similarity coefficient (DSC)
(Dice, 1945).

5. Clinical plausibility test between the out-
come of DEP models in relation with baseline
WMH load and clinical risk factors of WMH
evolution suggested in clinical studies.

Prediction error is a simple metric to as-
sess how good a DEP model can predict the
WMH evolution in the future follow-up assess-
ment (i.e., increasing or decreasing). On the
other hand, volumetric agreement using Bland-
Altman plot presents the mean volumetric differ-
ence and upper/lower limit of agreements (i.e.,

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/738641doi: bioRxiv preprint 

https://doi.org/10.1101/738641
http://creativecommons.org/licenses/by-nc-nd/4.0/


mean ± 1.96 × standard deviation) between ground
truth and predicted WMH volumes of the follow-
up assessment. We also calculated the Volumet-
ric correlation between ground truth and follow-
up predicted WMH volumes, complementary to the
Bland-Altman plot. Whereas, for evaluating the
spatial agreement between ground truth and au-
tomatic delineation results, we used the Dice simi-
larity coefficient (DSC). Higher DSC means better
performance, and it can be computed as follow:

DSC =
2× TP

FP + 2× TP + FN
(6)

where TP is true positive, FP is false positive and
FN is false negative.

In addition, we performed clinical plausibility
test which evaluate the outcome of DEP models
in relation with the baseline WMH load and clini-
cal risk factors of WMH change and evolution sug-
gested in clinical studies. For this, analyses of co-
variance (ANCOVA) were performed as follows:

1. The WMH volume at follow-up, predicted from
each of the schemes evaluated was used as out-
come variable.

2. The baseline WMH volume was the dependent
variable or predictor.

3. After running Belsley collinearity diagnostic
tests, the covariates in the models were: 1)
type of stroke (i.e. lacunar or cortical), 2)
basal ganglia perivascular spaces (BG PVS)
score, 3) presence/absence of diabetes, 4) pres-
ence/absence of hypertension, 5) recent or cur-
rent smoker status (yes/no), 6) volume of
the index stroke lesion (abbreviated as “index
SL”), and 7) volume of old stroke lesions (ab-
breviated as “Old SL”).

The outcome from an ANCOVA model using the
baseline and follow-up WMH volumes of the gold-
standard expert-delineated binary masks was used
as reference to compare the outcome of the AN-
COVA models that used the volumes generated by
thresholding the input and output of the DEP mod-
els. All volumetric measurements involved in the
ANCOVA models were previously adjusted by pa-
tient’s head size. Therefore, all ANCOVA models
used the percentage of these volumetric measure-
ments in ICV rather than the raw volumes.

4. Results and Discussions

4.1. Ablation study of different GAN architectures
for DEP model

In this ablation study, we used different GAN
architectures for DEP model to see the impact of
number of critics, location of critic(s), and addi-
tional losses. As previously described in Section
3.2, WGAN-GP has one critic for DEM (i.e., C(x)),
VA-GAN has one critic for the follow-up image (i.e.,
D(x)), DEP-GAN-1C has one critic for the follow-
up image (i.e., D(x)) and additional losses for op-
timisation in the training (see Section 2.2.1), and
DEP-GAN-2C has two critics for both of DEM and
follow-up image (i.e., C(x) and D(x)) and addi-
tional losses. Furthermore, all methods evaluated
used IM and PM as main input modality and did
not use any auxiliary input.

4.1.1. Spatial agreement (DSC) and qualitative (vi-
sual) analyses

Based on Table 2 (columns 8-13), we can see
that DEP-GAN-2C produced better spatial agree-
ment (i.e., higher DSC score) than WGAN-GP,
VA-GAN, and DEP-GAN-1C, especially for chang-
ing and growing WMH. Qualitative (visual) assess-
ment of generated DEM depicted in Figure 4 also
shows that DEP-GAN-2C produced more detailed
DEM than the other methods, especially when com-
pared to VA-GAN. These results show that DEP-
GAN-1C and DEP-GAN-2C are more responsive to
the changes of WMH and better in predicting the
changes of WMH than VA-GAN. Furthermore, we
also can see from both Table 2 and Figure 4 that
the use of PM produced better spatial agreement
than IM, regardless of the GAN architecture.

4.1.2. Volumetric agreement (Bland-Altman) and
correlation analyses

From Table 3, we can see that the volume of
WMH predicted by DEP-GAN-1C and DEP-GAN-
2C correlated better with the volume of the ground
truth than the volume of WMH predicted uusing
WGAN-GP and VA-GAN. However, as per the vol-
umetric agreement analysis (Bland-Altman plot),
the performance of DEP-GAN-1C and DEP-GAN-
2C depended on the working domain, IM or PM
(see columns 5-7 of Table 2). If PM was used,
DEP-GAN-1C and DEP-GAN-2C performed bet-
ter than the other methods. On the other hand,
VA-GAN achieved the best volumetric agreement
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Table 2: Results from ablation study of different GAN architectures for DEP models. We calculated the prediction error
of WMH change, volumetric agreement of WMH volume, and spatial agreement of WMH evolution, compared to the gold
standard expert-delineated WMH masks (i.e., three-class DEM labels), using the Dice similarity coefficient (DSC). “Vol.”
stands for volumetric, “LoA” stands for limit of agreement, “gr” and “sh” stand for number of subjects that have increasing
and decreasing WMH volume (i.e., 98 and 54 respectively), and “G” and “S” stand for percentage of subjects correctly predicted
as having growing and shrinking WMH by DEP models. Thus, G = pgr/gr and S = psh/sh where “pgr” and “psh” stand for
number of subjects predicted as having growing and shrinking WMH respectively. The best value for each learning approaches
and evaluation metrics is written in bold.

Unsupervised
(IM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]
((G+S)/2)

Vol. Bias [ml]
mean(std)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((St+
Sr+Gr)/3)

WGAN-GP 85.71 40.74 63.23 -11.70(24.12) -59.11 35.70 0.3179 0.0809 0.3294 0.0595 0.0325 0.1405
VA-GAN 65.31 62.96 64.13 2.52(16.43) -29.69 34.72 0.3361 0.0789 0.3506 0.0356 0.0361 0.1408
DEP-GAN-1C 65.31 68.52 66.91 3.88(15.93) -27.33 35.10 0.3343 0.0583 0.3711 0.0388 0.0265 0.1454
DEP-GAN-2C 61.22 72.22 66.72 5.54(15.98) -25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456

Indirectly
Supervised (PM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]
((G+S)/2)

Vol. Bias [ml]
mean(std)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg.((St+
Sr+Gr)/3)

WGAN-GP 55.10 79.63 67.37 4.19(8.28) -12.05 20.42 0.6139 0.2082 0.5906 0.1494 0.0899 0.2766
VA-GAN 42.86 94.44 68.65 5.78(8.13) -10.15 21.70 0.6070 0.1946 0.5952 0.1584 0.0641 0.2726
DEP-GAN-1C 59.18 85.19 72.18 3.66(7.64) -11.32 18.63 0.6116 0.1711 0.6012 0.1186 0.0800 0.2666
DEP-GAN-2C 69.30 75.93 72.66 2.48(8.47) -14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811

(a) Disease evolution maps (DEMs) using irregularity map (IM).

(b) Disease evolution maps (DEMs) using probability map (PM).

Figure 4: Examples of real DEM and generated DEMs produced by different GAN architectures for DEP model. From left
to right: real DEM and generated DEMs produced by WGAN-GP, VA-GAN, DEP-GAN with 1 critic (DEP-GAN-1C), and
DEP-GAN with 2 critics (DEP-GAN-2C) respectively.

Table 3: Volumetric correlation analysis in ablation study of GAN architectures for DEP model. The best value for each
correlation metric is written in bold.

Unsupervised (IM) WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C

R2 0.1394 0.5644 0.5999 0.6068
Trend y = 0.3354x+ 6.5866 y = 0.4056x+ 2.7858 y = 0.4225x + 2.3714 y = 0.4159x+ 2.0128

Indirectly Supervised (PM) WGAN-GP VA-GAN DEP-GAN-1C DEP-GAN-2C

R2 0.8735 0.8813 0.8916 0.8659
Trend y = 0.8525x− 0.1265 y = 0.8289x− 0.3792 y = 0.8799x− 0.1667 y = 0.898x + 0.0258

when IM was used. However, VA-GAN’s good per-
formance in the volumetric agreement analysis did
not translate to good spatial agreement as previ-
ously described in Section 4.1.1.

Based on the Bland-Altman and correlation plots
depicted in Figure 5, we can see that PM is better
than IM for representing the volumetric change of
WMH. From the correlation plots, we can see that
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(a) GAN architectures for DEP model using irregularity map (IM).

(b) GAN architectures for DEP model using probability map (PM).

Figure 5: Volumetric agreement (in ml) and correlation (in ICV %) analyses between ground truth (GT) and predicted
volume of WMH (Pred) produced by WGAN-GP, VA-GAN, DEP-GAN-1C, and DEP-GAN-2C using (a) IM and (b) PM using
Bland-Altman and correlation plots.
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the correlation between ground truth and predicted
WMH volumes when PM was used is higher than
when IM was used, regardless of the GAN architec-
ture. Furthermore, Bland-Altman plots show evi-
dence of increasing discrepancy and variability be-
tween ground truth and predicted volumes with in-
creasing volume of WMH when IM was used. These
discrepancy and variability are less prominent when
PM was used.

4.1.3. Prediction error analysis and discussion

From Table 2 (columns 2-4), we can see that most
the GAN-based DEP models could correctly pre-
dict the progression/regression of WMH volume,
as they performed better than a random guess sys-
tem (≥ 50%). Furthermore, based on this ablation
study, we can conclude that DEP-GAN with 2 crit-
ics (DEP-GAN-2C) performed generally better for
predicting the evolution of WMH due to additional
losses and two critics in the architecture. Note that
DEP-GAN is used to refer the DEP-GAN-2C in
other experiments. Furthermore, there is evidence
that PM is better for representing the evolution
of WMH than IM when GAN-based deep learning
methods are used.

4.2. Ablation study of auxiliary input in DEP mod-
els

In this ablation study, we used different types
(modalities) of auxiliary input to see how they af-
fect the performance of DEP models for predict-
ing the evolution of WMH. We tested 4 modal-
ities of auxiliary input, namely 1) no auxiliary
input (No Auxiliary), 2) baseline WMH volume
(+WMH), 3) both baseline WMH and SL volumes
(+WMH+Stroke), and 4) Gaussian noise (+Gaus-
sian). Specific to the Gaussian noise, both of the
mean and “best” performances are reported.

4.2.1. Volumetric agreement (Bland-Altman) and
correlation analyses

From Table 4 (columns 5-7), we can see that
DEP-UResNet using Gaussian noise (+Gaussian
(mean)) produced the best estimation of WMH vol-
umetric changes with −0.58± 7.99 ml mean differ-
ence with respect to the gold standard in volumetric
agreement analysis. Furthermore, we also can see
almost all DEP-UResNet models with auxiliary in-
put performed better in volumetric agreement anal-
ysis than ones without auxiliary input (No Auxil-
iary). Only DEP-UResNet with WMH performed

slightly lower than DEP-UResNet without auxiliary
input. This shows the importance of auxiliary in-
put for predicting the evolution of WMH using deep
neural networks.

On the other hand, from all DEP models, DEP-
GAN models using IM produced the worst standard
deviation and (lower and upper) limits of agreement
(LoA) in the volumetric agreement analysis, regard-
less of the modalities of auxiliary input. This is
another indication that IM is not adequate for pre-
dicting the evolution of WMH. Interestingly, DEP-
GAN using PM, which seemingly had better (lower
and upper) LoA than the DEP-GAN using IM, had
some of the worst mean of volumetric bias. This in-
dicates that there is a bias towards regression (i.e.,
shrinking of WMH) when DEP-GAN using PM was
used for predicting the evolution of WMH.

From Bland-Altman plots depicted in Figure 6,
the volumetric agreement of DEP-GAN using PM
is similar to the volumetric agreement of DEP-U-
ResNet. In contrast, Bland-Altman plots produced
by DEP-GAN using IM show increasing discrep-
ancy and variability between ground truth and pre-
dicted volumes with increasing volume of WMH,
similar to the results from previous experiment in
Section 4.1.2. Furthermore, the correlations be-
tween ground truth and predicted volumes of WMH
for DEP-UResNet and DEP-GAN using PM were
much higher than the ones produced by DEP-GAN
using IM, especially when auxiliary input is incor-
porated (see Table 5 and Figure 7).

4.2.2. Spatial agreement (DSC) analysis

On the automatic delineation of WMH change’s
boundaries in the follow-up year, DEP-UResNet us-
ing Gaussian noise produced the best performances
for the entire WMH with mean DSC of 0.6135 and
average of stable, shrinking, and growing WMH
clusters with mean DSC of 0.3141 (see “DEP-
UResNet+Gaussian (mean)” in Table 4 columns
8-13). Furthermore, it also outperformed the rest
of the models on changing, shrinking, and growing
WMH clusters. Compared to the “vanilla” DEP-
UResNet with No Auxiliary, Wilcoxon tests yielded
p-values of 0.1563, 0.0425, 0.0625, 0.0313, 0.0313,
and 0.0425 for the entire WMH, changing WMH,
stable WMH, shrinking WMH, growing WMH, and
average respectively. These results clearly show the
advantage of performing fully supervised learning
and modulating Gaussian noise as auxiliary input
for predicting the evolution of WMH. It is also
worth to mention that its performance could be im-
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Figure 6: Volumetric agreement analysis (in ml) between ground truth (GT) and predicted volume of WMH with different
types/modalities of auxiliary input (Pred) using Bland-Altman plot which correspond to data presented in Table 4. Solid lines
correspond to “Vol. Bias” while dashed lines correspond to either “Lower LoA” or “Upper LoA” of the same table. “LoA”
stands for limit of agreement.
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Figure 7: Correlation plots between manual WMH volume produced by the expert (GT) and predicted WMH volume by various
DEP models with different types/modalities of auxiliary input (Pred). WMH volume is in the percentage of intracranial volume
(ICV) to remove any potential bias associated with head size.
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Table 4: Results from ablation study of auxiliary input in DEP models. Prediction errorof WMH change, volumetric agreement
of WMH volume, and spatial agreement ofWMH evolution in Dice similarity coefficient (DSC) were calculated to the gold
standard expert-delineated WMH masks (i.e., three-class DEM labels). “Vol.” stands for volumetric, “LoA” stands for limit
of agreement, “gr” and “sh” stand for number of subjects that have increasing and decreasing WMH volume (i.e., 98 and 54
respectively), and “G” and “S” stand for percentage of subjects correctly predicted as having growing and shrinking WMH by
DEP models. Thus, G = pgr/gr and S = psh/sh where “pgr” and “psh” stand for number of subjects predicted as having
growing and shrinking WMH. The best value for each machine learning approaches and evaluation metrics is written in bold.
Furthermore, the best value of all learning approaches for each evaluation metrics is underlined and written in bold.

Supervised
(DEP-UResNet)

Grow
(G)[%]

Shrink
(S) [%]

Avg. [%]
((G+S)/2)

Vol. Bias [ml]
mean(std)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+
Gr+St)/3)

No Auxiliary 70.41 72.22 71.32 1.16(7.31) -13.17 15.48 0.6091 0.2234 0.6332 0.1551 0.1128 0.3004
+WMH 73.47 77.78 75.62 1.59(7.85) -13.80 16.97 0.6005 0.2532 0.6188 0.1688 0.1409 0.3095
+WMH+Stroke 79.59 75.93 77.76 0.81(8.14) -15.14 16.76 0.6080 0.2565 0.6311 0.1688 0.1415 0.3138
+Gaussian (mean) 81.63 59.26 70.45 -0.58(7.99) -16.24 15.09 0.6135 0.2629 0.6230 0.1717 0.1477 0.3141

+Gaussian (best) 81.63 57.41 69.52 -0.79(7.96) -16.40 14.81 0.6162 0.2686 0.6280 0.1787 0.1409 0.3159

Unsupervised
(DEP-GAN & IM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]
((G+S)/2)

Vol. Bias [ml]
mean(std)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+
Gr+St)/3)

No Auxiliary 61.22 72.22 66.72 5.58(15.98) -25.79 36.87 0.3204 0.0946 0.3684 0.0238 0.0445 0.1456
+WMH 75.51 53.70 64.61 -1.18(19.71) -39.80 37.45 0.3249 0.0901 0.3551 0.0580 0.0458 0.1530
+WMH+Stroke 71.43 64.81 68.12 0.92(19.91) -38.11 39.95 0.3291 0.0922 0.3476 0.0590 0.0468 0.1511
+Gaussian (mean) 61.22 70.37 65.80 4.59(14.99) -24.79 33.98 0.3359 0.2252 0.3768 0.0485 0.0361 0.1538
+Gaussian (best) 72.45 64.81 68.83 0.44(15.37) -29.67 30.56 0.3429 0.1053 0.3795 0.0619 0.0633 0.1682

Indirectly Spv.
(DEP-GAN & PM)

Grow
(G) [%]

Shrink
(S) [%]

Avg. [%]
((G+S)/2)

Vol. Bias [ml]
mean(std)

Lower
LoA [ml]

Upper
LoA [ml]

Entire
WMH

Change
(C)

Stable
(St)

Shrink
(Sr)

Grow
(Gr)

Avg. ((Sr+
Gr+St)/3)

No Auxiliary 69.39 75.93 72.66 2.48(8.47) -14.13 19.08 0.6083 0.2246 0.5812 0.1515 0.1105 0.2811
+WMH 68.37 70.37 69.37 1.70(8.24) -14.45 17.84 0.6125 0.2295 0.6006 0.1467 0.1267 0.2913
+WMH+Stroke 66.33 75.93 71.13 2.69(9.14) -15.22 20.60 0.6098 0.2229 0.5943 0.1581 0.1091 0.2872
+Gaussian (mean) 58.16 79.63 68.90 2.91(8.81) -14.36 20.18 0.6107 0.1801 0.6245 0.1216 0.0868 0.2776
+Gaussian (best) 65.31 88.89 77.10 3.63(7.85) -11.75 19.02 0.6155 0.2415 0.6044 0.1834 0.1265 0.3048

Table 5: Volumetric correlation analysis of DEP models
with different types/modalities of auxiliary input in ablation
study of auxiliary input.

DEP-UResNet R2 Trend

No Auxiliary 0.9031 y = 0.9781x− 0.1397
+WMH 0.8893 y = 1.0113x− 0.2435
+WMH+Stroke 0.8939 y = 0.984x− 0.2768
+Gaussian (mean) 0.8855 y = 0.9772x+ 0.2841
+Gaussian (best) 0.8869 y = 0.9821x+ 0.3073

DEP-GAN & IM R2 Trend

No Auxiliary 0.6068 y = 0.4159x+ 2.0128
+WMH 0.3293 y = 0.3539x+ 3.9732
+WMH+Stroke 0.3129 y = 0.3817x+ 3.275
+Gaussian (mean) 0.6461 y = 0.4684x + 1.9418
+Gaussian (best) 0.6037 y = 0.4724x+ 2.9103

DEP-GAN & PM R2 Trend

No Auxiliary 0.8659 y = 0.898x+ 0.0258
+WMH 0.8755 y = 0.9541x− 0.1169
+WMH+Stroke 0.8916 y = 0.9102x− 0.0987
+Gaussian (mean) 0.8541 y = 0.9228x− 0.23
+Gaussian (best) 0.8836 y = 0.8972x− 0.2629

proved if the “best” Gaussian noise is used and eval-
uated (see the “DEP-UResNet+Gaussian (best)” in
Table 4)

Based on Table 4 results, the (indirectly super-
vised) DEP-GAN using PM had close performance
to the (supervised) DEP-UResNet in all performed
analyses, especially in the spatial agreement anal-
ysis (columns 8-13). To give a better visualisa-
tion of the spread of the performances, we plotted
the distributions of DSC scores for all WMH cate-

gories (i.e., entire WMH, changing WMH, shrinking
WMH, growing WMH, and stable WMH) produced
by all DEP models and different types of auxiliary
input using box-plot in Figure 8. Furthermore, we
also conducted Wilcoxon test to evaluate whether
the medians and distributions of DSC scores pro-
duced by the non-supervised DEP-GAN using IM
and PM were significantly different to those pro-
duced by the supervised DEP-UResNet.

From Figure 8, we can see that performances of
DEP-GAN using PM and DEP-UResNet on delin-
eating different WMH clusters did not differ from
each other in term of the distribution of DSC
scores. Based on the result from the Wilcoxon tests,
there is no significant difference between the perfor-
mances of DEP-GAN using PM and DEP-UResNet
in all WMH clusters, especially when the same aux-
iliary input was used, with p-value > 0.17. In con-
trast, the distribution of DSC scores produced by
DEP-GAN using IM and DEP-UResNet are signifi-
cantly different to each other with p-value < 0.0012.

4.2.3. Qualitative (visual) analysis

It is worth to mention first that the growing and
shrinking regions of WMH are considerably smaller
than those unchanged (stable) as depicted in Fig-
ure 10. Furthermore, it is very difficult to dis-
cern the borders between growing and shrinking re-
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(a) Distributions of DSC scores from the (supervised) DEP-UResNet models.

(b) Distributions of DSC scores from the (unsupervised) DEP-GAN using IM models.

(c) Distributions of DSC scores from the (indirectly supervised) DEP-GAN using PM models.

Figure 8: Distributions of DSC scores from all evaluated DEP models in auxiliary input ablation study. These distributions
correspond to the Table 4, columns 8-13.

gions when stroke lesions coalesce with WMH even
though stroke lesions were removed from the anal-
ysis as previously explained. Nevertheless, inaccu-
racies while determining the borders between coa-
lescent WMH and stroke lesions and the small size
of the volume changes in each WMH cluster (Rach-
madi et al., 2018a) might have influenced in the
low DSC values obtained in the regions that expe-
rienced change as seen in Table 4. Furthermore, it
is also worth to note that most regions of WMH
are stable and DEP-UResNet and DEP-GAN using
PM did not have any problem on segmenting these
regions as depicted in Figures 10 and 11.

Based on qualitative (visual) assessment of DEM

produced by DEP-GAN using IM/PM depicted in
Figure 9, auxiliary input improved the quality of
the generated DEMs where they had more correct
details than the ones generated without using aux-
iliary input. However, good details of the gener-
ated DEM from IM/PM did not necessarily trans-
late to good three-class DEM label (i.e., three la-
bels of growing, shrinking, and stable WMH) as
depicted in Figure 11. Some reasons that might
have caused this are; 1) the generated DEM from
IM/PM is result of a regression process from the
baseline IM/PM using DEP-GAN and 2) the three-
class DEM label itself is generated from the resulted
regression, where WMH is defined by having ir-
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Figure 9: Qualitative (visual) assessment of DEM produced by the unsupervised and indirectly supervised DEP models; DEP-
GAN using irregularity map (IM) and DEP-GAN using probability map (PM), with different types/modalities of auxiliary
input. The corresponding T2-FLAIR (input data) can be seen in Figure 11.

Figure 10: Qualitative (visual) assessment of DEM label produced by the supervised DEP model, DEP-UResNet, with different
types/modalities of auxiliary input. The corresponding T2-FLAIR (input data) can be seen in Figure 11.

regularity/probability values greater than or equal
to 0.178 for IM and 0.5 for PM (Rachmadi et al.,
2019b). Note that regression of the whole brain
using IM/PM is harder than direct segmentation
of three regions of WMH (i.e., stable, shrinking,
and growing WMH). Furthermore, small changes
in IM/PM did not necessarily change the state of

voxel from WMH to non-WMH or vice versa. These
are the challenges of performing prediction of WMH
evolution using DEP-GAN and IM/PM instead of
DEP-UResNet.
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Figure 11: Qualitative (visual) assessment of DEM and its corresponding DEM label produced by the unsupervised and indi-
rectly supervised DEP models; DEP-GAN using irregularity map (IM) and DEP-GAN using probability map (PM) respectively,
with different types/modalities of auxiliary input. The corresponding golden standard of DEM label can be seen in Figure 10.

Table 6: Results from the ANCOVA models that investigate the effect of several clinical variables (i.e. stroke subtype, stroke-
related imaging markers and vascular risk factors) in the WMH volume change from baseline to one year after. The first column
at the left hand side refers to the models/methods used to obtain the follow-up WMH volume used in the ANCOVA models
as outcome variable. The rest of the columns show the coefficient estimates B and the significance level given by the p-value
(i.e. B(p)), for each covariate included in the models.

Reference
(binary mask)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

Expert-delineated -0.04(0.65) 0.07(0.25) -0.10(0.48) -0.05(0.66) -0.07(0.42) -0.03(0.46) 0.13(0.15)
Thresholded IM -0.04(0.66) 0.08(0.19) -0.12(0.44) -0.04(0.71) -0.09(0.38) -0.03(0.43) 0.14(0.14)
Thresholded PM -0.04(0.66) 0.08(0.19) -0.12(0.44) -0.04(0.71) -0.09(0.38) -0.03(0.43) 0.14(0.14)

Supervised
(DEP-UResNet)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary -0.12(0.11) 0.10(0.03) -0.06(0.57) 0.03(0.73) -0.08(0.29) -0.04(0.14) 0.30(<0.001)
+WMH -0.10(0.13) 0.11(0.006) 0.04(0.65) 0.01(0.87) -0.05(0.38) -0.04(0.13) 0.20(<0.001)
+WMH+Stroke -0.07(0.29) 0.06(0.14) 0.07(0.48) -0.02(0.75) -0.10(0.15) -0.05(0.10) 0.32(<0.001)
+Gaussian (mean) -0.09(0.26) 0.11(0.04) 0.06(0.61) 0.02(0.81) -0.10(0.21) -0.06(0.08) 0.36(<0.001)

Unsupervised
(DEP-GAN & IM)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary 0.03(0.68) -0.03(0.58) -0.07(0.54) 0.0006(0.99) -0.08(0.33) -0.11(0.001) 0.25(0.001)
+WMH 0.22(0.09) 0.08(0.36) -0.004(0.98) 0.12(0.40) -0.08(0.54) -0.06(0.25) 0.32(0.01)
+WMH+Stroke -0.11(0.45) -0.08(0.40) 0.03(0.88) 0.10(0.53) 0.11(0.47) -0.02(0.77) 0.34(0.02)
+Gaussian (mean) -0.02(0.86) -0.07(0.24) -0.06(0.69) -0.05(0.62) -0.07(0.43) -0.14(0.0004) 0.20(0.03)

Indirectly Spv.
(DEP-GAN & PM)

Stroke
lacunar

BG PVS
scores

Diabetes
(y/n)

Hypertension
(y/n)

Smoker
(y/n)

Index SL
(% in ICV)

Old SL
(% in ICV)

No Auxiliary -0.10(0.24) 0.14(0.009) 0.10(0.45) 0.04(0.67) -0.03(0.70) -0.05(0.18) 0.18(0.03)
+WMH -0.03(0.72) 0.09(0.09) -0.14(0.31) -0.04(0.68) -0.06(0.46) -0.04(0.30) 0.19(0.03)
+WMH+Stroke -0.10(0.28) 0.17(0.006) 0.10(0.50) 0.10(0.36) -0.02(0.81) -0.08(0.05) 0.24(0.01)
+Gaussian (mean) -0.09(0.25) 0.10(0.04) 0.02(0.87) -0.0001(0.99) -0.08(0.27) -0.04(0.17) 0.14(0.05)
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4.2.4. Clinical plausibility analysis

From Table 6, we can see that the use of expert-
delineated binary WMH masks and WMH maps ob-
tained from thresholding IM or PM (see the second
to the fourth rows), all produced the same AN-
COVA model’s results; none of the covariates of
the model had an effect in the 1-year WMH volume
change, yielding almost identical numerical results
in the first two decimal places. Therefore, the use
of LOTS-IM and UResNet, generators of the IM
and PM respectively, for producing WMH maps in
clinical studies of mild to moderate stroke seems
plausible.

As discussed in Section 1, baseline WMH volume
has been recognised the main predictor of WMH
change over time (Chappell et al., 2017; Wardlaw
et al., 2017), although the existence of previous
stroke lesions (SL) and hypertension have been ac-
knowledged as contributed factors. However, from
the results of the ANCOVA models (Table 6), none
of the DEP models that used these (i.e WMH
and/or SL volumes) as auxiliary inputs showed sim-
ilar performance (i.e. in terms of strength and sig-
nificance in the effect of all the covariates in the
WMH change) as the reference WMH maps. The
only DEP model that shows promise in reflecting
the effect of the clinical factors selected as covari-
ates in WMH progression was the DEP-GAN that
used as input the PM of baseline WMH and Gaus-
sian noise (i.e. written in bold and underlined in
the left hand side column of Table 6).

Some factors might have adversely influenced the
performance of these predictive models. First, all
deep-learning schemes require a very large amount
of balanced (e.g. in terms of the appearance, fre-
quency and location of the feature of interest, i.e.
WMH in this case) data, generally not available.
The lack of data available imposed the use of 2D
model configurations, which generated unbalance
in the training: for example, not all axial slices
have the same probability of WMH occurrence, also
WMH are known to be less frequent in tempo-
ral lobes and temporal poles are a common site
of artefacts affecting the IM and PM, error that
might propagate or even be accentuated when these
modalities are used as inputs. Second, the combina-
tion of hypertension, age and the extent, type, lapse
of time since occurrence and location of the stroke
might be influential on the WMH evolution, there-
fore rather than a single value, the incorporation of
a model that combines these factors would be ben-

eficial. However, such model is still to be developed
also due to lack of data available. Third, the tis-
sue properties have not been considered. A model
to reflect the brain tissue properties in combination
with vascular and inflammatory risk factors is still
to be developed. Lastly, the deep-learning models
as we know them, although promising, are repro-
ductive, not creative. The development of more ad-
vanced inference systems is paramount before these
schemes can be used in clinical practice.

4.2.5. Prediction error analysis and discussion

From Table 4 (columns 2-4), we can see that all
DEP models tested in this ablation study could cor-
rectly predict the progression/regression of WMH
volume better than a random guess system (≥
50%). Furthermore, we also can see that DEP mod-
els with auxiliary input, either Gaussian noise or
known risk factors of WMH evolution (i.e., WMH
and SL loads), produced better performances in
most cases and evaluation analyses than the DEP
models without any auxiliary input. These results
show the importance of auxiliary input, especially
Gaussian noise which simulates the non-determi-
nistic nature of WMH evolution. Furthermore, it is
clear now that PM is better for representing the
evolution of WMH than IM when DEP-GAN is
used, especially if ones would like to have good vol-
umetric agreement and correlation, spatial agree-
ment, and clinical plausibility of the WMH evolu-
tion.

5. Conclusion and Future Work

In this study, we proposed a training scheme to
predict the evolution of WMH using deep learn-
ing algorithms called Disease Evolution Predictor
(DEP) model. To the best of our knowledge, this is
the first extensive study on modelling WMH evolu-
tion using deep learning algorithms. Furthermore,
we evaluated different configurations of DEP mod-
els: unsupervised, indirectly supervised, and super-
vised (i.e., DEP-GAN using irregularity map (IM),
DEP-GAN using probability map (PM), and DEP-
UResNet) with different types of auxiliary input
(i.e., Gaussian noise, WMH load, and WMH and
stroke lesions (SL) loads). These configurations
were designed and evaluated to find the best ap-
proach to automatically predict and delineate the
evolution of WMH from a baseline measurement to
a follow-up visit.
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Based on the two ablation analyses done as part
of the present study, DEP-GAN with 2 critics
performed better than WGAN-GP, VA-GAN, and
DEP-GAN using 1 critic. Furthermore, Gaussian
noise successfully improved all DEP models in al-
most all evaluation metrics when used as auxil-
iary input. This shows that there are indeed some
unknown factors that influence the evolution of
WMH. These unknown factors make the problem
of predicting/delineating WMH evolution non-de-
terministic, and Gaussian noise were proposed to
simulate this scenario. The intuition behind this
approach is that Gaussian noise fills in the miss-
ing (unavailable) risks factors or their combination,
which could influence the evolution of WMH. Note
that it is very challenging to collect and compile
all risk factors of WMH evolution in a longitudinal
study.

From our experiments, on average, supervised
DEP-UResNet yielded the best results in almost ev-
ery evaluation metric. However, it is worth to men-
tion that it did not perform well in the clinical plau-
sibility test. The indirectly supervised DEP-GAN
yielded similar average performance to the super-
vised DEP-UResNet’s performance and yielded the
best results out of all schemes in the clinical plau-
sibility test. Moreover, results from DEP-UResNet
and DEP-GAN using PM were not statistically dif-
ferent to each other on delineating the WMH clus-
ters.

If we consider the results, time, and resources
spent in this study, then DEP-GAN using PM
showed the biggest and strongest potential of all
DEP models. Not only did it perform similarly to
the supervised DEP-UResNet but it also did not
need manual WMH labels on two MRI scans for
training (i.e., baseline and follow-up scans). The
PM needed as input for this model can be effi-
ciently produced by any supervised deep/machine
learning model. Moreover, the development of au-
tomatic WMH segmentation for producing better
PM could be done separately and independently
from the development of the DEP model. If a bet-
ter PM model is available in the future, then the
DEP-GAN model can be retrained using the newly
produced PM for better performance. Also, DEP-
GAN using PM could be used for other (neuro-
degenerative) pathologies, as long as a set of PM
from these other pathologies could be produced and
used to (re-)train the DEP-GAN.

There are several shortcomings anticipated from
the results of this study. Firstly, manual WMH la-

bels of two MRI scans (i.e., baseline and follow-up
scans) are necessary for training the DEP-UResNet.
In many scenarios, this is not applicable and effi-
cient in terms of time and resources. Secondly, the
unsupervised DEP-GAN using IM is computation-
ally very demanding as it involves regressing IM
values across the whole brain tissue. This resulted
in low performances of DEP-GAN using IM in al-
most all evaluation metrics. Thirdly, the schemes’
performances depend on the accuracy of the qual-
ity of input. For example, the PM generated in this
study are slightly biased towards overestimating the
WMH in the optical radiation and underestimating
WMH in the frontal lobe. This could be caused
by the absence of correcting the FLAIR images for
b1 magnetic field inhomogeneities. However, a pre-
vious study on small vessel disease images demon-
strated this procedure might affect the results un-
derestimating the subtle white matter abnormali-
ties characteristics of this disease, and recommends
this procedure to be used in T1- and T2-weighted
structural images but not in FLAIR images for
WMH segmentation tasks (Hernández et al., 2016)
Hence, the biggest challenge of using DEP-GAN us-
ing PM is its highly dependency on the quality of
initial PM. Fourthly, volumetric agreement analy-
ses suggest that there are still large differences in
absolute volume and in change estimates produced
by the proposed DEP models. While this study is
intended as a “proof-of-principle” study to advance
the field of white matter - and ultimately brain-
health prediction, it is worth to mention that bet-
ter reliability in the WMH assessment is necessary
so as DEP models can be used in clinical prac-
tice. Furthermore, better understanding of what
DEP models extract to estimate WMH evolution
would be very useful in clinical practice. Lastly,
the limitation of using (Gaussian) random noise in
DEP models is the fact that we do not really know
which set of Gaussian random noise should be used
to generate the best result for each subject. Note
that, in this study, all DEP models that used Gaus-
sian noise as auxiliary input were tested 10 times
to calculate the mean and the “best” set of Gaus-
sian noise which produced the best automatic de-
lineation of WMH evolution overall. In conclusion,
DEP models suffer similar problems and limitations
to any machine learning based medical image anal-
ysis methods.

The DEP models proposed in this study open
up several possible future avenues to further im-
prove their performances. Firstly, multi-channel
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(e.g., PM and T2-FLAIR) input could be used in-
stead of single channel input. In this study, we
only used single channel to draw a fair comparison
between DEP-UResNet which uses T2-FLAIR and
DEP-GAN which uses either IM or PM. Secondly,
3D architecture of DEP-GAN could be employed
when more subjects are accessible in the future. 3D
deep neural networks have been reported to have
better performances than the 2D ones, but they are
more difficult to train (Çiçek et al., 2016; Baum-
gartner et al., 2017). Thirdly, Gaussian noise and
known risk factors (e.g., WMH and SL loads) could
be modulated together instead of modulating them
separately in different models. By modulating them
together, DEP model would be influenced by both
known (available) risk factors and unknown (miss-
ing) factors represented by Gaussian noise. Lastly,
different random noise distribution could be used
instead of Gaussian distribution. Note that each
risk factors of WMH evolution (e.g., WMH load,
age, and blood pressure) could have different data
distribution, not only Gaussian distribution. If a
specific data distribution (i.e., the same or similar
to the real risk factor’s data distribution) could be
used for a specific risk factor, then the real data
could replace the random noise if available in the
testing.
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D. T., Wang, X., Doubal, F., Maniega, S. M., Armitage,
P. A., Wardlaw, J. M., 2016. On the computational assess-
ment of white matter hyperintensity progression: difficul-
ties in method selection and bias field correction perfor-
mance on images with significant white matter pathology.
Neuroradiology 58 (5), 475–485.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002.
Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neu-
roimage 17 (2), 825–841.

Jeong, Y., Rachmadi, M. F., Valdés Hernández, M. D. C.,
Komura, T., 2019. Dilated saliency u-net for white matter
hyperintensities segmentation using irregularity age map.
Frontiers in Aging Neuroscience 11, 150.

Jiaerken, Y., Luo, X., Yu, X., Huang, P., Xu, X., Zhang,
M., 2018. Microstructural and metabolic changes in the
longitudinal progression of white matter hyperintensities.

Kuijf, H. J., Biesbroek, J. M., de Bresser, J., Heinen, R.,
Andermatt, S., Bento, M., Berseth, M., Belyaev, M., Car-
doso, M. J., Casamitjana, A., et al., 2019. Standardized
assessment of automatic segmentation of white matter hy-
perintensities; results of the wmh segmentation challenge.
IEEE transactions on medical imaging.

Li, H., Jiang, G., Zhang, J., Wang, R., Wang, Z., Zheng,
W.-S., Menze, B., 2018. Fully convolutional network en-
sembles for white matter hyperintensities segmentation in
mr images. NeuroImage 183, 650–665.

Luo, X., Jiaerken, Y., Yu, X., Huang, P., Qiu, T., Jia, Y., Li,
K., Xu, X., Shen, Z., Guan, X., Zhou, J., Zhang, M., Adni,
F. T. A. D. N. I., 5 2017. Associations between APOE
genotype and cerebral small-vessel disease: a longitudinal
study. Oncotarget 8 (27), 44477–44489.

Maillard, P., Fletcher, E., Harvey, D., Carmichael, O., Reed,
B., Mungas, D., Decarli, C., 2011. White matter hyperin-
tensity penumbra. Stroke 42 (7), 1917–1922.

Maillard, P., Fletcher, E., Lockhart, S. N., Roach, A. E.,
Reed, B., Mungas, D., Decarli, C., Carmichael, O. T.,
2014. White matter hyperintensities and their penumbra
lie along a continuum of injury in the aging brain. Stroke
45 (6), 1721–1726.

Mı́nguez, B., Rovira, A., Alonso, J., Córdoba, J., 2007. De-
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