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ABSTRACT
The ability to precisely describe and numerically evaluate organismal phenotypes is a prerequisite for addressing 

most questions in evolutionary biology and ecology. The quantification and comparison of behavior, loosely defined 

as an external response to stimuli, is particularly challenging because the myriad axes of variation that exist make 

comparisons, both within and among species, difficult. Such evaluations often boil down to comparisons of time-

budgets (e.g. relative investment in courtship displays) or probabilities (e.g. likelihood of engaging in a class of 

behaviors in a particular context) – which we refer to as behavioral strategies. A focus on variation in behavioral 

strategies underlies most research in evolutionary and ecological studies of behavior. Equally important, however, 

is perhaps the question of ‘how’ animals are actually performing the complex motor sequences that comprise 

behaviors (i.e. behavioral execution). What are the patterns of movement, the relative transition rates, and kinematics 

underlying the behaviors exhibited in particular contexts? Understanding how behavioral execution differs among 

individuals, populations, and species has the potential to provide new insights into the factors shaping variation in 

behavior and the processes shaping behavioral evolution at different scales. Here, we propose a broad framework for 

comparing behavioral execution (RAD-behavior: recombining atomized, discretized behavior) that leverages 

string-matching/bioinformatic tools to understand phenotypic variation in behavioral execution and which holds 

the potential to yield novel insights about the evolutionary ecology of behavior at multiple scales. 
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Computationally intensive, data-rich approaches have facilitated new biological insights at many levels of analysis in 

recent years. However, the ability to leverage vast quantities of data into meaningful answers to longstanding biological 

questions depends on the development and implementation of appropriate analytical toolkits. Here, we propose a 35 

framework for measuring and comparing behavior (RAD-behavior: recombining atomized, discretized behavior) that 

opens the door to bioinformatic analyses of behavior. Many rigorous and computationally efficient tools exist to tackle 

questions about variation in, and the evolution of, genetic sequence information. RAD-behavior facilitates similar 

analyses for behavior, enabling the numeric comparison of behavioral sequences, allowing the comparison of 

behavioral sequences across taxa, enabling efficient searches of large behavioral databases, and providing an important 40 

advance in our attempts to better understand phenotypic variation in behavioral execution. Collectively, this approach 

has broad potential to yield novel insights about the evolutionary ecology of behavior at multiple scales. 

Though several high-throughput behavioral classification techniques have recently been developed 1–7, questions 

remain about how to leverage the resulting datasets generated from such techniques8–10. In this paper, we describe an 45 

analytical pipeline for behavioral analyses to answer questions about behavioral homology, repeatability, innovation, 

and performance by leveraging the varied and flexible toolkit commonly employed by genomic researchers. 

Collectively, we term this analytical and conceptual framework RAD-behavior (Recombining Atomized, Discretized 

behavior). The basic idea of RAD-behavior is simple: break down behavior into subunits (‘atoms’) that are shared across 

individuals and/or species, assign discrete character states for each behavioral atom at every time point, then recombine 50 

these discrete character states to create strings that collectively describe behavioral execution. This approach is 

consistent with, and an extension of, the idea that complex behaviors can be “created from the flexible combination of 

a small set of modules”11, as well as the idea that many behaviors can be described as sequences of physical 

orientations/postures9. The RAD-behavior framework embraces the long history of homology thinking in behavioral 

research12–14, has its roots in classical ethology15, and builds on a number of creative  approaches developed for the 55 

description and analysis of movement16,17. 

Here, we describe the RAD-behavior framework in sufficient detail to enable interested researchers to incorporate this 

framework into their particular study systems and research programs. Specifically, we discuss how, with a rigorous 

behavioral atomization and discretization pipeline, bioinformatic tools like BLAST (Basic Local Alignment Search Tool)18, 60 

MEME Suite (Multiple EM for Motif Elicitation)19, and MAFFT (Multiple Alignment using Fast Fourier Transforms)20 can 

be used to find putatively-homologous behavioral sequences (within and across individuals, and even across species), 

find and rank repetitive behavioral elements, identify behavioral modules shared across species, and pinpoint 

evolutionary innovations among divergent taxa. The quantitative measures of behavior that this analytical pipeline offer 

have the potential to yield new insights into ecological and evolutionary drivers of behavioral diversification, and we 65 

illustrate some of these possibilities with exemplar demonstrations from a comparative dataset of courtship behaviors 

from the birds-of-paradise. However, we emphasize that RAD-behavior is neither a tracking tool nor a computational 

program. Rather, RAD-behavior is a conceptual framework that can incorporate diverse data types (e.g. from manually 

scored videos or automated body-region tracking of targets) to facilitate the creation of detailed strings of behavioral 

data that can be analyzed using powerful computational and bioinformatic tools to answer new questions, old and 70 

previously unanswerable questions, and questions that have yet to be asked about behavioral variation across scales. 
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CHALLENGES OF COMPARING BEHAVIOR 

75 

“…the comparison of many ethograms is a nontrivial statistics problem…”21 

Quantitative comparisons of behaviors are challenging for many reasons10.  Key among these challenges is the difficulty 

in scoring sets of behaviors that may share few obvious similarities. What behavioral elements should be scored and 

compared? The challenge of “identifying the most meaningful and useful dimensions and descriptive units of behavior 80 

is…the problem”22 of comparative behavioral research. Items that are highly divergent are difficult to compare, like the 

clichéd “apples vs. oranges” comparison used to illustrate the non-comparability of two or more objects. How does 

one compare the greenness of an apple to the orangeness of an orange? Do we compare the number of carpels? Do 

we compare the symmetry? The difficulty of making meaningful comparisons across things that are really quite different 

is in no way unique to the evolutionary study of behavior, yet this difficult challenge has hampered our understanding 85 

of behavioral evolution. Molecular geneticists and population genomicists get around part of this issue by drilling-down 

as deeply as biologically meaningful – getting at the raw genetic sequence variation among individuals, populations, 

and species. Their answer can be used as a guide – remove higher-order complexity until the underlying units facilitating 

differentiation are comparable. Said another way, evolutionary biologists interested in comparative studies of animal 

behavior can break down complex behaviors into sub-units that are shared across individuals and species. Going back 90 

to our fruit analogy, apples and oranges are almost incomparable if we simply take a giant bite of each (peel included), 

but if we identify the proteins and sugars in each, we may be able to make quantitative comparisons that facilitate new 

insights into the key factors that differentiate these classically incomparable fruits. 

A second significant challenge in the study of behavior lies in the temporal alignment, or misalignment, of the behaviors 95 

being performed. Unlike the genetic sequence from a given chromosome which has a ‘start’ and ‘end’, living animals 

are always behaving. How one defines the onset and cessation of behavioral sequences to compare among individuals 

and species is therefore an important and largely unresolved question. Additionally, what is the relative importance of 

the specific timing of a particular behavior? Does timing matter more, or less, than the order in which the overall 

behavioral sequences progresses? How many steps in a sequence are worth considering when analyzing behavioral 100 

patterns23? These are longstanding challenges in the scientific study of behavior that have been addressed in myriad 

and creative ways by scientists from many disciplines, frequently in ways unique to specific research aims and questions. 

Yet these challenges remain largely unsolved at broad scales and novel conceptual approaches are required to leverage 

the rapidly developing technological capabilities available to behaviorists10. The simplicity of RAD-behavior (breaking 

down complex behaviors to their core ‘atoms’ (Box 1), measuring and discretizing these subunits, and recombining 105 

these character states into a single string) coupled with its integrability with new technologies (e.g. machine-learning 

video tracking) make it well-suited as a tool for addressing longstanding questions in behavior. 
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WHAT CONSTITUTES A USEFUL BEHAVIORAL ATOM? 110 

“When considering anatomy, we use the notion of homology across taxa to substantiate the universality of particular 

forms. A future behavioral science might complete Lorenz's vision of establishing homology in ethology.”8 

When defining discrete behavioral subunits for use in comparative analyses, there are several important considerations. 115 

First, the complete set of behavioral subunits must be combinatorial in such a way that the combined use and scoring 

of subunits must enable comprehensive scoring and categorization of every behavior exhibited within the set of 

contexts being analyzed, across species. Second, subunits should be defined broadly enough that individual behavioral 

subunits should be shared across the individuals, populations, and/or species under study. If behavioral subunits are 

exclusive to single species, their inclusion in the overall, comprehensive ethogram should be well-justified. Third, when 120 

generating the composite list and corresponding definitions for a comprehensive, multi-species ethogram composed 

of behavioral subunits, the question of whether the subunits need be homologous should be considered carefully. On 

one hand, behavioral sequences generated using a comprehensive ethogram containing only homologous behavioral 

subunits will have the highest degree of conceptual overlap with genomic sequences, better facilitating broad, 

evolutionarily-influenced interpretations about evolutionary trajectories, inflection points, and behavioral modules. On 125 

the other hand, researchers may have good reason to classify certain behaviors in the same way, even if they are 

produced via non-homologous actions. For example, investigating the evolution of courtship behavior in birds-of-

paradise from the perspective of females24, we might argue that shape-shifting (i.e. when individuals assume a non-

bird-like shape through feather accentuation or unusual body positioning in space) is an important, relevant behavioral 

category that is not completely captured with additional behavioral subunits (e.g. ornamental feather accentuation). 130 

This decision should depend on the goal of the research, where such an approach would not make much sense if the 

goal was to understand the neural circuitry underlying the expression of particular behavior (given that shape-shifting 

might arise via the use of different muscles in different species) but might be justifiable when exploring the evolutionary 

underpinnings of behavioral complexity influencing female choice.  

135 

How do behavioral subunits differ within a larger ontology of behavior25? Is it reasonable to assign equal weight to a 

behavioral state describing the erection of a single feather and one describing the movement status of the whole 

organism? These behavioral atoms clearly differ in the amount of coordination and the number of muscle groups they 

involve. Does it make sense to restrict behavioral subunits to those that involve only equal levels of muscle engagement 

and coordination? Arguably, it is too early to say much about how, when, and whether different behavioral subunits 140 

should, and should not be assigned the same salience within the RAD-behavior framework. Only time and data will tell, 

as tests of evolutionary patterns of behavioral sequences implementing this framework are uniquely suited to evaluate 

how and whether macroscale patterns of evolutionary rates differ among behavioral subunits with different positions 

within a larger behavioral ontology hierarchy. Put another way, the RAD-behavior framework opens up novel lines of 

inquiry for the investigation of the processes governing behavioral evolution. One could imagine that, with sufficient 145 

justification, a weighting scheme could be applied such that particular behavioral atoms have higher weights (i.e. are 

represented by longer character strings within the composite string describing an organism’s instantaneous behavioral 

state) than others based on simulation studies and comparisons of evolutionary rates (e.g. using recently developed 

methodologies26). The flexibility of the overarching RAD-behavior analytical framework makes it well-suited to these 

case-by-case designations that will depend on the questions being asked by researchers. 150 

155 
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RECOMBINING ATOMIZED, DISCRETIZED BEHAVIOR(RAD-BEHAVIOR): AN OVERVIEW 

Collecting behavioral recordings 

As with many approaches for the fine-scale quantification of behavior, the RAD-behavioral approach typically relies 160 

upon video recordings of animals in contexts of interest (Figure 1a). For high-throughput analyses, individuals could be 

filmed simultaneously with multiple, high-definition video cameras that have been calibrated to facilitate 3-dimensional 

measurements of points within the frame of the cameras27. In certain circumstances, such an approach may not be 

necessary or possible, and video-recordings of subjects from a single vantage point can still be used for RAD-behavior 

analyses. At present, these single-viewpoint videos often, but not always23,28, require labor-intensive manual scoring of 165 

behaviors. The videos capturing behavioral sequences provide the basis for the subsequent steps of the RAD-behavior 

pipeline. 

Atomization 

Following video capture of the behavioral sequence of interest, researchers must decide on a set of behavioral subunits, 170 

or atoms (Box 1), that collectively enable the comprehensive description of all behavioral states of all individuals in the 

study. The atomized ethogram must include behavioral subunits that are shared across many (if not all) individuals in 

the study group (including across species, for comparative studies) and these subunits should enable combinatorial 

pluripotency – the ability to collectively and completely describe any behavior of any organism in the study. Thus, at 

every time interval, a behavioral state can be determined that is the composite of all ‘active’ behavioral atoms at that 175 

instant. In cases where rigorous human quantification of behavior is the appropriate approach, behavioral atoms should 

arguably be based on movement patterns of body parts shared by all individuals under study. Alternatively, if the 

behaviors in question are used as signals, behavioral atoms that are arguably perceived (rather than produced) in the 

same way might constitute more informative behavioral subunits24. In cases where users desire a high-throughput 

pipeline for generating composite behavioral strings, automated tracking of body parts over space and time can be 180 

used to provide continuous measures of behavioral atoms. Specifically, focal body regions can be thought of as a 

‘behavioral atoms’ that are tracked through space and time, and these temporally-specific positional data can be used 

to generate frame-by-frame measures of absolute (Figure 2a) and relative (Figure 2b) geometic orientation data. 

Currently, there are at least two readily implementable pipelines for such tracking that do not rely on the use of attached 

markers, both incorporating deep learning approaches to facilitate body-region identification and tracking29,30. As new 185 

tracking techniques and methods are developed, they can be incorporated into the RAD-behavior framework – all that 

RAD-behavior requires is information on the spatial arrangement of body parts over time.  

Discretization 

Once ‘behavioral atoms’ are measured (i.e. once pre-determined body-regions are tracked through space and time, 190 

and geometric orientation information is obtained from them), a discretization step is implemented. Discretization is 

achieved by assigning threshold categories for the originally continuous numerical data describing the geometric 

orientation of each body region/behavioral atom (Figure 2). Thresholds should be optimized in a context-specific 

manner to determine optimal granularity; however, thresholds need to be identical for each behavioral sequence in a 

given dataset in order to facilitate comparisons between behavioral sequences. For example, when measuring the 195 

geometric configuration of body-regions, a 10˚ threshold may be used which effectively bins behavioral atoms into 10˚ 

units, each of which can then be classified as ‘on’ or ‘off’ at a given instant (Figure 1d). These thresholds turn the 

continuous measurements of the ‘behavioral atoms’ (Figure 1b) into the discrete units (Figure 1c) required for composite 

string creation (Figure 1d). As a result of the measurement of behavioral atoms and the discretization thresholds chosen 

by the user, the instantaneous body configuration (a comprehensive description of how the body is configured at a 200 

given moment; Box 1) of the focal individual can be encapsulated as a string of “off” and “on” values which correspond 

to, and provide information about, how a body is arranged in space at that instant (Figure 1d).  

205 
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Recombining discretized behavioral data into sequence data 

It follows that if an individual’s instantaneous body configuration can be determined and encapsulated in the form of a 

string of “off” and “on” values (where each position in a sequence has only one of these ‘states’), then a series of 

instantaneous body configurations will necessarily describe patterns of movement over time – that is, behavior (Figure 

1e). Specifically, strings detailing instantaneous body configurations can be arranged sequentially, thus creating a new 210 

composite string that captures information about how an individual’s body moves over time (Figure 1e). 

After generating high-resolution, discretized behavioral strings (Figure 1d) for each time point, the data need to be 

converted into a sequence that can be compared across individuals, populations, and species (Figure 1e). One approach 

to facilitate this transformation relies on using a behavior mapping key (Figure 3a) to generate a large behavior-by-215 

time matrix where each behavioral atom is assigned a specific location (i.e. column) within the matrix, and rows 

represent discrete time-intervals (Figure 3b,c). To ensure uniformity of behavioral subunit position across a given study, 

a behavioral subunit-position mapping key (Figure 3a) links each behavioral subunit to a specific location in the 

sequences to be generated, facilitating all subsequent comparisons. Once this mapping is completed, it cannot be 

changed unless all behavioral sequences are re-converted to RAD-behavior strings using the new mapping scheme. 220 

Depending on the sequence matching tools and alignment approaches used, the connection between the specific 

behavioral subunit and its string position can be i) randomized (in cases where string matching algorithms are focused 

on overall sequence similarity irrespective of consecutive chains of matches) or ii) ordered by body region (if string 

searching algorithms reward ‘bonuses’ for consecutive matches).  

225 

After generating a behavior mapping key, the N x M behavior-by-time matrix is created (Figure 3b), where the N rows 

correspond to the number of measurements obtained, ordered sequentially, and M columns correspond to the number 

of behavioral subunits scored plus 2. In practice, the N rows frequently correspond to the number of video frames 

analyzed for the given behavioral sequence. The behavior-position key will dictate which columns of the matrix 

correspond to which behavioral subunit. Additionally, a leading and trailing column are added (hence M = number of 230 

subunits scored + 2). The leading column will be assigned a code that is invariant across rows, as will the trailing column 

(though its code will be different from the leading column). These columns and the ‘start’ and ‘stop’ codes they contain 

are integral for aligning behavioral strings in a way that facilitates comparisons only between/among ‘like’ behavioral 

atom categories. 

235 

Following its creation, the behavior-time matrix is first populated by assigning 0s for every instance where a particular 

behavioral subunit is inactive/off and 1s for every instance when the behavioral subunit is active/on. Next, these 1s and 

0s are converted into characters (or character strings) depending on the string-matching approaches to be employed. 

In our bird-of-paradise example (detailed below), we used behavioral sequences with a relatively limited number (31) 

of discrete behavioral sub-units. We substituted “0” and “1” values for each behavioral subunit with a randomly chosen, 240 

unique, triplicate nucleotide code comprised of some combination of As, Ts, Gs, and Cs. For each discrete behavioral 

subunit, the triplicate nucleotide code that represented the ‘on’ behavioral state was the ‘genetic complement’ of the 

‘off’ behavioral state. For example, if ‘body-position-moving in space’ was active, this behavioral subunit was given the 

code “TTC”, whereas if this behavioral subunit was inactive the slot corresponding to this behavioral subunit was given 

the code “AAG”. In instances where more than 31 discrete behavioral states are used, as will commonly be the case for 245 

behavioral sequences analyzed with body-tracking tools, there are numerous alternative approaches. 

When more subunits are evaluated, users can generate larger, unique sequences for each behavioral subunit state. For 

example, still using only A, T, G, and C, we can generate 65,536 unique sequences of 8 characters (where the first 4 

characters of each sequence can be used to signify ‘on’ states, and the last 4 characters of each sequence can be used 250 

to signify ‘off’ states). Alternatively, one can generate unique character states using the protein alphabet (C, D, E, F, G, 

H, I, K, L, M, N, P, Q, R, S, T, V, W). For example, one can generate 18,564 unique 6 characters strings using this limited 

protein alphabet, again with the first 3 characters in each string corresponding to ‘on’ states, and the last 3 characters 

corresponding to ‘off’ states. Simply put, there are numerous ways to generate unique codes corresponding to many 
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discrete behavioral subunits, which can then facilitate an array of bioinformatic and string-matching techniques using 255 

existing -omic toolkits. 

Regardless of the specific character or character-string used to represent each behavioral subunit’s status (on/off), the 

last step of the RAD-behavior approach is append each row of the behavior-transition matrix, end to end, to create a 

single string describing the sequence of movements employed during the N time-points incorporated into the 260 

behavior-time matrix. 
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BIOINFORMATIC ANALYSES OF COMPOSITE BEHAVIORAL SEQUENCES 

265 

“…many statistical techniques developed for genomic sequence analysis should be directly applicable [to the study of 

behavior]” 21 

Following behavioral sequence generation using the RAD-behavior framework, behavioral sequences can be 

numerically and quantitatively compared using string-searching and string-matching algorithms of a wide variety. To 270 

date, we have leveraged the existing computational expertise and toolkits commonly employed in the field of genomics. 

Specifically, by converting position-specific character states (i.e. “off” or “on”) to pseudo-genetic codes (i.e. randomly 

chosen nucleotide or protein sequences), we can search and compare the numerical similarity of sequences using the 

widely-used tool BLAST (Basic Local Alignment Search Tool). Though default settings for this program make 

assumptions about likelihoods and penalties of matches for different nucleotide pairs that are undoubtedly 275 

inappropriate for discretized behavioral subunits, future work collaborating with BLAST tool developers (or other 

computational tool developers) to eliminate the DNA-specific assumptions and calculation steps would alleviate these 

particular concerns. Regardless of the specific form that such future developments take, even BLAST in its current form 

coupled with behavioral strings generated in the RAD-behavior framework works exceedingly well at finding tight 

behavioral matches (i.e. sequences in which individuals are performing the same behaviors in sequence) and providing 280 

a numerical evaluation of such matches (Supplementary Video 1).  

One genomic toolkit with greater flexibility, including the ability for users to define their own custom ‘alphabet’ of 

character states, as well the ability to implement a customized scoring matrix where users define scoring regimes is 

called MAFFT (Multiple Alignment using Fast Fourier Transforms)20. Within the RAD-behavior framework, MAFFT 285 

enables multiple behavioral sequences to be aligned and, importantly, allows for ‘insertions’ and ‘deletions’ (indels; with 

penalties for such discontinuities) that enables practitioners to identify “regions” of shared behavioral execution (i.e. 

which movement sequences are shared across individuals/contexts/etc) as well as “regions” that are unique. This 

approach has recently been used in an ground-breaking study examining the evolution of acoustic sequences in 

crickets26, and future investigations incorporating sequence-based analyses into phylogenetic comparative frameworks 290 

are an exciting development in the field of evolutionary biology.  

In the context of behavioral strings generated via the RAD-behavior framework, multiple sequence alignment enables 

users to identify shared sequences of movements and, importantly, also provides the ability to highlight/identify small-

scale differences in body-region-specific character states in the context of a larger sequence of movements (Figure 4). 295 

For example, MAFFT might facilitate alignment and comparison of two different individuals performing a courtship 

display, even if the particular cadence and tempo of the dance is different (partially via use of the insertion-deletion 

framework). For each shared region aligned using this framework, a user could identify which (if any) discretized 

behavioral states differ between the two ‘dancers’, allowing comparison of the broad-scale behavioral sequence (e.g. 

tail bending then extension) and fine-scale differences (e.g. ankle-bend-character X and Y shared, but ankle-bend-300 

character Z differs). 

Currently, RAD-behavior sequence comparisons have been conducted using bioinformatic tools designed to compare 

nucleotide and protein sequences (hence the pseudo-genetic, or pseudo-protein codes used to represent distinct 

behavioral subunit states, Figure 3). However, future applications of RAD-behavior would be best-suited by eliminating 305 

the genomic- and proteomic-informed assumptions in these analytical toolkits and have an extended ‘alphabet’ for 

coding more discretized behavioral subunits.  
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ALTERNATIVE IMPLEMENTATIONS 310 

In the form described above, RAD-behavior facilitates a single string for each behavioral sequence (e.g. courtship dance, 

lever pull, performance of a clinical task, etc.) describing consecutive instantaneous configurations of the entire (i.e. all 

tracked body regions) organism (e.g. how each tracked body region is positioned [e.g. where it is located, its relative 

orientation, its absolute orientation]) to facilitate comprehensive analyses of whole-body behavioral 315 

execution/movement.  

A complementary, powerful, and case-specific usage of RAD-behavior entails the creation of multiple body-region-

specific strings, collected simultaneously and analyzed in parallel (Figure 5). Rather than a single string describing 

consecutive instantaneous configurations of the entire body, this alternative approach would focus on the generation 320 

of execution strings for each user-defined body region. In this implementation, quantitative analyses and comparisons 

of behaviors would still be conducted on temporally-aligned behavioral sequences using string-matching/bioinformatic 

analyses, though output of these comparisons would necessarily be specific to the body-regions defined by the user. 

For example, body-region specific reference sequences (Box 1) could be used as a reference for comparison following 

the performance of a given behavioral sequence (Figure 5). In this example, multiple behavioral sequences have already 325 

been analyzed and converted to RAD-behavior execution strings, facilitating the creation of specific consensus 

sequences (Box 1) for the left wrist, left elbow, and left shoulder. Following performance of a new behavioral sequence 

(e.g. throwing a ball, opening a package, climbing a ladder), the new strings created for each body region can then 

aligned and compared to the reference sequence (in this case, a consensus sequence) facilitating rapid visualization of 

time-specific similarity and differences between the current execution and the consensus sequence.  330 

Importantly, the comprehensive and body region-specific approaches are not mutually exclusive, and the same 

underlying data (e.g. body-region locations in space, across time) can be used to generate both sequence sets. Users 

might first employ RAD-behavior to generate comprehensive strings to identify temporal periods of particular interest 

with respect to the overall behavioral sequence to be analyzed, and then employ the body-region-specific string 335 

generation and comparison for detailed analyses of each body part independently. 

Rather than focusing on individual body-parts as the key behavioral subunits/atoms, RAD-behavior might also be used 

to capture and compare the behavioral execution of multiple individuals simultaneously (e.g. dyads of fighting 

chameleons, cooperatively hunting dolphins, courting males and evaluative females). If, rather than each body-part of 340 

the focal organism being atomized and discretized, the behavior of each team member was atomized and discretized, 

then combined with the discretized behavioral states of all team members, one could rapidly generate composite RAD-

behavior strings detailing the movements and behaviors of the collective group across time.  

345 
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CREATING RAPIDLY SEARCHABLE BEHAVIORAL EXECUTION DATABASES UNDERLIES THE POWER OF RAD-BEHAVIOR 

A key feature of the RAD-behavior approach to the study of behavior comes from the ability to decompose complex 

sequences of movements into character strings representing complex behavioral sequences which, in turn, facilitates 

the ability to generate (and continually add to) reference databases of behaviors that can be rapidly and efficiently 350 

searched. Behavioral databases thus enable any behavior sequence (or set of sequences) to be compared and 

quantitatively evaluated. This key feature is an integral component and output of the RAD-behavior pipeline. In each 

of the key applications described below, a reference database of behavioral sequences allows the comparisons of 

interest to be made. 

355 

Four broad areas of RAD-behavior application across diverse fields of application are: 

(A) Identifying general patterns and/or clusters of execution types (linked to particular outcomes or clustered

based on execution parameters).

(B) Comparing focal execution sequences to target reference sequences/databases to quantitatively assess360 

similarity and identify where (e.g. which body regions are performing differently) and when (e.g. at what stage

in a behavioral sequence, are behavioral subunits performed for different durations relative to optimal

sequences) differences exist.

(C) Comparing focal execution to reference databases to identify behavioral correlates (finding similarities to

others based on execution of behaviors). 365 

(D) Monitoring changes in the execution of movements or sequences over time.

A) Identification of optima or types

For many organisms, there are different ways to execute behavior sequences while still achieving individually-specific

performance optima. As a human example, the world’s fastest sprinter, Usain Bolt, has a distinctive gait that would not370 

necessarily yield ideal outcomes for another sprinter with a different body type. RAD-behavior enables execution strings

to be analyzed with a series of tools that focus on patterns within long strings, similar to the approaches used in whole

genome principal component analysis31 (PCA; Box 1). Applied to behavioral execution strings obtained with RAD-

behavior, this approach would allow users to identify clusters in execution types by decomposing the high-dimensional

ethomic (Box 1) data into a limited number of dimensions. For example, a user interested in geographic patterns of375 

behavioral execution might first begin by conducting principal components analysis on a database of RAD-behavior

strings. This approach would allow the user to identify which individuals/sequences/populations cluster together based

on the similarity of their overall RAD-behavior derived execution strings.

B) Comparison to optima380 

The factors that make a given behavioral sequence ‘optimal’ depends on the individual and species, but optimal

sequences are frequently associated with some outcome connected to fitness. By connecting other data sources with

RAD-behavior execution strings, we can identify ‘key’ or ‘optimal’ execution profiles (e.g. the courtship display with the

greatest reproductive success in a given season), then make comparisons between the execution of non-optimal

sequences and our ‘optimal’ reference sequence to see the specific ways that variation in behavioral execution might385 

map onto traits like female choice and reproductive success. In addition to cases where we can identify a single

reference sequence based on some criteria, we can also use multiple sequence alignment to generate consensus

sequences (e.g. for individuals of a given age, sex, population, etc.) and evaluate individual differences from the

consensus sequence on a case-by-case basis.

390 

C) Reference comparisons and database matches

Because the RAD-behavior approach facilitates the creation of reference databases of behavioral execution strings that

can be rapidly and efficiently searched, almost any behavior (or set of behaviors) can be compared and quantitatively

evaluated rapidly and efficiently. When sequences in a given database are paired with additional information about the
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individuals performing the behaviors (e.g. age, health-status, reproductive success, etc.), RAD-behavior string searching 395 

approaches can allow users to identify useful correlates associated with execution patterns. 

D) Longitudinal comparisons

The ability to quantitatively analyze the similarities of complex behaviors makes RAD-behavior a powerful tool to

analyze changes in individual behavior over time. With RAD-behavior, numerically evaluating behavioral execution is400 

now possible, giving the means for users to generate quantitative metrics of behavioral consistency, independent of

outcome. Additionally, the bioinformatic tools that can be incorporated into a RAD-behavior analytic pipeline means

users can also identify key regions where behavioral execution differs over time, thus providing new, specific, detailed

insights into improvements or declines in behavioral execution (as a consequence of age, hormonal profiles, learning,

etc.).405 
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EXAMPLE DEMONSTRATION USING BIRD-OF-PARADISE COURTSHIP BEHAVIOR 

Using a publicly-available database of digital media specimens (in this case, videos) located in the Macaulay Library of 

the Cornell Lab of Ornithology, we analyzed the courtship behavior of 31 species of birds-of-paradise from 961 video 410 

clips. Each of 31 behavioral atoms was scored manually from these clips, and the total duration of videos scored was 

47,707 seconds (~13.2 hours). After repeated evaluations of each clip to facilitate fine-scale accuracy and precision in 

our behavioral measures, we assign behavioral states at 0.1 second intervals. Interested readers are referred to our 

original publication for additional details24 about the behavioral collection approach we employed. 

415 

Using the RAD-behavior approach, we then converted the string of consecutive, composite behavioral states obtained 

from each clip into a character string substituting a pseudo-genetic, triplicate nucleotide code for each behavioral atom 

at each time point (Supplementary Table 1). As a note, when using a pre-defined ethogram containing behavioral 

atoms and scoring videos manually, as we did here with the birds-of-paradise, the discretization step is implemented 

via the behavioral scoring of the researcher. That is, the individual who is scoring the behavior uses the description in 420 

the fine-scale, atomized ethogram to make decisions about which behaviors are ‘on’ at a given time point (with those 

not meeting the criteria being assigned, by default, an ‘off’ status), thus discretizing their status at every time point. 

Following RAD-behavior string creation, we saved the composite strings in a FASTA file (with species, clip, and 

individual-specific identifiers included for each substring) that contained approximately 46.6 million pseudo-nucleotides, 

at a file size of approximately 45 megabytes. 425 

To illustrate the power (and limitations) of the RAD-behavior approach coupled with bioinformatic approaches, we then 

chose a 10 second sequence of courtship behavior from a male superb bird-of-paradise (Lophorina superba), isolated 

the RAD-behavior sequence representing the atomized, discretized, and recombined representation of the behavioral 

sequence, and then BLASTed this sequence against our composite bird-of-paradise behavioral database. Following this 430 

BLAST search, we pulled the ‘best’ (i.e. highest bit-score) matches from two additional sequences containing superb 

bird-of-paradise courtship, and one additional match from another temporal region (i.e. non-overlapping with the 

query sequence) of the original recording. Interestingly, the bit-scores of sequence matching obtained in this pipeline 

were generally very high (Supplementary Table 2, Supplementary Video 1), likely reflecting inflated similarity scores as 

a consequence of inferred ‘alignment’ from sequences of both active and inactive behavioral atoms across 435 

clips/individuals. That is, much of the inferred concordance between any two sequences is as likely to come from shared 

‘off’ states as shared ‘on’ states. 

In agreement with the idea that the RAD-behavior approach facilitates the capture, comparison, and evaluation of 

behavioral sequences, the best match identified from each of three clips exhibits are large degree of overlap in many 440 

of the broad categories of behavior typically used when scoring and evaluating behavior. Specifically, all three ‘matched’ 

clips show the same or different male exhibiting the primary elements of courtship behavior exhibited for this species. 

Additionally, RAD-behavior separates the degree of concordance (and discordance) between the reference/query 

sequence, and the matched search strings---the top clip (blue background) demonstrates the best match in terms of 

overall timing and sequence similarity to the reference clip, resulting in the highest bit-score (and the lowest cumulative 445 

number of difference between it and the reference, Supplementary Figure 1, lower plot in bottom-left of Supplementary 

Video 1). In contrast, the third clip (bottom right, orange frame in Supplementary Video 1) shows a lower bit-score, 

likely reflective of the different timing of the transformation in erecting the ornamental plumage cape used during the 

main component of the courtship behavior of this species. 

450 

We focus on the exemplar results from BLAST in this publication for two reasons. First, the validity and power of the 

RAD-behavior conceptual framework can be evaluated on an intuitive level when researchers have the ability to visually 

evaluate and compare side-by-side those sequences determined by RAD-behavior and string-matching to be highly 

similar. If RAD-behavior identified sequences as being highly concordant, yet the organisms in those sequences did not 

look like they were performing similar behaviors when watched side-by-side, we would (rightly) be highly skeptical of 455 
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proceeding with that particular framework. However, we feel that the demonstration illustrated in Supplementary Video 

1, as well as in other comparisons we have conducted but do not share here, provide strong evidence that RAD-

behavior is likely to be a valuable tool aiding in the quantitative study of behavioral execution. Second, we focus on 

results from a RAD-behavior implementation of string-searching and matching (in the form of BLAST), because all other 

bioinformatic tools/approaches that we have discussed as potential future tools now useable for the study of behavior 460 

(motif identification, multiple-sequence alignment, etc.) depend on the confidence we have regarding what a string 

‘match’ actually means from the perspective of behavior. Further demonstrations and implementations of RAD-behavior 

research on behavioral execution will test and refine these additional approaches in greater detail. 

465 
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CONCLUDING REMARKS 

Within the broad field devoted to behavioral tracking, identification, and comparison, RAD-behavior is unique because 

it generates a single string for any behavioral sequence, complex or simple. The reduction of behavior to a single string 

and the creation of efficiently searchable behavioral databases facilitates an array of computational comparisons of 470 

behavior that have not been possible before. Importantly, the decomposition of complex behavioral execution 

sequences into string format via RAD-behavior does not entail (much) loss of detailed information, as is commonly the 

case when complex behaviors are assigned to broader, human- or computer-defined categories, such as “running” and 

“eating”. Quantitative behavioral comparisons of behavioral strings obtained using RAD-behavior are also readily 

interpretable, in contrast to some methods that rely on dimensionality reduction. Specifically, RAD-behavior generates 475 

behavioral strings that can be quantitatively compared (analogous to the bit-scores generated when comparing 

genomic sequences), allowing practitioners to identify i) which behavioral sequences are most similar to one another, 

ii) exactly how similar sequences are (not just a ranking, but a numeric score of similarity), and iii) to readily identify,

following sequence alignment, those movements/executions that are different/shared between any set of behavioral

sequences (in contrast to machine-learning-based approaches which can ‘classify’ behaviors and facilitate assignment,480 

but which do not enable practitioners to identify key differences between sequences). Further refinements,

improvements, and changes to the RAD-behavior framework we have laid out here are inevitable and exceedingly

welcome. Given the vast community of researchers interested in behavioral execution, there are undoubtedly a

multitude of creative, innovative approaches to leverage the behavioral strings created by RAD-behavior to answer

longstanding questions about behavior, as well as diverse perspectives on the challenge of identifying relevant485 

behavioral atoms and weights. Future developments and implementations of RAD-behavior include, but are not limited

to, fine-scale studies of within-individual variation in behavioral execution depending on context and learning,

population-level studies focused on the role of drift and/or culture on variability in execution of shared behaviors, and

interspecific comparisons of behaviors focused on homologous behavioral atoms and incorporating cutting-edge

phylogenetic comparative analyses of sequence data26. It is our hope that RAD-behavior can serve as the conceptual490 

framework uniting studies focused in their attempts to uncover and compare variation in behavioral evolution across

scales.

495 

500 
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 560 

Figure 1. Conceptual overview of RAD-behavior analytical pipeline. Behavioral execution can be conceptualized as a 

series of sequential states (a), where the instantaneous body configuration can be measured at each time point (e.g. 

t1-t7). The instantaneous configuration of body parts, and/or the instantaneous behavioral state can be broken down 

into smaller subunits (atoms), which collectively describe the organism’s state at each instant (b). Each behavioral atom 

can be broken down into smaller, discrete states (c) that can be evaluated at every time point. The collective behavioral 565 

states and/or body configuration of the organism can thus be described as a character string at every analyzed time 

point (d). Following the generation of a character string describing the instantaneous body configuration/behavioral 

state of the animal (d), consecutive instances of these strings can be combined (e) to generate a composite string that 

collectively describes the sequences of movements and/or behavioral states of the organism. Lastly, these strings can 

be evaluated with a suite of pre-existing bioinformatic tools, or with custom string matching/searching algorithms (f). 570 
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Figure 2. Representation of (a) absolute and (b) relative geometric orientation data which can be combined 

to generate an ethomic sequence using RAD-behavior.  

575 
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Figure 3. Visualization of (a) behavior-position mapping key and (b) Behavior x Time (BT) matrices used for 

sequence creation. The Behavior-Position mapping key (a) links each behavioral atom to a specific location 580 

within the sequences to be generated, facilitating all subsequent comparisons. The BT matrices (b,c) have N 

rows, corresponding to the number of measurements obtained across time, and M columns corresponding 

to the number of behavioral atoms scored plus 2 (for ‘start’ and ‘stop’ codes). The behavior-position key will 

dictate the which columns in the BT matrcies correspond to which behavioral subunit. After each discretized 

behavioral subunit is scored as 0 (‘OFF’) or 1 (‘ON’) at each of N timepoints (b), these states can be converted 585 

to character strings that are unique to the behavioral subunit and state. 
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590 

Figure 4. Representation of multiple sequence alignment (MSA) from four individual magnificent birds-of-

paradise, each with between 2 and 8 behavioral sequences analyzed. MSA approaches highlight regions of 

behavioral execution that are shared with a high-degree of similarity among sequences (highlighted in 

green in the ‘Identity’ region of the figure), as well as those that are highly variable (low degree of 

consensus = red in the ‘Identity’ region of the figure).  595 

600 
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Figure 5. RAD-behavior sequences can be generated and analyzed for multiple user-defined body-regions 

independently. In this example, consensus sequences from previously analyzed behavioral sequences have 

been generated for the left wrist, left elbow, and left shoulder. The ‘current’ or focal behavioral execution 

string (with different behavioral subunits in different states indicated with different colors) is compared to this 605 

consensus string, facilitating rapid identification of body-region-specific deviations from (and matches to) the 

consensus (better matches equal higher % values and taller bars) sequences. 

610 
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615 

Box 1 

Key Terminology 

Behavioral Atom 
Building block of behavior, conceptually aligned to the building blocks of chemistry. Just as atoms of different elements can 

be combined into composite molecules, different behavioral atoms can be combined by organisms into complex, composite 

behaviors.

BLAST (Basic local alignment search tool) 
Search algorithm designed and optimized for searching biological sequences (e.g. DNA sequences, protein sequences). This 

tool allows researchers to quantitatively identify the degree to which a sequence of interest matches other sequences within a 

reference database. 

Consensus sequence 
A sequence representing the most frequent behavioral states at each temporally-encoded behavioral subunit site, generated 

following a multiple sequence alignment (MSA) from multiple execution strings. 

Ethome 
Just as a genome is a comprehensive description of the genetic material of an organism, an ethome is a comprehensive 

description of the behavioral states of an organism. 

Instantaneous body configuration 
Comprehensive numerical description of the organism’s body position in space (including both relative measurements 

between body regions and absolute measurements with respect to the vertical plane). Consecutive ‘instantaneous body 

configurations’ comprehensively describe an organism’s behavioral execution. 

Principal Component Analysis 
A data-reduction and transformation approach to understand broad patterns in large datasets with many variables. 

Reference sequence 
A behavioral sequence (in string form) against which comparisons of new sequences can be made and interpreted. In the case 

of RAD-behavior sequences, reference sequences could be ‘consensus sequences’ (see above) or a user-defined optimal 
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Supplementary Table 1. Behavioral position-mapping key, and corresponding pseudo-genetic substitution scheme 620 

for converting bird-of-paradise courtship behavior into composite strings using RAD-behavior concepts. 

Behavior Position ON code OFF code 

Start 0 TTT 

BP1 1 TTC AAG 

BP2 2 TTA AAT 

BP3 3 TTG AAC 

SS1 4 CTT GAA 

SS2 5 CTC GAG 

O1 6 CTA GAT 

O2 7 CTG GAC 

O3 8 ATT TAA 

O4 9 ATC TAG 

O5 10 ATA TAT 

O6 11 ATG TAC 

O7 12 GTT CAA 

O8 13 GTC CAG 

OPMH 14 GTA CAT 

OPAH 15 GTG CAC 

OPABH 16 TCT AGA 

OPMB 17 TCC AGG 

OPAC1 18 TCA AGT 

OPABB 19 TCG AGC 

OPMF 20 CCT GGA 

OPAC2 21 CCC GGG 

OPAC3 22 CCA GGT 

OBABF 23 CCG GGC 

OPMW 24 ACT TGA 

OPAW 25 ACC TGG 

OPATW 26 ACA TGT 

OPABW 27 ACG TGC 

OPMT 28 GCT CGA 

OPAMW 29 GCC CGG 

OPAMTT 30 GCA CGT 

OPABT 31 GCG CGC 

Stop 31 AAA 

625 
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Supplementary Table 2. Results from a BLAST search looking for sequence matches between a reference RAD-behavior sequence (clipped from original clip 

458003 in the Macaulay Library) and database of courtship behaviors scored from 32 bird-of-paradise species (see Ligon et al. 201824 for details on number 

of clips scored per species, as well as mean clip duration, etc.). This table (formatted based on BLAST’s tabular output, “-outfmt 6” in the command line 

version of BLAST), contains information about the query (i.e. reference) sequence (q) and corresponding searched (s) sequences. 

630 

635 

640 

qseqid = query sequence   ID (all the same, in this case) 

sseqid = search sequence ID (though we only show the results from the top match from each clip, numerous matches per clip are initially returned) 645 
% ident = % identical (a numeric comparison between the query and the search sequence) 

Seq length = Length of sequence compared 

Mismatch = number of disparities (i.e. mismatches) between query and search sequence 

Gap open = number of gaps opened in the search sequence to facilitate the match returned 

q start = starting location in query sequence, for given comparison 650 
q end = end location in query sequence, for a given comparison 

s start = starting location in search sequence, for given comparison 

s end = end location in search sequence, for given comparison 

Bit score = Normalized measure of sequence similarity  

Prop Bit Score = Compares bit score of a given match to the bit score of the 100% identical match 655 
q frame start = query starting frame (index of video starting frame for query) – in this case, frames correspond to 1/10 sec intervals rather than true frame numbers 

q frame end = query ending frame (index of video end frame for query) – in this case, frames correspond to 1/10 sec intervals rather than true frame numbers 

s frame start = searched sequence starting frame (index of starting frame in the video) – in this case, frames correspond to 1/10 sec intervals rather than true frame numbers 

s frame end = searched sequence ending frame (index of ending frame in the video) – in this case, frames correspond to 1/10 sec intervals rather than true frame numbers 

660 

qseqid sseqid 
% 
ident 

Seq 
length 

Mis 
match 

Gap 
open 

q 
start 

q 
end s start s end 

Bit 
score 

Prop 

Bit 
Score 

q 

frame 
start 

q 

frame 
end 

s 

frame 
start 

s 

frame 
end 

split1:0-

247.4:15-

Superb_BO
P/458003 

split1:0-

247.4:15-

Superb_BOP
/458003 100 9900 0 0 1 9900 56431 66330 18282 1.00 0 100 570 670 

split1:0-

247.4:15-
Superb_BO

P/458003 

split1:0-

247.4:15-
Superb_BOP

/458003 97 9885 293 9 25 9900 67840 77715 16515 0.90 0 100 685 785 

split1:0-
247.4:15-

Superb_BO

P/458003 

split1:0.1-
10.9:P/ARKi

ve_SuperbB

OP_c 97 9882 330 6 25 9900 421 10296 16343 0.89 0 100 4 104 
split1:0-

247.4:15-
Superb_BO

P/458003 

split1:0-

777.5:15-
Superb_BOP

/458000 96 9885 374 9 25 9900 538387 548262 16066 0.88 0 100 5438 5538 
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665 

Supplementary Figure 1. Rolling (top) and cumulative (bottom) differences between reference (query) behavioral 

sequence (top left of Supplementary Video 1) and three additional clips identified from a behavioral database using 

RAD-behavior to convert behavioral measures to character strings, then using BLAST (Base Local Alignment Search 

Tool) to identify sequence matches. The colors of the lines (blue, green, orange) correspond to the frame colors of 670 

the clips positioned along the right-hand side of Supplementary Video 1.  
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Supplementary Video 1. Behavior sequences scored with the RAD-behavior approach are converted to strings, which 

can be compiled into efficiently searchable databases. Here, a reference behavioral sequence of the courtship display 675 

of a male superb bird-of-paradise (https://macaulaylibrary.org/asset/458003 , filmed by Ed Scholes III) in the top-left 

was searched against a cross-species database of bird-of-paradise courtship behavior using the bioinformatic tool 

BLAST (Basic Local Alignment Search Tool), and three of the top 'hits' are shown on the right side of the screen. The 

bit score of each clip (describing overall similarity to the reference sequence) is shown in pink (note truncated x-axis). 

The figure in the bottom left shows the rolling average of sequence dissimilarity between each clip (indicated by the 680 

colored boxes bounding the clips themselves) and the reference clip (top left), as well as the cumulative differences 

between these clips and the reference sequence. 

https://youtu.be/naAySqzVnNo 

685 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/739151doi: bioRxiv preprint 

https://macaulaylibrary.org/asset/458003
https://macaulaylibrary.org/asset/458003
https://youtu.be/naAySqzVnNo
https://youtu.be/naAySqzVnNo
https://doi.org/10.1101/739151

