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Abstract
Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is
required for regeneration, but it remains unclear if the transition states and rates of activation are
uniform across cells, or how features of this process may change with age. Here, we use timelapse
imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged
MuSCs. We find that the activation trajectory is conserved in aged cells, and develop effective
machine learning classifiers for cell age. Using cell behavior analysis and RNA velocity, we find that
activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may
contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation
appears to be a random walk like process, with frequent reversals, rather than a continuous, linear
progression. These results support a view of the aged stem cell phenotype as a combination of
differences in the location of stable cell states and differences in transition rates between them.
Summary Statement: We find that aged muscle stem cells display delayed activation dynamics, but
retain a youthful activation trajectory, suggesting that changes to cell state dynamics may contribute
to aging pathology.

1 Introduction

Stem cells play a keystone role in tissue homeostasis and regeneration across multiple mammalian tissues. During
normal homeostasis, stem cells in multiple systems maintain a non-cycling, quiescent state [20]. In the event of injury,
quiescent stem cells undergo a dynamic process of activation, generating biomass, restructuring cellular geometry,
altering cell metabolism [43], and entering the cell cycle to produce progenitor daughters [8]. Impairment of stem cell
activation by alteration of external signals or intrinsic stem cell potential is demonstrated to impair regeneration across
multiple tissue systems [60, 36]. Likewise, “priming” of activation by systemic signaling factors has been reported to
improve regeneration [40].

In muscle stem cells (MuSCs), the activation process is canonically characterized by expression of Myod1 [23, 56],
loss of Spry1 and Pax7, and entry into the cell cycle [47]. Activation kinetics based on these canonical markers have
been characterized at the ensemble level using both transcriptional and protein level analysis [56, 13, 19, 26, 59].
However, these population level assays are unable to address some fundamental questions.

Do cells activate linearly with time, or are some portions of the process faster than others? Linear activation dynamics
may suggest that the process involves a cumulative component, whereas non-linear dynamics may suggest a switch-
like mechanism. How many intermediary states exist in the activation process? A simple two state system may
similarly suggest a switch-like activation mechanism, whereas stable intermediary states are suggestive of a multi-stage
process. Intermediary activation states such as “Galert” [40, 41] have been suggested, but the stability of such states
remains unclear. In order to answer these questions, we require measurements of activation dynamics in individual
cells.

As MuSCs age, the proportion of cells in regenerative states declines, and the overall regenerative capacity of the
stem cell pool is greatly diminished, limiting their expansion and self-renewal potential [4, 7]. Age-related decline
in regenerative potential has been attributed to differences in cell signaling [15, 3, 12, 6] or proliferative history [11].
These differences in regenerative potential between stem cells are traditionally viewed as the result of differences in
the characteristics of stable cell phenotypes [2, 11, 4].

However, aged MuSCs have been reported to show impaired activation in multiple studies, suggesting that a defect in
the activation process may also contribute to impaired regeneration [21, 15, 6, 18]. Cast in the language of dynamical
systems, differences in regenerative potential could be the result of cells taking different trajectories, or paths, through
state space, or the result of cells moving along the same trajectory at different rates. Impaired activation with age may
therefore be explained by one of two models, or a combination of the two.

In the first model (Different Paths), the location of cell states is shifted by age, such that aged cells at a particular
point in the activation process exhibit different phenotypes than young cells at the same point in the process. This
model could be stated as young and aged cells each exhibiting a unique trajectory through state space. In the second
model (Different Rates), aged and young cells are largely similar at comparable points in the activation process, but
take different amounts of time to reach a given point. In this model, differences in young and aged phenotypes are
primarily the result of changes in activation dynamics. This second model could be stated as young and aged cells
obeying different laws of motion along a common constrained trajectory in state space (Fig. 1B).

Single cell analyses in the hematopoietic system identifies distinct aged and young transcriptional phenotypes (as
in the Different Paths model) and altered cell cycle kinetics (as in the Different Rates model) [30], suggesting both
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models are plausible in the context of myogenic activation. Do aged MuSCs exhibit distinct phenotypes at each stage
of activation? Are differences in state transition dynamics in part responsible for diminished regenerative phenotypes
in aged MuSCs?

Each of the above questions calls for measuring rates of phenotypic change in MuSCs in addition to measuring cell
phenotypes at static timepoints. To measure rates of change, we leverage our recently developed cell behavior analy-
sis platform “Heteromotility” [28] to quantify phenotypic state dynamics during MuSC activation in aged and young
MuSCs. Multiple groups have recently demonstrated the value of single cell RNA sequencing (scRNA-seq) to eluci-
date differences between skeletal muscle cell types and dynamic regulation of myogenic programs following injury
[46, 22, 16]. We likewise complement our behavioral assay approach with scRNA-seq sequencing to map the tran-
scriptional state space of MuSC activation. Leveraging RNA velocity analysis [31], we infer transcriptional state
transition dynamics to pair with state transition dynamics inferred from cell behavior.

In these transcriptional assays, we further investigate differences across age and activation state within the subsets
of highly regenerative label retaining cells (LRCs) and less regenerative non-label retaining cells (nonLRCs). We
previously described LRCs and nonLRCs as discrete populations of MuSCs with different proliferative histories and
different regenerative potentials [11, 10]. The relative proportions of these populations changes with age, suggesting
that age-related changes specific to the LRC or nonLRC compartment may shed light on MuSC aging.

We find that both behavioral and transcriptional state spaces are continuous across MuSC activation and that measure-
ments of cell heterogeneity are comparable between assays. In aged MuSCs, we find aberrant transition dynamics
that lead to significantly delayed activation by both methods. These findings are reflected in a comparison of LRCs
to less regenerative nonLRCs, suggesting aberrant transition dynamics may be related more generally to impaired
regenerative potential. Identifying genetic pathways that are altered in both aged MuSCs and nonLRCs, we find that
biosynthetic processes activate more slowly in both populations. To determine if less regenerative MuSCs occupy
different steady states, we trained machine learning classifiers to discriminate MuSC age and LRC status. Classifiers
readily discriminate between MuSC ages and proliferative histories. Our results suggest that aged stem cells display
delayed activation kinetics, in addition to subtle differences in the position of activation states.

2 Results

2.1 Activation kinetics are delayed in aged MuSCs

Previously, we have demonstrated that quantitative measurements of cell motility behavior from timelapse imaging
data are sufficient to resolve states of MuSC activation and state transitions [28]. This approach allows for the direct
observation of cell state transitions during MuSC activation and quantitative measurement of transition rates. Cell
behavior measurements also have inherent functional relevance in the MuSC context, where motility behaviors are
necessary for cells to translocate to the site of injury signals.

We applied this cell behavior analysis method to aged and young MuSCs to determine (1) if aged cells occupied
distinct behavioral states and (2) if aged cells exhibit different cell state transition dynamics during activation. MuSCs
were isolated from aged (20 m.o., n = 1) and young (3 m.o. n = 1) mice by FACS and cultured sparsely in 96-
well plates with rich growth media to stimulate MuSC activation (see Methods). Timelapse imaging was performed
using an automated, incubated microscopy platform for 48 hours after plating, with images taken every 15 minutes
(Fig. 1A). This temporal window captures the early stages of MuSC activation, including the switch from a quiescent
Pax7+/Myod1- state to a Myod1+ state [13].

We quantified cell behaviors across the latter 33 hours of the timelapse using Heteromotility (see Methods). Visualizing
cell behavior state space with t-SNE [52] reveals heterogeneous cell behavior states, previously shown to reflect
different states of MuSC activation (Fig. 1C) [28]. Performing unsupervised hierarchical clustering to identify cell
behavior states reveals that three cell behavior states optimizes the Silhouette index (color labels in Fig. 1C, see
Methods). Cluster 1 is largely immotile, Cluster 3 displays limited motility behavior, and Cluster 2 displays more
extensive and dramatic motility behaviors.

Aged and young cells do not occupy distinct regions in behavioral state space (Fig. 1D). This suggests that aged
and young cells share a common set of behavioral states, but aging may induce preferences in state occupancy rates.
Quantifying the proportion of aged and young cells in each motility state revealed that aged cells preferentially occupy
the less motile behavior states relative to young cells (Fig. 1E). This preference for less motile states was significant,
as assessed by the χ2 test of the Age × Behavior State contingency table (p < 0.001). As motility is associated with
activation, a preference for less motile states among aged cells suggests they exhibit a slower phenotypic change from
quiescence to activation.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/739185doi: bioRxiv preprint 

https://doi.org/10.1101/739185


PREPRINT

Figure 1: Aged MuSCs display lower cell motility and delayed activation by single cell behavior analysis. (A)
Experimental schematic. (B) Diagram of the Different Paths and Different Rates models for age-related decline in
muscle stem cell regenerative capacity. (C) t-SNE visualization of cell behavior state space with color overlay of
hierarchical clustering identities (n = 742 aged and n = 1, 201 young cells.). (D) t-SNE visualization of aged and
young cell identity in cell behavior space. (E) Aged cells display a significant preference for less motile cell behavior
states. (F) Young cells are significantly more motile than aged cells, suggesting aged cells are delayed in activation.
Mean feature values are presented for each age after centering the population mean to µ = 0 and scaling the variance
to σ2 = 1. (G) Aged cells have lower state transition magnitudes within each behavioral state, suggesting each
state is dynamically impaired. (H) Aged cells have significantly decreased behavior state transition magnitude when
considered in aggregate (t-test, p < 0.05), suggesting delayed activation. State transition magnitude in behavior space
is measured as the mean transition vectors magnitude among a group of cells.
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Comparing individual cell behavior features between aged and young cells confirms that aged cells are significantly
less motile than young cells. Metrics of total motility distance, motility linearity, and average motility speed are all
significantly higher in young cells. Metrics of kurtosis and autocorrelation are also significantly increased in young
cells (t-test, p < 0.05, Holm-Bonferroni corrected) (Fig. 1F, note that feature values are zero-centered and scaled to
unit variance).

Do aged cells transition differently between motile states, in addition to having a preference among them? To answer
this question directly, the state transition rates across aged and young cells were quantified. Quantification was per-
formed by splitting the time course into 4 adjacent windows, each τ = 5 hours in length. Cell state was defined within
each τ length window as a location in 2D PCA space. State transitions were measured for each cell as the distance
between each sequential pair of cell states (see Methods). Aged cells had lower state transition magnitudes (Fig. 1G,
H, p < 0.05 t-test).

This result indicates that aged cells are delayed in activation relative to young counterparts. This is reflected by the
enrichment of aged cells in less activated behavioral states and dampened state transition rates we observe in aged
cells. We interpret this result as support for the Different Rates model of MuSC aging noted above, where aberrant
dynamics between states contribute to the functional defects observed in aged MuSCs.

2.2 Transcriptome analysis reveals progressive states of MuSC activation

Cell behavior analysis allows for inference of cell state at the phenotypic level, but does not provide direct insight into
the molecular determinants of different cell states. To generate a portrait of the molecular state space of activating
MuSCs, we employed single cell RNA-sequencing (scRNA-seq). In addition to determining the transcriptional differ-
ences underlying different states of MuSC activation, we sought to determine how the dynamics of activation differ
across MuSC populations with different regenerative capacity.

To this end, we transcriptionally profiled MuSCs isolated from both young (3 m.o., n = 2) and aged (20 m.o., n = 2)
H2B-GFP+/-;rtTA+/- mice. We previously showed that label-retaining cells (LRCs), which have done fewer divisions
during development, are more regenerative than non-label retaining cells (nonLRCs) that have done many divisions
[10, 11] The H2B-GFP+/-;rtTA+/- alleles allowed us to isolate MuSCs from these distinct proliferative histories in both
young and aged mice by FACS. To capture different states of MuSC activation within these populations, we profiled
transcriptomes at two time points. (1) Freshly-isolated “quiescent” MuSCs were processed for scRNA-seq immedi-
ately after FACS isolation, and (2) activated MuSCs were processed for scRNA-seq after 18 hours in culture (Fig. 2A).
Recent studies have reported that FACS isolated cells used here experience some markers of early MuSC activation,
even immediately after isolation. Therefore, it should be noted that our “quiescent,” cell populations experience some
early activation stimulus [53, 34]. Our experiment therefore examines three factors: cell age, proliferative history, and
activation state (time in culture, 0 hr or 18 hr).

After library preparation, sequencing, and quality control, 21,555 individual MuSC transcriptomes were captured (see
Methods). This pool captured 8,312 LRCs, 13,243 nonLRCs, 13,927 young cells, 7,628 aged cells, 10,826 quiescent
cells, and 10,729 activated cells. A table of cell counts for each condition is provided (Table S1).

We find two discrete clusters of cells in transcriptional space. These discrete clusters correspond to the freshly-
isolated and 18h activated cell time points, which we refer to as quiescent and activated cells (Fig. 2B). Each of these
discrete clusters contains aged and young LRCs and nonLRCs in a continuous subspace, suggesting that myogenic
activation state is a more prominent transcriptional phenotype than either MuSC aging or proliferative history (Fig.
S1). Quantifying the proportion of variance explained by each factor using linear models confirms this qualitative
observation. Activation accounts for ≈ 12% of variation across transcriptomes, while aging and proliferative history
(LRC status) account for < 2% (Fig. S1, see Methods).

The expression of characteristic myogenic genes within the transcriptional state space corresponds to known MuSC
biology, with the quiescence marker Pax7 localizing largely to the quiescent cell population and activation marker
Myod1 showing increased expression in the activated cell population (Fig. 2C). However, single cell analysis of these
markers on our large sample of MuSCs reveals heterogeneity within both the quiescent and activated populations.
Within the quiescent cell population, the subset of Pax7+ cells occupy the opposite end of quiescent state space from
a set of Myod1+ cells. Likewise, a subset of cells in the activated population express the quiescence marker Pax7+.

Given this heterogeneity, we utilized unsupervised Louvain community detection to identify subpopulations within
quiescent and activated cells [5]. We tuned the resolution parameter for Louvain clustering to optimize the Silhouette
index and find that the optimal resolution (0.2) yields 4 transcriptional clusters. Two clusters lie within the quiescent
and activated cell populations respectively (Fig. 2D).

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/739185doi: bioRxiv preprint 

https://doi.org/10.1101/739185


PREPRINT

Figure 2: Single-cell RNA-sequencing reveals heterogeneous transcriptional states during myogenic activation.
(A) Experimental schematic. (B) t-SNE visualization of quiescent and activated cells. (C) Overlay of MRFs on t-SNE
plots to show activated MyoD+ cells localize in a terminal state. (D) Definition of heterogeneous transcriptional states
by unsupervised clustering. (E) Pseudotime analysis of MuSC activation, correctly recapitulating the sequence of
ground truth time points. (F) Hiearchical clustering identifies four patterns of pseudotemporal gene expression during
MuSC activation. (G) Visualizing MRF levels across pseudotime reveals that Pax7 does not decrease monotonically.
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2.3 Non-monotonic gene expression patterns are present in myogenic activation

To determine how these transcriptional clusters are temporally ordered during activation, we utilized pseudotime
analysis to identify a common pseudotemporal axis through the clusters [38] (see Methods). Pseudotiming infers a
distinct sequential ordering for these transcriptional clusters (Fig. 2E). Myogenic gene levels within each of the clusters
corroborate the pseudotiming inference with known myogenic biology (Fig. S1). Cluster 3 exhibits the highest levels
of quiescence marker Spry1 and is appropriately selected as the root of the pseudotime axis. Likewise, Clusters 1
and 2 express lower levels of quiescence markers Pax7, Spry1, and Cd34, while expressing higher levels of activation
marker Myod1.

Pseudotime analysis places Cluster 2 as the end-point of the progression, despite the fact that it contains a subpop-
ulation of Pax7+ cells while Cluster 1 does not (Fig. S1). This challenges the traditional dogma that Pax7 levels
decrease monotonically with MuSC activation and suggests a more complex temporal regulation of Pax7 with activa-
tion. Fitting splines to Pax7 expression over pseudotime makes this non-monotonic relationship readily apparent (Fig.
2G). By contrast, the quiescence marker Spry1 [47] displays a monotonic decrease with activation and Myod1 displays
a monotonic increase (note that the Myod1 change appears small due to high variance in the population). Previous
functional studies with Pax7 overexpression constructs in MuSCs report that Pax7 promotes proliferation in certain
contexts [58], consistent with increased Pax7 as cells enter into cycle later in the activation process.

As an orthogonal method to confirm cluster ordering and establish a link between the transcriptional clusters and
behavioral clusters, we perform immunostaining following single cell behavior measurements. This analysis finds
that the most motile, most activated cell behavior states are enriched for Pax7 protein. This analysis also indicates a
non-monotonic regulation for Pax7 across cell behavior states, as we might infer from the ordering of transcriptional
clusters (Fig. 3). This result also demonstrates that cell behavior clusters directly reflect molecular features of muscle
stem cell activation. More broadly, the similarities we find through these orthogonal assays indicate that cell behaviors
contain a high degree of mutual information with transcriptional states and support the use of cell behavior analysis as
an orthogonal method to investigate the heterogeneity and dynamism of cell populations.

Clustering genes into Modules based on pseudotemporal expression patterns reveals that while many genes increase
or decrease monotonically with activation as expected, other genes display non-monotonic behavior (Fig. 2F). Genes
in Modules 1 and 3 display maximum expression at points in between the most quiescent and most activated states.
Module 1 contains genes related to mRNA processing and splicing, as determined by gene ontology analysis (see
Methods). Module 3 contains genes related to cell cycle regulation and developmental processes (Fig. S3).

These results support the notion that transcriptional programs during myogenic activation exhibit a variety of temporal
behaviors, including non-monotonic and non-linear temporal regulation. Expression peaks and valleys in the non-
monotonically regulated gene modules provide evidence that there are intermediary transcriptional states of myogenic
activation that are not simple interpolations of the initial and final transcriptional states.

We next identified markers of myogenic activation by differential expression between the quiescent and activated
cell populations. We report differentially expressed genes that pass an effect size threshold of at least 0.15 log2
fold change and are expressed in at least 5% of cells in at least one side of the contrast (see Methods). Differential
expression analysis revealed 3,864 genes altered by activation. Of these genes, 2,631 showed significant increases in
expression while only 1,034 showed significant decreases, indicating that myogenic activation is associated with more
transcriptional activation than repression. Gene ontology (GO) analysis of the differentially expressed marker genes
suggests that these genes largely reflect biosynthetic and metabolic pathways, consistent with the notion that myogenic
activation corresponds to a dramatic metabolic and geometric rearrangement of cellular state (Fig. S1).

This interpretation is further reinforced by weighted gene correlation network analysis (WGCNA) [33] which elu-
cidates two gene modules during activation. The first “Quiescence Module” is upregulated in quiescent cells and
contains genes related to cell stress responses, transcriptional suppression, and negative regulation of cell proliferation
by GO analysis. By contrast, the “Biosynthetic Module” is upregulated during activation and contains genes related
to protein biosynthesis, transcriptional upregulation, ribosome biogenesis, and RNA maturation (Fig. S4). Together,
these results suggest that myogenic activation is heterogenous among individual cells at multiple time points in the
process and that the activation process can be decomposed into a set of activation states reflecting cellular biosynthetic
activity.

2.4 Aged MuSC transcriptomes show modest differences across many transcripts

Aged MuSCs have significantly impaired regenerative capacity. We previously found that conversion of highly re-
generative LRCs to less regenerative nonLRCs is a factor in this regenerative decline [11, 10]. Do aged MuSC tran-
scriptomes reflect these functional deficits? To answer this question, we randomly sampled populations of aged and
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Figure 3: Pax7 is non-monotonically regulated across MuSC cell behavior states during activation. (A) Ex-
perimental design schematic. MuSCs were isolated, timelapse imaged in culture for 36 hours, and subsequently
immunostained. Behavior traces and immunostaining results were matched for each cell by image registration. (B)
t-SNE visualization of cell behavior states in motility state space, as defined by hierarchical clustering. Behavior state
space was generated analyzing 12 hours of tracking data, from 24 hours after isolation to 36 hours. n = 1, 003 cells.
(C) Quantification of immunostaining intensity for Pax7 and MyoG within each cell behavior cluster. Pax7 displays a
non-monontic relationship with cell behavior states. The most motile, most active cells in Cluster 4 are enriched for
Pax7. (D) Representative images of Pax7/MyoG staining in cells after timelapse imaging. Panels on the far left are
the final DIC image from the timelapse, registered and overlaid with fluorescent immunostains. Remaining panels are
raw images prior to registration.
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young MuSCs with physiological ratios of LRCs:nonLRCs to mimic MuSC pools in vivo. A young MuSC pool was
sampled with a 35:65 LRC:nonLRC ratio, and an aged pool with a 15:85 ratio. These correspond to physiological
ratios observed by FACS (Fig. S4).

Figure 4: Aged MuSCs display transcriptional changes across many genes. (A) Aged and young cells labeled in
transcriptional space (t-SNE visualization). (B) Heatmap of differentially expressed genes between aged and young
MuSCs. (C) Gene ontology analysis for differentially expressed genes. (D) Gene-wise AUROC analysis demonstrates
that single gene is predictive of MuSC age state. (E) Correlation of aged and young transcriptomes. (F) Chronovariant
genes displayed on a dotplot. Darker colors indicate higher expression, larger dots indicate expression in a larger
proportion of cells. (G) SVM classification accuracy versus regularization (L1) strength identifies a subset of genes
for age discrimination. (H) Classification performance for aged vs. young LRCs, nonLRCs, and the total MuSC pool.
All classifiers display > 92% accuracy.

Similar to our cell behavior analysis, we find that aged MuSCs do not segregate discretely in transcriptional space (Fig.
4A). This suggests that aged and young MuSC transcriptional states are largely overlapping. To determine whether
aged cells display a preference for some states over others, we quantified occupancy of our transcriptional clusters
above for both young and aged cells. There is no apparent state preference in aged cells among the transcriptional
clusters (Fig. S4). This differs from the state preference of aged cells among the behavioral clusters we identify (Fig.
1D), suggesting that either the state preference arises after the 18 hour time point captured by scRNA-seq, or that the
state preference is less dramatic at the transcriptional level.
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Performing differential expression analysis, we identify 174 differentially expressed genes between aged and young
cells when comparing both quiescent and activated cells (Fig. 4B). GO analysis of these genes indicates that they
largely represent biosynthetic processes and stress responses, with protein translation processes upregulated with aging
and stress responses downregulated (Fig. 4C). Among the differentially expressed genes, young cells display elevated
levels of stress response heat-shock proteins Hspb1 and Hspa5, suggesting that aged MuSCs are less able to mount
appropriate stress responses.

In a more specific analysis, we also find differentially expressed genes with aging specifically within the quiescent
and activated states. In quiescence, we find 200 differentially expressed genes between aged and young MuSCs.
GO analysis suggests these genes are related to protein folding and cellular stress responses, both downregulated in
aged cells (Fig. S4). During activation, we identify 275 differentially expressed genes, suggesting that activation
accentuates age-related transcriptional differences. GO analysis likewise identifies that these genes are enriched for
catabolic processes, downregulated in aging, and stress responses, upregulated in aging (Fig. S4). Prominently, two of
the top differentially expressed genes are metallothionein proteins Mt1 and Mt2, which are upregulated in aged cells.
Metallothioneins have anti-oxidant and anti-apoptotic effects and are associated with increases in longevity [32, 50].
Upregulated levels in aged cells may indicate a compensatory response to age-related oxidative stress.

2.5 Gene expression variance is altered by aging

In addition to information about mean gene expression levels, single cell RNA-seq provides information about the
variation in expression within cell populations. Recent work has suggested that aging may increase gene expression
variance in immune cells [35]. Does a similar increase in gene expression variance occur in aged MuSCs? To answer
this question, we employ the difference from the median (DM) method to quantify the amount of “overdispersion,”
or variance above expectation, for each gene [29]. This “overdispersion,” metric is necessary due to the confounding
relationship between mean expression levels and measured cell-to-cell variation.

Measuring overdispersion, we find that aged cells have higher dispersion in the quiescent state (p < 0.05, Wilcoxon
Rank Sums). Surprisingly, this difference in variability reverses in activated cells, such that activated young cells
have higher overdispersion than activated aged cells. (p < 0.001). Additionally, young cells show increased gene
expression variance as a result of activation, while aged cells show decreased gene expression variance upon activation
(p < 0.001, both instances)(Fig. S5).

This result suggests that the levels of gene expression variance are altered by aging in a context-dependent manner.
Importantly, it is possible that the decreased gene expression variance we find in activated, aged MuSCs is due to
selective pressure during the in vitro activation process. If activation selected for a more stringent subset of cells in
aged MuSCs than young counterparts, we may observe less variance in the aged cells as a result of that selection.

2.6 Discrimination of aged and young MuSCs by machine learning

The field of aging biology seeks biomarkers of aging that can be used as an assay of the aged phenotype. To determine
if any genes would serve as effective biomarkers at the transcriptional level, we performed receiver operator charac-
teristic (ROC) analysis for each differentially expressed gene between young and aged cells. No gene provides an area
under the ROC (AUROC) greater than roughly 0.6, suggesting that no single gene acts as an effective biomarker for
aging (Fig. 4D).

Can we identify a predictive relationship between multiple genes and MuSC age? Predicting a categorical response
such as age from a set of many continuous descriptors is a classical machine learning classification problem. We
developed a support vector machine (SVM) classifier approach to classify aged and young MuSCs by incorporating
information from multiple differentially expressed genes. Briefly, we identified a set of candidate “chrono-variant”
genes that change with age, focusing on the case of activated MuSCs where differences are more pronounced (Fig.
4F).

We trained linear SVM models with L1 regularization to enforce sparsity within the provided gene set, identifying a
smaller subset of genes from which to predict MuSC age. The regularization strength C for our models is optimized
using 5-fold cross-validation on a training data set (Fig. 4G). For model validation, we utilize a “hold-out” set contain-
ing a random sample of 20% of the total data set. This data set is placed behind a “firewall” and is not used in model
construction or optimization in any form.

We first applied this machine learning approach to predict age within LRC and nonLRC subsets. We also separately
classified quiescent and activated time points. This analysis controls for the difference in LRC:nonLRC ratio between
aged and young MuSC pools. Classifying activated LRC age, we identify a set of 54 genes that yield a prediction
accuracy of roughly 85% (hold-out validation) (Fig. 4H). For nonLRC classification, we identify 104 genes that yield
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a predictive accuracy of roughly 96% (hold-out validation) (Fig. 4H). Of these genes, only 40 are common to both
LRCs and nonLRCs, suggesting that transcriptional aging manifests differently in LRC and nonLRC populations.
Classifying the activated young and aged MuSC pools (each sampled to model physiological LRC:nonLRC ratios),
we identify a set 99 genes that provide roughly 95% classification accuracy (Fig. 4H)(Fig. S5). In each case (LRC,
nonLRC, pooled), we find that classification of activated cells is more effective than classification of quiescent cells,
further suggesting that activation reveals transcriptional aging phenotypes. This classification result represents the first
effective assay to discriminate the age of individual muscle stem cells.

2.7 Estimating the contribution of LRC to nonLRC conversion to transcriptional aging

The proportion of LRCs in the MuSC pool is roughly 35% in young animals and decreases to roughly 15% with age.
How much does this conversion of LRCs to nonLRCs with age contribute to the overall transcriptional changes we
see with aging? By fitting probabilistic classification models, we can use the ability of a classifier to discriminate
between young and aged MuSC populations as a metric of the “magnitude” of transcriptional change (see Methods).
This technique, known as the density ratio trick, is often used in machine learning to estimate the difference between
two distributions [49].

Populations of aged and young cells were simulated by random sampling with either physiologically observed
LRC:nonLRC ratios or equal LRC:nonLRC ratios (both aged and young sampled with 35:65 LRC:nonLRC ratios).
Fully-connected neural network models were trained to discriminate aged and young cells using a softmax layer
for probabilistic output (see Methods). Classifier accuracies are not notably changed when the LRC:nonLRC ratio
is changed from equal to physiologically observed ratios. Likewise, the divergence metric we compute from the
probabilities output by the classifiers is comparable in both conditions. The similarity in classification accuracy and
divergence magnitude in the face of changes to the LRC:nonLRC ratio suggests that LRC to nonLRC conversion does
not dramatically alter the “magnitude” of age-related transcriptional change (Fig. S6).

2.8 Activation manifests transcriptional differences due to proliferative history

LRCs are functionally distinct from nonLRCs, and this functional difference persists throughout life [10, 11]. While
we find that the majority of transcriptional differences between aged and young cells are independent of proliferative
history, we also investigated whether LRCs and nonLRCs were transcriptionally distinct from one another. Similar to
aged and young cells, LRCs and nonLRCs appear to share a transcriptional state space, and do not readily segregate
along an axis in reduced dimensional space (Fig. 5A). Likewise, the mean gene expression levels between the two
states have a near perfect correlation in quiescent cells (r = 0.99, Fig. 5C).

To determine what transcriptional differences underlie the LRC/nonLRC functional differences in an unbiased manner,
we examined differentially expressed genes between the two pools in young MuSCs, so as to avoid confounding effects
of aging. Differential expression analysis reveals 97 differential genes between the LRC and nonLRC pools.

Considering quiescent and activated cells separately, there are only 14 differentially expressed genes in quiescent cells,
but 195 differentially expressed genes in activated cells (Fig. 5D). Differentially expressed genes include known stress
response genes such as heat shock proteins and inflammation signatures, largely enriched within the nonLRC popu-
lation. Resiliency and biosynthetic genes are also differentially expressed, with known longevity factor [50] Mt2 and
protein translation components Pfdn5 and Eef1g enriched in LRCs. GO terms for nucleoside triphosphate metabolic
processes are enriched in genes upregulated in young LRCs, while terms for cell death and apoptotic processes are
enriched in young nonLRC upregulated genes. These expression differences suggest that LRCs may possess a biosyn-
thetic advantage over nonLRCs, while nonLRCs exhibit a pronounced stress response. This is consistent with the
recent identification of a stress-tolerant subset of adult LRCs [45].

Using biological priors to guide analysis, we investigated expression of known regulators and markers of myogenic
state in LRCs and nonLRCs. The data reveal an activation dependence on the relative enrichment of multiple myogenic
markers. Pax7 and Cd34 are slightly enriched in nonLRCs in quiescence, but enriched in LRCs in activation. Similarly,
LRCs are shown to be enriched in Vcam1 in quiescence, but express less of this marker in activation (Fig. 5B). This
finding is again consistent with a differential response to activation in LRC and nonLRC states, as suggested by mean
expression value correlations and unbiased differential expression analysis. Considering the distribution of LRCs and
nonLRCs among clusters of activation further confirms a heterogeneous activation response. In the quiescent state,
LRCs and nonLRCs do not display significant differences in distribution between the two quiescent transcriptional
clusters. However, after activation, LRCs are significantly enriched in the most activated transcriptional Cluster 1.
Roughly 60% of activated LRCs are in the most activated cluster, compared to only 40% of the activated nonLRCs
(Fig. 5F). The higher proportion of LRCs in the most activated region of transcriptional space suggests that LRCs may
activate more quickly than nonLRCs.
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Figure 5: Activation induces differential responses in LRCs and nonLRCs. (A) LRCs and nonLRCs labeled in
transcriptional space (t-SNE visualization). (B) Expression of known myogenic regulatory genes in quiescent and ac-
tivated LRCs and nonLRCs. Larger dots indicate a greater proportion of expressing cells, darker colors indicate higher
expression. (C) Correlation between LRC and nonLRC mean gene expression values in quiescence and activation.
(D) Differentially expressed genes between LRCs and nonLRCs in quiescent and activated conditions. Few transcrip-
tional differences are present in quiescence, but activation manifests differential expression across many genes. (E)
LRC:nonLRC classification performance across activation states and ages. Classifiers more readily discriminate LRCs
from nonLRCs in activation. (F) Distribution of quiescent and activated LRCs/nonLRCs in transcriptional clusters in-
dicates a heterogeneous activation response. (G) Confusion matrices for LRC:nonLRC classifiers. Confusion is higher
in the quiescent condition.
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Differential expression analysis also suggests a heterogeneous activation response. Regression analysis of mean gene
expression levels between the LRC and nonLRC states corroborates this finding. The two states have a near perfect
correlation in quiescent cells. In activation, the mean gene expression values are less correlated (p < 0.001, Fisher’s
r to z transformation, Fig. 5E), indicating that activation induces different transcriptional responses in LRCs and
nonLRCs.

This result is surprising, as LRCs are believed to be “reserve” stem cells, while nonLRCs are presumed to be precocious
in their response based on differentiation assays [10, 11]. To confirm this observation with an orthogonal assay, we
measured EdU incorporation in young LRCs and nonLRCs during activation in culture. MuSCs were cultured for 50
hours, and pulsed with EdU 12 hours and 2 hours prior to fixation. LRCs incorporated EdU at a higher rate (21%) than
nonLRCs (17%) across three animals and n ≈ 20, 000 cells (p < 0.001, χ2test)(Fig. S6). Collectively, these results
suggest that LRCs activate more rapidly than nonLRCs, based both on progression through transcriptional space and
the timing of cell cycle entry.

Similar to our classification of MuSCs from different ages above, we trained similar classifiers to discriminate LRCs
and nonLRCs. We trained a separate model to classify LRC/nonLRCs at each timepoint and each age. Classification
of quiescent cells performs poorly at both ages (roughly 65% accuracy), while classification of activated cells is more
effective – roughly 85% accuracy for young cells and 80% for aged cells (Fig. 5E, G). As in our age classification
experiments, this result suggests that activation reveals differences between cell populations that are masked in qui-
escence. Regularization with an l1 penalty identifies 102 genes that optimize LRC/nonLRC classification of young
activated cells, and 72 genes that optimize classification of aged activated cells. 35 genes are shared between these
sets, enriched for apoptotic and oxidative stress response gene sets, suggesting that differences in the stress response
of LRCs and nonLRCs may be some of the clearest distinguishing features across ages.

2.9 Transcriptional kinetics are aberrant in aged MuSCs

The lack of unique aged transcriptional states and modest differential expression results between aged and young cells
are surprising in light of the dramatic differences in functional potential between aged and young cell populations
[11, 15]. These results suggested to us that the rate at which aged and young cells activate may be an additional
source of variation that contributes to their functional differences. To quantify rates of phenotypic change between
the MuSC transcriptional states during activation, we utilized the recently developed RNA velocity method [31]. This
method estimates a “velocity” of transcription, or rate of change in the transcript level, by estimating the decay rates
of measured, fully spliced mRNAs, and estimates the rate of mRNA transcription using ratios of spliced to unspliced
reads.

Performing RNA velocity estimation on all 20, 000+ single MuSC transcriptomes shows that each state of MuSC
transcription gives rise to a neighboring state in the sequence inferred by pseudotiming (Fig. 6A). As an internal vali-
dation check, we find that RNA velocity indeed indicates that quiescent cells (sequenced immediately after isolation)
are moving toward activated cells (sequenced after 18 hours in culture) in transcriptional space. This result provides
further confirmation that the ordering of transcriptional clusters we infer by pseudotiming is correct.

The magnitude of mean RNA velocity represents the rate of collective phenotypic change at the transcriptional level
for a given group of cells. This approach provides an inferred measurement of state transition rates in transcriptional
space, similar to the measurement of state transition rates we make by direct observation in cell behavior space. Quan-
tifying the magnitude of RNA velocity across pseudotime in MuSCs reveals that RNA velocity follows a concave
curve (Fig. 6C). Concave transition rates across pseudotime suggest that myogenic activation is a switch-like process,
corroborating our earlier observations made by cell behavior analysis [28]. Consistency in state transition measure-
ments between RNA velocity and cell behavior phenotyping suggests that cell behavior state transitions reflect the
underlying transcription state kinetics.

Do aged and young MuSCs move through transcriptional state space differently? To answer this question, we de-
veloped a method to model cellular progression through transcriptional space using phase point simulations. RNA
velocity generates a vector field in transcriptional state space. Phase point analysis is classic dynamical systems
method to investigate the properties of a vector field where a simulation is performed to determine how a particle
might flow along a vector field, as if it were a floating leaf carried by currents in a river [48]. Here, we simulate a
set of phase points that begin in the more primitive regions of transcriptional space occupied by cells from our “acti-
vated” 18 hour timepoint and evolve them over time using velocities inferred from either young or aged cells nearby in
transcriptional space (see Methods). Given these simulated trajectories through transcriptional space, we ask whether
notable differences are present in phase points simulated using young velocities (“young phase points”) relative to
those simulated using aged velocities (“aged phase points”).
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Figure 6: Aged MuSCs transition aberrantly through transcriptional space. (A) MuSC transcriptional space
overlaid with arrows representing the direction and magnitude of RNA velocity at each state location. Colors indicate
transcriptional state identity. (B) Representative phase point simulations in aged and young RNA velocity fields,
overlaid on the activated MuSC cells in a PCA embedding. (C) State transition rates as measured by RNA velocity
magnitude across pseudotime using a rolling mean. (D) Predicted pseudotime progression for phase point simulations
in either aged (red) or young (blue) velocity fields. (E) Change in pseudotime for phase point simulations at each
timestep. (F) Heatmap representing the mean density of phase points at each point in PC space across the entire
simulation. Young and aged phase simulations show qualitatively similar trajectories through state space. (G) Terminal
locations of young and aged phase point simulations in PC space, overlaid on cell locations. Both young and aged
simulations show similar final resting positions.
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One question is whether aged and young phase points progress through the process of activation at different rates. To
assess progress through cell activation, we trained a k-nearest neighbors regression model (kNN-R) to map transcrip-
tome PCA embeddings to pseudotime coordinates as determined using Monocle 2 (see Methods, Fig. S5). Scanning a
range of parameters, we find a regressor using k = 30 nearest neighbors is sufficient to achieve r2 ≈ 0.96 predicting
pseudotime values from the first two principal components (Fig. S6, 5-fold cross-validated).

For each timestep in a phase point simulation, we predict the pseudotime coordinate of the point using this model.
Comparing inferred pseudotime coordinates for young phase point simulations and aged phase point simulations, we
find that young phase points progress more rapidly through the activation process than aged phase points (Fig. 6D).
Computing numerical derivatives for pseudotime coordinates ∆Pseudotime, young phase points appear to progress
more rapidly from the earliest time steps (Fig. 6E). This result suggests that aged cells may progress more slowly than
young cells through the activation process in a similar manner to the phase point simulations. Repeating these analysis
using age-dependent initialization points and/or using noiseless trajectory simulations yields similar results (Fig. S7).

Phase point simulations additionally provide information about the location of “attractors” in transcriptional space.
Attractors are locations in a state space where phase points tend to converge and come to rest. By measuring the
density of phase points in transcriptional space and examining the positions where they come to rest, we can identify
attractors and determine if young and aged phase point simulations share attractors, or have unique attractors.

Visualizing the density of phase points in transcriptional space as the total number of phase points to pass through
a region, there are qualitatively few differences in the shape of trajectories between young and aged cells (Fig. 6F).
Focusing on the locations where phase points come to rest, there are likewise modest differences in the specific shapes
of attractor states, but overall similar attractor positions between young and aged phase point simulations (Fig. 6G).
Collectively, results of these phase point simulations suggest that the set of intermediate transcriptional states a MuSC
visits in the course of activation is largely similar between young and aged cells. However, aged cells appear to activate
at a slower rate than young counterparts. Each of these points supports the Different Rates model of aging pathology
outlined above.

2.10 Lineage regression occurs during myogenic activation in a subset of MuSCs

The discovery of reserve cells generated during myogenic commitment more than 20 years ago first presented the idea
that MuSCs may revert to earlier stages in the lineage progression under some conditions [57]. It is currently unclear
how frequently MuSCs transition “backwards,” in the myogenic activation program. We assessed the frequency of
MuSCs transitioning backward in the lineage progression by quantifying a “change in pseudotime” (∆Pseudotime)
for each cell in our young MuSC single cell RNA-seq data set. ∆Pseudotime was estimated using the k-nearest neigh-
bors regression (kNN-R) model referenced above. Pseudotime values were predicted for the “future” transcriptomes
inferred by RNA velocity, and the difference between the predicted pseuodotime and observed pseudotime values was
taken as the ∆Pseudotime (see Methods for details). We defined a cell as “regressing” in pseudotime if ∆Pseudotime
was more than 1

2 standard deviation below 0.

This analysis reveals that roughly 16% of young MuSCs are regressing in pseudotime during the period of myogenic
activation we measure (Fig. 7A). Regression is more frequent in activated (≈ 20%) than quiescent MuSCs (≈ 15%).
Intriguingly, this fraction of cells is similar to the fraction of cells which regress into the “reserve cell” state. Quan-
tifying the frequency of “lineage regression” across pseudotime for cells from our later timepoint (18 hours in vitro)
reveals that cells regress more frequently in the later stages of activation we observe (Fig. 7B). This regression behav-
ior appears robust to age-related changes (Fig. S6). These results suggest myogenic activation is a two-way process
even under growth-promoting conditions, perhaps resembling a biased random walk in transcriptional space.

3 Discussion

Dynamic changes in stem cell phenotypes are essential for both development and regeneration. However, due to
the difficulty of measuring single cells over time, quantitative understanding of these processes remains elusive [1].
Changes in these cell state transition rates may explain some portion of the decreased regenerative potential observed
in aged stem cells, as in the muscle stem cell system.

Some dynamic information can be inferred from static ensemble measurements, a class that includes destructive molec-
ular assays with single cell resolution such as immunostaining or single cell transcriptomics. This type of inference is
unable to assess if the progression of cells through a set of states is uniform or heterogeneous, if intermediary states
are bistable or transient, or to determine if a given cellular feature influences velocity [55]. Answering either of these
questions requires some additional dynamical information – essentially, individual cells must be measured at multiple
time points.
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Figure 7: MuSCs exhibit lineage regression during activation. (A) Distribution of changes in pseudotime
(∆Pseudotime) inferred from RNA velocity estimates in young quiescent and activated cells. Activated cells regress
more frequently. (B) Proportion of cells moving backward in pseudotime as a function of position along the pseu-
dotime curve for cells in the later experimental timepoint (18h in vitro). (C) Distribution of changes in pseudotime
for young and aged MuSCs across conditions. Aging does not appear to dramatically influence lineage regression
frequency.

Here, we use timelapse imaging and single cell RNA-sequencing to provide paired measurements of this nature to
investigate muscle stem cell activation. Previous work has identified “primed” states of activation, but it is unknown
whether these states are bistable or transient [40, 41]. If a primed state was bistable, we would expect to observe cells
entering it from both the “less activated” end moving forwards, and also the “more activated” end moving backwards.
Using paired measurements, we do not find evidence of bistable states within a continuous activation process on the
timescales we observe. Our RNA velocity analysis does not identify any intermediate basins of attraction as indicated
by the smooth sigmoidal ∆Pseudotime curves (Fig. 6). In this analysis, an additional attractor state might appear as
plateau on this activation curve. This suggests that primed cell states are transient – akin to an “out-and-back” journey
down the path of activation.

Static ensemble read-outs during MuSC activation have long demonstrated that MuSCs occupy different transcription
factor states, even at a single time point [14]. However, these measurements could not explain where in the activation
process heterogeneity arose. Here, we find that MuSCs progress through the activation process stochastically, with
a non-trivial proportion of the population moving “backwards” through the activation process. This suggests that
the heterogeneity of MuSC positions along the activation trajectory arises as an accumulation of differences in the
rate of cell state transitions. These differences appear to be both stochastic and associated with distinctive features
between MuSC subpopulations. Although the macroscopic processes of muscle development and regeneration proceed
without these apparent reversals, these observations indicate that phenotypic change at the cellular level may involve
considerably more noise. This is reminiscent of the qualitative differences between the physical motion of macroscopic
objects, like a ball rolling down a hill, and microscopic motion, where noise can dominate the movement of small
molecules which often reverse direction completely.

Aging leads to dramatic declines in the regenerative capacity of MuSCs. By single cell RNA-sequencing, we sur-
prisingly find minor transcriptional differences between aged and young cells. Notably, these differences are more
pronounced in activated cells than quiescent cells, suggesting that the functional challenge of an activation stimulus
(in this case, cell culture) manifests age-related changes at the transcriptional level that are latent in quiescence. Age-
related changes may be similarly hidden from common transcriptional assays in the absence of functional challenge,
as observed by others [27, 35, 15, 54]. The large degree of similarity between transcriptional states of aged and young
cells over the course of activation suggests that the sequence of cellular states, or trajectory of activation, is preserved
with aging.

Measuring state transition rates during activation reveals that aged MuSC have dampened state transition rates. By
behavioral analysis, aged MuSCs display a preference for less motile, less activated states and decreased rates of
transition into more active states. Similarly, phase point analysis of RNA velocity vectors suggests that aged cells
transition more slowly through transcriptional states during the earliest phases of activation than young counterparts.
These data support a conceptual model in which aging MuSCs exhibit “Different Rates” of activation, even if they
follow the same trajectory. Measurement of cell state dynamics in other stem cell pools may reveal if dampened cell
state transition rates are a common feature of stem cell aging.
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4 Methods and Materials

4.1 Animals

Animals were handled according to UCSF Institutional Use and Care of Animals Committee (IUCAC) guidelines. All
experimental mice were male Mus musculus of the C57Bl/6 background. Aged mice for cell behavior experiments
were 20 months of age. Young mice for cell behavior experiments were 3-5 months of age. All mice for single cell
sequencing experiments harbored H2B-GFP +/-; rtTA +/- allelles and were developmentally labeled for proliferative
history by administration of doxycycline E10.5-E16.5. Aged mice for RNA-seq sequencing experiments were 20
months old and young mice were 3 months old. All mice were born at UCSF and aged in-house.

4.2 Cell Isolation and Culture

Muscle stem cells were isolated by FACS using a triple negative CD31-/CD45-/Sca1- and double positive VCAM+/α7-
integrin+ strategy as described [11]. Antibodies are from the following suppliers: PE-Cy7 Rat anti mouse CD31
Clone 390, PE-Cy7 Rat anti mouse CD45 Clone 30-F11, and APC-Cy7 Rat anti mouse Ly-6A/E Clone D7 (all BD
Pharmigen); Mouse CD106/VCAM1 PE (Invitrogen).

Cells for behavior analysis were seeded at 850 cells/well on sarcoma-derived ECM (Sigma, St. Louis, MO) in 96-
well plates. Cells were maintained in rich growth media (F10 (Gibco), 20% FBS (Gibco), [5 ng/mL] FGF2 (R &
D)). For single cell sequencing experiments where cells were activated, cells were seeded in sarcoma-derived ECM
coated 6-well plates and allowed to activate in plating media (DMEM, 10% horse serum) for 18 hours prior to library
preparation. For each behavior experiment, 1 young (3 months old) and 1 aged mouse (20 months old) were used as
sources of young and aged MuSCs, respectively.

4.3 Timelapse Imaging and Cell Behavior Analysis

MuSCs were imaged in 96-well plates on an incubated microscopy platform (Oko Lab) for 48 hours. Images were
collected with DIC contrast every 6.5 minutes to track cell movement. Thirty rasterized fields-of-view at 20X mag-
nification were collected from each well using an Andor Zyla 4.2 camera with pixel size of 6.5 µm. Images were
segmented using a fully-convolutional DenseNet-103 neural network model, following the architecture of [25]. The
model was implemented in PyTorch and trained on manually segmented images from each experiment. Code for
our implementation is available at https://github.com/jacobkimmel/fcdensenet pytorch. Cell tracking was
performed using a custom bipartite tracking implementation that utilizes a Kalman filter motion model. Python code
for our tracking implementation is available at https://github.com/jacobkimmel/musc tracker. The first 15
hours of each movie were not analyzed due to mechanical jitter present while culture plates settle into position in
the microscopy rig. Cell behavior was analyzed using Heteromotility, as previously described [28] and available at
https://github.com/cellgeometry/heteromotility. GNU parallel was used to parallelize multiple portions
of the analysis [51].

For paired behavior-immunocytochemistry experiments, cells were fixed in 4% paraformaldehyde for 10 minutes
immediately following the imaging timecourse. All steps were carried out at room temperature, unless otherwise
noted. Cells were washed in PBS 3X, using gentle pipette aspiration (without vacuum) to remove buffer. We found
that vacuum aspiration tends to dislodge a large number of cells. Cells were subsequently permeabilized with 0.2%
PBSX (PBS + Triton X-100) in two 5 minute washes. After permeabilization, cells were blocked in 10% goat serum in
PBSX for 60 minutes. We added primary antibodies for Pax7 (Mouse, Developmental Studies Hybridoma Bank) and
MyoG (Rabbit, Santa Cruz Biotechnology Cat sc-576 AB 2148908) at 1:100 concentrations in 10% goat serum/PBSX
overnight at 4oC. Cells were washed 4X in PBSX, then blocked a second time by incubation in 10% goat serum/PBSX
for 60 minutes. Cells were incubated with secondary antibodies anti-mouse Alexa 488 (Thermo Fischer) and anti-
rabbit Alexa 647 (Thermo Fischer) for one hour. Cells were finally washed 3X in PBSX, 5 min each, then 3X in PBS,
5 min each, incubated with Hoescht 33342 (5 µg/mL in PBS) for 10 minutes, and washed with PBS again.

After staining, cells were returned to the same timelapse microscopy system used for behavioral imaging, and fluores-
cent images were captured. We performed segmentation of the final brightfield image from the behavioral timecourse,
and the nuclear channel of the fluorescent stained image, then performed image registration using nearest neighbors to
match immunofluorescence signals to cell behavior tracks.

4.4 EdU Staining

Muscle stem cells were isolated as described above from n = 3 H2B-GFP +/-; rtTA +/- mice (4 months old, labeled
developmentally as above) and cultured in plating media (DMEM, 10% horse serum) for 50 hours. EdU was pulsed
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into the media at 12 hours and 2 hours (10 µM final concentration) prior to fixation with 4% PFA for 15 minutes.
Staining followed the Click-iT EdU Alexa Fluor 647 kit protocol (Thermo-Fisher).

4.5 Single cell RNA-sequencing

MuSCs were isolated from 2 young (3 m.o.) and 2 aged (18 m.o.) male H2B-GFP; rtTA heterozygous mice. Mice were
all labeled to capture proliferative history during development by doxycycline induction of H2B-GFP. This allowed for
isolation of label retaining MuSCs (LRCs) and and non-label retaining MuSCs (nonLRCs) based on GFP intensity, as
described [10]. Half of collected cells were immediately transferred to a 10X Genomics Chromium system for library
preparation using the 10X 3’ Single Cell v2 chemistry. The remaining cells were activated by culture on ECM-coated
cell culture dishes for 18 hours in plating media (10% horse serum, DMEM), then dissociated using Cell Dissociation
Buffer, stained with PI, and sorted by FACS to remove dead cells (PI negative). Live, activated cells were transferred
to the 10X Chromium system for identical library preparation. Libraries were pooled and sequenced using an Illumina
NovaSeq platform.

4.6 Single Cell Transcriptome Analysis

Raw sequencing data was demultiplexed using Illumina bcl2fastq. Demultiplexed sequencing reads were aligned to
the mouse transcriptome using the STAR aligner [17]. Individual UMIs were detected and assigned to corresponding
cell barcodes using 10X Genomics cellranger, samplewise. Droplets containing cells were identified using a heuristic
implemented in cellranger to call a threshold on a plot of Barcodes vs. Number of Assigned UMIs. Individual
libraries were aggregated using cellranger and normalized to the same sequencing depth by random sampling of
reads. Libraries were quality controlled by examining Sequencing Depth vs. Unique UMI plots.

A Genes × Cells count matrix was generated from the aggregated libraries. Suspected dead cells were removed if
a high proportion of total UMIs in the cell mapped to mitochondrial genes [24]. Putative doublets were removed as
outliers on a histogram of UMIs/Cell and Genes/Cell [9]. Prior to normalization, the annotated transcripts Gm42418
and AY036118 were removed from the count matrix. These transcripts overlap an unannotated Rn45s rRNA locus, and
may include counts from rRNA molecules that were amplified during library preparation despite polyA-selection.

Raw counts were log normalized using the Seurat [44] “NormalizeData” function, which performs

NormCount(c, g) = log((S)Count(c, g)/
∑
i∈G

Count(c, i) + 1)

where NormCount(c, g) is the normalized count output for gene g in cell c, Count is the matrix of raw UMI counts, G
is the set of all genes detected in the experiment, and S is a scaling factor set to 10, 000. A scaled set of counts was
generated using the “ScaleData” function in Seurat which centers each normalized gene to a mean expression of µ = 0
and scaled the standard deviation to σ = 1. Variable genes were identify using “FindVariableGenes” in Seurat, and
principal component analysis (PCA) was performed on the variable gene set. t-SNE was performed on the principal
components with perplexity p = 30.

4.7 Contribution of factors to transcriptional variation

The proportion of variation explained by each experimental factor in our multi-factor experiment was estimated fol-
lowing the approach of Robinson et. al. [39]. Linear models were fit for each gene in the form:

NormCountg(c) = β1Activation(c) + β2LRC(c) + β3Age(c)

where Activation, LRC, and Age are binary vectors indicating the activation status, LRC status, and age of each cell, c
is a cellular index, and g is a gene index. The proportion of variance attributable to each of these factors was calculated
using an analysis of variance (ANOVA).

4.8 Overdispersion Analysis

Overdispersion scores were computed using the difference from the median (DM) method [29]. We eliminate all genes
with a mean expression lower than µ = 0.1, as technical noise for genes with very low mean expression is known to
be high [29].

We define an overdispersion score DM as:
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DM(g) = log10(CV2)− f(g)

where g is a gene in the set of analyzed genes G and f(·) is a rolling median. We compute the rolling median on the
mean expression (log10(µ)) vs. coefficient of variation squared (log10 CV2) plot using a bin size of n = 50 genes and
a stride of s = 1 along the mean expression axis and calculating the median log10 CV2 of each bin. An additional
parameter α was computed as the proportion of cells expressing a given gene (elsewhere referred to as the “proportion
of non-zero cells”).

4.9 Estimation of LRC to nonLRC contribution to transcriptional change

We estimate the “magnitude” of transcriptional change with aging between a set of young and aged transcriptomes by
training probabalistic classifiers to estimate the density ratio between distributions of young and aged transcriptomes.
This method is commonly employed in machine learning and is known as the “Density Ratio Trick” [49, 42].

We generate populations of aged and young MuSCs by random sampling with n = 1000 cells per age. We sample
populations with either physiologically observed LRC:nonLRC ratios (35:65 young, 15:85 aged) or equal ratios for
both ages (35:65 young, 35:65 aged). The latter sampling scheme simulates a condition where LRC proportions do not
change with age. Fully-connected neural networks with 3 hidden layers, each containing 100 hidden units are trained
to output probabilities that a given transcriptome is either young or aged using a softmax activation. Networks are
trained using a crossentropy objective and the Adam optimizer with the scikit-learn implementations. Networks were
trained for a maximum of 1000 epochs using early stopping with a patience of 50 epochs using 10% of training data as
test data for model selection. Minibatch sizes of 128 transcriptomes were used. Training was performed using 5-fold
cross-validation, such that each predicted probability for a given cell was produced using a classifier that did not see
that cell during training. All training parameters were chosen empirically without hyperparameter optimization.

Once trained, these probabilistic classifiers output a probability p(x) that a given cell x comes from the distribution
of young transcriptomes, as well as a probability q(x) = 1 − p(x) that the cell comes from the distribution of young
transcriptomes. The “density ratio” for each cell is simply the ratio of these two probability distributions.

r(x) =
q(x)

p(x)

log r(x) = log q(x)− log p(x)

From this ratio, the Kullback-Leibler (KL) divergence can be estimated:

DKL(p(x)||q(x)) = −
∑
x∈X

p(x) log r(x)

We use this estimate of the KL divergence as a measure of the magnitude of difference between young and aged
transcriptomes. Because the KL divergence is asymmetric, we present the divergence measures for both directions
(DKL(p(x)||q(x))) and DKL(q(x)||p(x)))). An estimate of the divergence obtained simply due to cell-cell variation
within each age is computed by training classifiers on two random samples of young cells or two random samples
of aged cells, where classification should perform poorly as both samples are drawn from the same distribution. As
expected, our estimate of the KL divergence from these null classifiers is significantly lower than the estimates we find
in classifiers trained to discriminate young from aged random samples with either physiological or equal LRC:nonLRC
ratios.

4.10 Pseudotiming

Pseudotime analysis was performed using the Monocle2 package [38]. Genes for pseudotemporal ordering were de-
termined by differential expression analysis between the transcriptional clusters, as described in the following section.
Pseudotiming was performed on all 20,000+ cells that passed QC simultaneously in the same transcriptional state
space utilizing the DDRTree method with 2 components.

4.11 Differential Expression Analysis

Differentially expressed genes between two populations A and B were determined based on a significant difference
detected by the Wilcox Rank Sum test. Genes with a fold-change less than 0.25, or genes expressed in less than 10%
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of cells were filtered out from the analysis to refine the gene set. Receiver operating characteristic (ROC) scores were
generated for each gene g based on a simple binary threshold classifier trained on only the expression of gene g.

4.12 Gene Ontology and Pathway Analysis

Gene ontology enrichment analysis was performed using g:Profiler and the gProfileR package, considering enriched
GO terms for biological processes and KEGG pathways.

4.13 Support Vector Machine Classification

Support vector machine (SVM) classification models to discriminate cell age and LRC status were trained using scikit-
learn implementations [37]. For age classification, activated MuSCs were subsampled to match the physiologically
observed LRC:nonLRC ratio across ages (young, 35:65; aged, 15:85). The total count matrix was split by random
sampling into a 10% held out validation set and a 90% train/test set. “Chrono-variant” genes were identified based on
only the train/test set to avoid information leakage from the validation set. All genes that showed a > 0.1 fold change
on a natural log scale and were expressed in at least 3 cells were considered chrono-variant, yielding 667 genes. SVM
classification models were trained with L1 regularization to enforce sparsity. Regularization strength λ ∼ C−1 was
optimized by performing a line search using 5-fold cross-validation within the train/test set. The number of non-zero
weight coefficients in each trained, L1-regularized classifier was considered to be the number of genes utilized by that
classifier. Validation accuracies were obtained by training a classifier on the entire train/test set with the optimized
regularization strength, and performing prediction on the held-out validation set.

4.14 RNA Velocity Analysis and Dynamical Simulations

RNA velocity was inferred using velocyto [31] with default parameters. Gene expression levels were first imputed
using a k-nearest neighbors approach, as outlined [31]. The magnitude of RNA velocity relative to pseudotime was
quantified by binning cells along the pseudotime axis and computing the magnitude of the mean RNA velocity for
each bin.

A k-nearest neighbors regression model (kNN-R) was trained on PCA embeddings for experimentally measured single
cell transcriptomes and their corresponding pseudotime assignments. Using 5-fold cross validation, a range of values
for k were estimated and k = 30 was chosen to optimize the regression r2 while minimizing computational expense.
k-NNR model fit was estimated at r2 > 0.96 by 5-fold cross validation, indicating high performance for estimation.

To determine differences between aged and young velocity fields, phase point simulations were performed with nu-
merical methods. A set of initial positions in the 2D PCA embedding for both young and aged cells was sampled from
observed cellular positions. For these experiments, the set of initial positions was restricted to cells in the “activated”
18 hour time point to prevent simulations from encountering the low density region between quiescent and activated
cells where we have little information for velocity inference. Additionally, we restrict initial positions to observed
cells with a PC1 embedding score < −3, which corresponds to the more primitive cells in transcriptional Cluster 2.

Phase points were initiated at positions x0 and evolved for t = 5, 000 timesteps. At each timestep, phase point velocity
vt was computed as the mean velocity of the k = 100 nearest cells to the phase point in the observed cell embeddings.
For simulations in young and aged velocity fields, only young or aged cells were considered at this step, respectively.
New phase point positions xt+1 were computed as the sum of the velocity vt and current phase point position xt, plus
a noise term η:

xt+1 = xt + vt + η

where noise is drawn from a multidimensional normal distribution η ∼ N (0, σt) with a standard deviation σt com-
puted as the standard deviation of the velocity from the k = 100 nearest cells to the phase point. When specified, this
noise term was set to 0 for some experiments. Code is available in the MuSC Atlas Github.

4.15 Change in Pseudotime Analysis

The “change in pseudotime” (∆Pseudotime) was estimated for each cell using the k-nearest neighbors regression
model. Future transcriptional states xt+1 were inferred by RNA velocity as above, and the pseudotimes for these
states were predicted using the kNN-R model. ∆Pseudotime is defined as the difference between the inferred future
and measured present pseudotime for each cell:
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∆p = p̂t+1 − pt

where p̂t+1 is the inferred pseudotime using RNA velocity and the kNN-R model and pt is the observed pseudotime
at the experimental timepoint.

Cells were defined to be undergoing “lineage regression” if they displayed a ∆Pseudotime < σ, where σ is the standard
deviation of the ∆Pseudotime distribution. Code is available in http://github.com/jacobkimmel/myodyn.
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10 Supplemental Information

10.1 Supplemental Figures

Figure S1: Myogenic activation engages biosynthetic transcriptional programs. (A) Heatmap of myogenic genes
and activation markers across transcriptional clusters. (B) Top 10 positive and negative loadings for the first two
principle components. (C) Gene-wise correlation for mean expression levels between quiescent and activated MuSCs.
(D) Cell Cycle scoring demonstrating little difference in cycle state across our population. (E) Distributions of total
UMI counts per cell for quiescent and activated MuSCs, demonstrating a global increase in mRNA content for activated
cells. (F) GO enrichment analysis for genes upregulated and downregulated in activation relative to quiescence. (G)
Proportion of variation in transcriptomes explained by each of the 3 factors in the single cell RNA-seq experiment:
Age, proliferative history (LRC status), and Activation state (time in culture, 0 hr or 18 hr). Activation is a much
greater source of variation than aging or proliferative history.
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Figure S2: Pseudotemporal analysis of myogenic activation reveals non-monotonic regulation. (A) Gene ontology
enrichment analysis for Pseudotemporal Modules, suggesting coherent groups of co-regulated genes.
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Figure S3: Weighted gene correlation network analysis. (A) Module identification in the weighted gene correlation
network, with significant modules indicated by colored labels. (B) Heatmap of genes in the identified Quiescence
and Biosynthetic modules in quiescent and activated cells. (A) Gene ontology enrichment analysis for genes in the
identified Quiescence and Biosynthetic modules. The Quiescence module is notably enriched for stress response and
cell death regulation genes, while the Biosynthetic module is c© enriched for RNA and protein biosynthesis.
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Figure S4: Aged MuSCs display differential activation responses in many genes. (A) Heatmaps of differentially
expressed genes between aged and young quiescent MuSCs, and (C) activated MuSCs. As indicated by the heatmaps,
there are no individual markers with high discriminatory ability, and activation increases transcriptional differences
between aged and young MuSCs. (B) Gene ontology enrichment analysis for differentially expressed genes between
aged and young activated MuSCs. Stress responses and cell death processes are upregulated in aged cells. D Gene-
wise correlation for transcriptional differences induced by activation (Activated mRNA Count - Quiescent mRNA
Count) between aged and young MuSCs. E Distances between aged and young MuSC centroids in PC space when
LRC:nonLRC ratios are subsampled to be equal (35% LRC, “AYD-Equal”) or subsampled to reflect physiological
differences between aged and young LRC ratios (10% LRC in aged, 35% in young, “AYD-Phys”). Distances between
randomly selected aged (“Aged-Null”) or young (“Young-Null”) are presented for comparison. F Distribution of age
classification AUROC scores for individual genes in quiescent and (G) activated MuSCs. (H) Representative flow
cytometry measurements of the proportion of LRC (GFP high) and nonLRC (GFP low) MuSCs.
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Figure S5: Aging changes gene expression variation in a context dependent manner. (A) Overdispersion dis-
tributions for young and aged MuSCs in both quiescent and activated conditions. Each underlying point represents
the overdispersion estimate for a single gene. Gene expression variance increases with activation in young cells, but
decreases with activation in old cells. (B) Comparison of overdispersion estimates for each gene between young and
aged cells in quiescent and (C) activated conditions. in quiescent and activated cells.
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Figure S6: LRCs and nonLRCs are discriminated by small differences in many genes. (A) Differentially ex-
pressed genes between LRCs and nonLRCs in both quiescent and activated states. (B) EdU incorporation by LRCs
and nonLRCs during early activation in culture. (C) Distribution of LRC classification AUROC scores for individual
genes. (D) Confusion matrices for classification of age in activated LRCs, (E) nonLRCs, and (F) the total MuSC
pool using our feature selection pipeline and support vector machine classifier. (G) GO enrichment analysis in young
MuSCs for terms upregulated in LRCs and (H) downregulated in LRCs. (I) Classification accuracy for a probabalistic
neural network classifier trained to discriminate young vs. aged MuSCs with either (1) equal ratios of LRC:nonLRC
(35:65) at both ages or (2) physiologically observed ratios (35:65 in young, 15:85 in aged). Classification accuracy is
equal between the two, suggesting that a change in LRC ratios is a minor contribution to the “magnitude” of aging. Ac-
curacies presented are the mean of a 5-fold cross-validation split. (J) Estimated Kullback-Leibler divergence between
young and aged MuSCs in random samples with either (1) equal LRC:nonLRC ratios (35:65) or (2) physiologically
observed ratios. The divergence is equal in both contexts in both directions (the KL divergence is asymmetric) sug-
gesting that changes in LRC proportions do not dramatically alter the magnitude of transcriptional change with age.
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Figure S7: Phase point simulations reveal differences in state dynamics between aged and young MuSCs. (A)
Prediction accuracy measured using Pearson’s r2 for a k-nearest neighbors regression model mapping transcriptional
principal component scores to pseudotime values. Validated with 5-fold cross-validation. Data are presented as the
mean and 95% confidence interval. (B) Visualization of the pseudotime curve in PCA space, estimated by computing
a rolling mean of PC scores across the 1D pseudotime coordinate. Colors represent transcriptional state clusters. (C)
Progression through pseudotime for young and aged phase points simulated with varying model parameters. Initial
conditions were either (1) “common,” sampled from all observed cell positions in transcriptional space, with each
initial condition simulated using aged or young velocities, or (2) “age-dependent,” where all intial conditions simu-
lated using young velocities were sampled exclusively from positions observed among young cells, and vice-versa.
Simulations either included Gaussian noise η scaled by the standard deviation of velocity in the local neighborhood,
or no noise.
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Figure S8: Lineage regression frequency with age (A) The proportion of “regressing” cells across pseudotime in
aged and young MuSCs, revealing little age dependence.
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10.2 Supplemental Tables

Table S1: Cell counts by condition.

Activation Age LRC Cell Count

A Aged LRC 495
A Aged nonLRC 3362
A Young LRC 3236
A Young nonLRC 3636
Q Aged LRC 1074
Q Aged nonLRC 2697
Q Young LRC 3507
Q Young nonLRC 3548

10.3 Supplemental Files

Movie S1 Heatmaps representing the density of phase points over time in transcriptional space during phase analysis
simulations in young (left) and aged (right) velocity fields. Transcriptional space is represented using the first two
principal components. Darker colors indicate higher cell densities for both color maps.
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