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Abstract 19 

Highly dimensional data generated from bacterial whole genome sequencing is providing 20 

unprecedented scale of information that requires appropriate statistical frameworks of analysis 21 

to infer biological function from bacterial genomic populations. Application of genome wide 22 

association study (GWAS) methods is an emerging approach with bacterial population 23 

genomics that yields a list of genes associated with a phenotype with an undefined importance 24 

among the candidates in the list. Here, we validate the combination of GWAS, machine 25 

learning, and pathogenic bacterial population genomics as a novel scheme to identify SNPs and 26 

rank allelic variants to determine associations for accurate estimation of disease phenotype. 27 

This approach parsed a dataset of 1.2 million SNPs that resulted in a ranked importance of 28 

associated alleles of Campylobacter jejuni porA using multiple spatial locations over a 30-year 29 

period. We validated this approach using previously proven laboratory experimental alleles from 30 

an in vivo guinea pig abortion model. This approach, termed BioML, defined intestinal and 31 

extraintestinal groups that have differential allelic variants that cause abortion. Divergent 32 

variants containing indels that defeated gene callers were rescued using biological context and 33 

knowledge that resulted in defining rare and divergent variants that were maintained in the 34 

population over two continents and 30 years. This study defines the capability of machine 35 

learning coupled to GWAS and population genomics to simultaneously identify and rank alleles 36 

to define their role in abortion, and more broadly infectious disease.  37 

 38 
Main 39 

Comparative microbial genomics has emerged from pangenome comparisons that are 40 

exclusively tied to reference genomes that define the perspective of change to a core and 41 

flexible genome perspective lacking a firm confirmation of which genes are linked to disease1. 42 

An alternative approach to this perspective is use of genome wide association (GWAS) methods 43 

that are common in mammalian genomics in an effort to refine the estimates of specific genes of 44 
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interest. A limitation of GWAS is that it sequentially examines single loci that prevents 45 

simultaneous analysis of different allelic variants that can be interacting at different levels and 46 

population distribution between strain differentation2. This is a severe limitation in bacterial 47 

genomics, especially as population genomics is now possible in bacteria at a scale that allows 48 

examination of non-linear evolutionary rates of each gene and all of the alleles found in very 49 

large populations that create big data analytical problems. A compounding limitation is the lack 50 

of appropriate statistical models that underpin this approach in bacteria since it is unknown 51 

when the populations are normally distributed or evolving in a non-linear progression. As with all 52 

large data sets, multiple comparisons require Bonferroni correction to adjust the p-value based 53 

on a new scale as compared to gene expression but it is on a scale that is beyond that 54 

contemplated for gene expression variation (Table 1)3. Further, the assumption that each gene 55 

or allele is independent is conceptually flawed; and hence, alternative analyses that are 56 

biological and statistically compatible needs to be defined.  57 

Coupling GWAS, population microbial genomics, and machine learning is poised to be a 58 

robust alternative to classical GWAS or pangenome comparison to simultaneously discover 59 

changes in microbial genomes, and genes, that span the scale of genome plasticity to alleles of 60 

a single gene. Moreover, this combination (coined BioML) will produce a statistically 61 

underpinned comparative ranking of the most important factors that are not obvious from GWAS 62 

alone. These advantages combined with downstream inspection of the prioritized rank further 63 

powers discovery to bring biologically insightful observations and solutions, especially when 64 

large genome populations are used in the analysis, from very divergent populations of alleles 65 

that are missed when gene calling is too divergent. 66 

An analytical strength for use of machine learning in microbiology is the ability to define 67 

functional relationship from population scale genomes or genes without a priori definition of the 68 

underlying mechanism of change or specific phenotype limitations4. This distinctive advantage 69 

makes machine learning superior to classical statistical tests for prokaryotic systems that are 70 
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highly variable, particularly bacteria wherein explanatory variables are not linearly correlated, 71 

features are dependent due to genome linkage, varying evolutionary rates of between genes, 72 

and assumptions of normal distribution are violated in part due to varying selection conditions2,5. 73 

These biological conditions and parameters are incompatible with the assumptions of linear or 74 

correlative statistics, which is compounded with data reduction methods that provide a very 75 

small snapshot of the genome variation that yield associations that have low predictive value.  76 

In this study, we verified the concept of coupling GWAS with machine learning and 77 

population bacterial genomics (Figure 1) in a use case to test the hypothesis that a specific 78 

gene (porA) is linked to extraintestinal location and further is causative in abortion6-8 in a ranked 79 

order that is biologically meaningful. This was done using a wet lab validated data set containing 80 

100 genomes6-8 using extreme gradient boosting (XGboost), which was used in biological 81 

applications previously9. XGboost can identify genetic variants in human GWAS as 82 

demonstrated in a Finnish study that integrated complex nonlinear interactions of SNPs10. The 83 

ability to interrogate the predictive features enables whiteboxing the parameters, which is 84 

emerging as a tool for deriving mechanistic function in biology11. XGboost implements adaptive 85 

optimization within the functional space by iteration of the weak learners into strong learners 86 

represented by decision trees where each new decision tree is generated by factoring the 87 

residual generated from the difference from observed to the predicted feature (Figure 2; 88 

Supplemental Table 1).  89 

This study used a previously validated wet lab data set with a tetracycline resistant strain of 90 

Campylobacter jejuni causing abortion in sheep6-8. Their studies used a pairwise genome 91 

comparison to identify 8,000 SNP difference between a reference genome and abortive strain 92 

and utilized transformed genomes to identify specific allelic variants driving abortion. We utilized 93 

those 85 genomes that span 30 years and multiple locations as a reference set of cases and 94 

108 control genomes of intestinal, diarrheal isolates. This approach allows exploration of 95 

bacterial population genomic space by linking different phenotypes to the genome variation 96 
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among the isolates (Figure 1). Biological feature engineering of this collection of genomes 97 

identified 1.2 million SNPs, which is not tractable using in vivo infection studies to determine the 98 

roll of all SNPs. To examine this scale problem, we hypothesized that genomic changes evolved 99 

in gastrointestinal C. jejuni resulting in an abortive phenotype; hence, moving from the intestine 100 

to other tissues – in this case the placenta resulting in abortion. Applying our approach (BioML) 101 

to a population of gastrointestinal, diarrheal C. jejuni versus extraintestinal, abortive phenotypes 102 

produced a prioritized allelic difference in a ranked order of importance to the phenotype (i.e. 103 

abortion) (Supplementary Table 1).  104 

BioML identified 14 porA loci as the most important alleles ranging from 89 to 59 relative 105 

importance out of the 1.2 million SNPs (Supplemental Table 1). These ranked loci were 106 

compared by body location (Figure 3), which further clarified the location of these SNPs in a 107 

Tetris plot that simultaneously presented the ranked associated allelic variants within the 108 

phenotype of interest as detected with BioML as well as the non-associated alleles. By 109 

presenting the cases and control simultaneously within the y-axis, capturing insight is easily 110 

observed and areas for further investigation can be prioritized with visual inspection combined 111 

with biological knowledge. An added feature of the Tetris plot, which is lacking in Manhattan 112 

plots, is the ability to detect rare variants that are not captured by gene calling, machine learning 113 

alone, or classical statistical testing. Regions within cases expressing different allelic patterns 114 

were further explored for each genome and implications in biological features important in the 115 

disease. Additionally, protein structures were modeled to examine the changes in protein 116 

configuration initially yielded three distinct groups (Figure 3). These alleles were directly 117 

compared to those validated in vivo and found to be linked to specific protein loops within alleles 118 

verified previously6-8 – BioML found each of those to be biologically important for abortion.  119 

Further we located each of the top ranked alleles loops 1, 3, 4, 7 as enriched selection loci, 120 

again verifying previous wet lab observations6-8. Tetris plot derived variants that were not 100% 121 

identical with >75% protein homology, were designated as nonprototypical variants because the 122 
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sequence variation was high enough to change protein structures. In a limited set of alleles, the 123 

porA allele was so divergent that they were not variant called but were recovered with manual 124 

curation for this study. Recovery of these genes that were not initially identified created a third 125 

group of rare variant alleles that also caused abortion (Figure 4; protein homology <75 %). All of 126 

the variants were mapped to the whole genome phylogeny diversity as well rare variants that 127 

were not variant called by the reference genome (Figure 4). Prototypical allelic variants 128 

clustered in the largest genomic group of abortive isolates, as did some of the nonprototypical 129 

porA variants. However, there was significant genome variation and contained the two groups 130 

that caused abortion. Rare porA variants were distributed within different genomic groups as 131 

well as over a 15-year span between North America and the UK. The extensive allelic versions 132 

of porA, as well as the different genotypes, suggests that a genome surveillance system based 133 

on SNPs would be unsuccessful to link these genomes to a disease. In combination, these 134 

observations indicate that BioML produced a ranked list of biologically important alleles that 135 

were validated with those that were previously shown to be causal in abortion for the exact SNP 136 

and the protein loop location. Together, these observations verified that BioML was capable of 137 

accurately identifying the exact SNPs in porA that cause abortion.  138 

Since each BioML allele was validated for accuracy to wet lab results correctly, we further 139 

examined the protein changes from the ranked alleles (Figure 5). The first six top ranked alleles 140 

changed the amino acids for each porA sequence, but each protein sequenced varied across all 141 

PorA models. However, lysine189 was conserved across the extraintestinal variants and Asn was 142 

found in the intestinal alleles. Lysine mutation changes are the most impactful in membrane 143 

pore structure and are one of the tenets of membrane topology as positive inside rule12,13. 144 

Positive inside rule describes the observation across membrane pores that positively charged 145 

amino acids are found within the cytoplasm and negatively charged amino acids are in the 146 

extracellular domain. Membrane topology can radically change from being oriented inside the 147 

membrane (exposed to the periplasm in this case) to outside the membrane with a single lysine 148 
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mutation. Within the adjacent protein structure, lysine snorkeling effectively minimizes the 149 

nonpolar chain component by burying in the hydrophobic domain and at the same time expose 150 

the polar component to the aqueous domain is another single amino acid change which alters 151 

the topology of the membrane domain14. Bacterial membrane pore flipping could be a potential 152 

mechanism to avoid recognition by the immune system and enhancement of ion transport. 153 

While the counterpart position is buried in a deeper position due to insertional mutation in rare 154 

variants, the inserted amino acids contain lysine at new position 197. Additionally, insertions in 155 

the rare variants reduce the homology to < 75 % lead to more extensive protein structural 156 

changes that change the PorA arrangement in the membrane while still able to cause abortion. 157 

This situation is troublesome for traditional approaches but BioML effectively identified this 158 

situation. 159 

This study utilized a combination of GWAS, population bacterial genomics, and machine 160 

learning to identify and rank allelic variants that correspond to biologically validated alleles of 161 

porA to cause abortion. BioML results were further supported by the longitudinal and spatial 162 

conservation of porA coupled to protein substitutions that led to biologically relevant changes in 163 

the structure to change activity. A Tetris plot visualization provided an avenue to discover 164 

divergent and rare variants that provided further insight with protein modelling that uncovered 165 

protein substitutions resulting in localization changes that affect activity and isolation localization 166 

in the host. Together these results demonstrate and validate a novel method, termed BioML, to 167 

discover biological mechanisms using population bacterial genomics. This approach provides 168 

an avenue to leverage the massive amount of bacterial genomic sequences to uncover new 169 

mechanisms of disease with potential to provide therapeutic approaches. 170 

 171 
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 176 
Figure legends: 177 
Figure 1. Biological feature engineering of genomic data for machine learning analysis. A 178 

critical step in feature engineering is selection of the appropriate comparison groups to enable 179 

classification of alleles that are related to the specific phenotype of interest (i.e. intestinal 180 

(controls; diarrheal; n=108) and extraintestinal (cases; abortive; n=85) (Step 1). Population-wide 181 

allelic variants (red dot = intestinal, green dot = extraintestinal) that result from variant calling 182 

(Step 2) and are used as the input features for machine learning analysis (Step 3). The 183 

predicted model generated from the machine learning analysis is inspected for the most 184 

predictive features using biological context, input, and protein modelling (Step 4) that represents 185 

a nonsynonymous mutation from the genomic the population of allelic variants (n=193).  186 

 187 
Figure 2. The conceptual framework diagram depicting machine learning in bacterial genome 188 

wide association using extreme gradient boosting (XGboost). Boosting is a technique of 189 

combining a set of weak classifiers or decision trees to increase prediction accuracy. Red dots 190 

represent an allelic variant, each grey bar represents a unique allele. Individual decision trees 191 

(1, 2, 3) fail to fully capture the allelic variants associated with the phenotype (e.g. extraintestinal 192 

abortion), but by combining the trees together results in a process called as boosting increases 193 

the discriminative power.  194 

 195 
Figure 3. Comparative plot of SNP loci along the proA gene in all genomes. We termed this a 196 

Tetris plot as an alternative visualization of genome wide association hits because they are 197 

ranked and display only the loci that vary to produce a nonsynonymous mutation. The y-axis 198 

contains individual genomes from the cases and the controls, while the x-axis contains the 199 

GWAS SNP loci (green), the non-disease associated SNPs (red), open space (white) are loci 200 

that are identical in the gene sequence. Temporal and geographic metadata on the right side of 201 

the Tetris plot provides context for mutational enrichment over 30 years and multiple distant 202 

locations in North America and the UK. The enriched SNP variation produced different protein 203 
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structures (far right in blue) as the corresponding protein model by location within the animal by 204 

SNP. Protein structural features corresponding to the ranked GWAS variants are annotated on 205 

top and below the plot are the nucleotide coordinates. Rare variants (homology <75%) was not 206 

included by the variant caller in this visualization but manual inspection provided a method to 207 

find these variants.  208 

 209 
Figure 4. Whole genome distance matrix using minhash depicting an all against all comparison 210 

of genome diversity for all isolates used in this study overlaid with the porA variant associated 211 

with body location and disease phenotype. Genotypes and porA variants are connected in this 212 

depiction to examine the association between intestinal/diarrheal location (yellow dot boxes), 213 

prototypical extraintestinal/abortive (red dot boxes), non-prototypical porA variants in 214 

extraintestinal/abortive (maroon lines), and rare porA variants in extraintestinal/abortive (grey 215 

dashed lines) were co-located to their respective genomes in the genotype map. For the non-216 

prototypical variants, the year and location of isolation was included to depict the variation over 217 

time and space in the maintenance of a minority population of proA variants of extraintestinal 218 

abortive Campylobacter jejuni. The diagram to the right depicts the process used for this 219 

analysis. 220 

 221 
Figure 5. Protein models of the four groups of porA allelic variants that change the protein 222 

model structure relative to the isolate location in the host and the disease outcome. The amino 223 

acids corresponding with the BioML top ranked alleles are labelled in the common variant of 224 

porA, while the rest show the substituted amino acid in their respective position.  225 

 226 
 227 
List of Tables 228 
Table 1. Exemplar comparison of statistical metrics of GWAS versus machine learning metrics. 229 

Allelic variant association with phenotype using XGboost. An allele can be very large, ~8,000 for 230 

porA for a pairwise comparison. Using a population of this gene from 200 genomes created a 231 
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population variation of 1.2 million variants that can be ranked with an estimation of importance 232 

to association with the disease phenotype, abortion in this case. 233 

 234 
List of Supplemental Tables and Figures 235 
Supplemental Table 1. Ranked allelic variants using BioML  236 

Supplemental Table 2. Metadata for extraintestinal Campylobacter jejuni 237 

Supplemental Table 3. Metadata for intestinal Campylobacter jejuni 238 

Supplemental Table 4. Confusion matrix and derived model metrics for the XGboost model with 239 

extraintestinal Campylobacter jejuni. TP= True positive, FN= False Negative, FP= False 240 

Positive, FN= False Negative.  241 

 242 

Methods  243 
Biological feature engineering 244 
Biological feature engineering entails selection of pertinent controls and cases for BioML 245 

analysis. The genomes between gastrointestinal and extraintestinal abortive isolates. C. jejuni 246 

controls were downloaded from Patric 3.5.28 (https://www.patricbrc.org/), June 1, 2019 247 

(Supplemental Table 2). Abortive extraintestinal genomes of C. jejuni were obtained from the 248 

Sequence Read Archive (SRA; Supplemental Table 3)8. Fastq files were assembled using 249 

Shovill 1.0.4 (https://github.com/tseemann/shovill). Assembled files were annotated with Prokka 250 

(version 1.13.3)15. Variant calling was done with the reference sequence C. jejuni NTC11168 251 

with Snippy 4.3.5 (https://github.com/tseemann/snippy) as previously described16.  252 

 253 
Gradient tree boosting as GWAS framework 254 
GWAS variants generated from the biological feature engineering step were used as input for 255 

XGboost. The source code for implementing gradient tree boosting is available at 256 

https://xgboost.readthedocs.io/. Confusion matrix were generated and used to assess the 257 

performance of the model (Supplemental Table 4). The relative importance of the predictive 258 

model was used as the GWAS hits. 259 

 260 
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Tetris plot 261 
Classical GWAS hits are displayed as the negative logarithm of the p-value in Manhattan plots, 262 

hence we formulated a novel visualization of the ranked alleles generated by the machine 263 

learning model to highlight the difference between approaches - we call this GWAS hit 264 

visualization a Tetris plot. We color coded the relative importance values of the associated 265 

alleles derived from the XGboost (green being associated and red being non-associated). The 266 

source genome is plotted on the y-axis and genomic coordinates on the x-axis overlaid with 267 

GWAS hits presence or absence matrix.  268 

 269 
Population wide whole genome phylogeny 270 
The genome distance metric was calculated using genome wide k-mer signatures to generate 271 

the population-wide phylogeny with a k-mer size of 31 scaled to 1000 with Sourmash17. The 272 

resulting genome wide k-mer distance was visualized as an all-against-all heatmap17. 273 

 274 
Protein Modelling  275 
Assembled genomes were annotated using Prokka (V1.13.3) and PorA protein sequences were 276 

extracted for protein modelling using Swiss Model18,19. The most homologous protein was used 277 

as template for protein modelling. Illustrate (https://ccsb.scripps.edu/illustrate/) was used to 278 

generate the protein visualization of the predictive alleles. Ranked BioML alleles identified by 279 

visual inspection of the Tetris plot, via the ranked variable importance were used to inspect the 280 

protein structures. 281 

 282 
  283 
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Table 1.  284 

 285 
 286 
  287 

 
GWAS statistical metrics Machine Learning coupled  

to GWAS metrics 

Allele GWAS  
p-value 

Bonferonni  
Corrected p-value Candidate Ranking Feature Importance  

X1 0.001 8.3 x 10-10 1 80 

X2 0.001 8.3 x 10-10 2 75 

X3 0.001 8.3 x 10-10 3 70 

X
n
 0.001 8.3 x 10-10 Rank

n
 Importance

n
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