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Abstract

Cells are crowded and spatially heterogeneous, complicating the transport of organelles,

proteins and other substrates. One aspect of this complex physical environment, the

mobility of passively transported substrates, can be quantitatively characterized by the

diffusion coefficient: a descriptor of how rapidly substrates will diffuse in the cell,

dependent on their size and effective local viscosity. The spatial dependence of

diffusivity is challenging to quantitatively characterize, because temporally and spatially

finite observations offer limited information about a spatially varying stochastic process.

We present a Bayesian framework that estimates diffusion coefficients from single

particle trajectories, and predicts our ability to distinguish differences in diffusion

coefficient estimates, conditional on how much they differ and the amount of data

collected. This framework is packaged into a public software repository, including a

tutorial Jupyter notebook demonstrating implementation of our method for diffusivity

estimation, analysis of sources of uncertainty estimation, and visualization of all results.

This estimation and uncertainty analysis allows our framework to be used as a guide in

experimental design of diffusivity assays.
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Introduction 1

Diffusion is essential for the intra-cellular transport of many organelles, proteins and 2

substrates. In the crowded and heterogeneous physical environment of the cell, 3

diffusivity is a local, spatially dependent characteristic of the space, dependent on 4

factors such as the size of the particle, and the local viscosity and spatial crowding. 5

These spatial heterogeneities must be addressed when using diffusion coefficients as 6

readouts of intra-cellular transport and the physical environment. This intra-cellular 7

diffusion coefficient is often experimentally estimated through two approaches: single 8

particle tracking (SPT) [1–3] and fluorescence correlation spectroscopy (FCS) [4]. 9

In single particle tracking experiments, a live cell is imaged in successive frames, and 10

individual punctate objects are tracked to construct a trajectory of time-dependent 11

positions (Fig 1). One of the most common approaches to extracting diffusion 12

coefficient estimates from SPT is to use mean-squared displacement (MSD). The MSD 13

generically follows the following relationship: 14

MSD(τ) = 〈(∆x(τ))2〉 = 2dDτα, (1)

where ∆x is the step size between frames taken at a time lag of τ , in d spatial 15

dimensions, and D is the diffusion coefficient. The parameter setting the MSD scaling 16

with time, α, is determined by the diffusive model. Any temporal scaling with α 6= 1 is 17

called anomalous diffusion, with super- and sub-diffusion models having α > 1 and 18

α < 1, respectively. Intracellular diffusion has most often been characterized to be 19

sub-diffusive, likely as a result of crowding [3]. 20

Fig 1. Single particle tracking. In SPT, a live cell is imaged over a series of time
points. Individual punctate objects are localized at each time-step, and these positions
are traced from frame to frame to produce individual time-lapse trajectories.

For objects undergoing homogeneous isotropic diffusion, the MSD of puncta is a 21

linear function of lag time (α = 1), with the slope being proportional to the apparent 22

diffusion coefficient: The averaging in this calculation can be taken on a single or 23

multiple trajectory basis (i.e. mean of each displacement over time-step τ in a single 24

trajectory or over many trajectories). If MSD analysis is completed on a per-trajectory 25

basis, this technique allows for spatial resolution of diffusivity variation; however it 26
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relies on the fitting of the MSD(τ) slope. This analysis can be misleading, as it 27

includes no information about the uncertainty in this estimation beyond calculation of 28

the error on the mean. As a result, when multiple single-trajectory MSD’s are plotted 29

together on a log-log plot, it can be easy to interpret non-overlapping MSD(τ) line as 30

portraying distinct diffusivities, when they could just be representing uncertainty-driven 31

variations around a single shared value. 32

In FCS, a laser illuminates a region of a sample containing fluorescently tagged 33

particles [5]. The characteristic time a fluorescent particle spends in the illuminated 34

region (“dwell time”) can be calculated from the intensity auto-correlation function. 35

Together with the length scale of the illuminated region, dwell time gives an estimate of 36

the diffusion coefficient in this region. The calculation of the diffusion coefficient from 37

these properties is dependent on the chosen diffusion model; this method is flexible to 38

anomalous diffusion models and captures small-scale local diffusivities. However, only 39

one local measurement can be made from each illuminated region, making the 40

assessment of many local regions experimentally intensive. 41

Like FCS, SPT can be used to probe local diffusivities and is robust to anomalous 42

diffusion models [6]. But in contrast, rather than providing one diffusivity measurement 43

per illuminated region, SPT allows for as many individual local diffusivity estimates to 44

be simultaneously made as there are fluorescent particles in the field of view. 45

Dependent on particle density, this advantage allows for the efficient use of spatially 46

dependent diffusivity assays. While SPT offers many advantages, it relies on finite 47

observations of a stochastic assay, limiting our diffusivity estimation accuracy. 48

While powerful analyses from SPT have indicated the complexity of transport in live 49

cells, the spatial variation of the diffusion coefficient remains poorly characterized. This 50

can be attributed to challenges in disentangling effects of biological heterogeneity and 51

limited sampling of a stochastic process [7,8]. To address these challenges, we developed 52

a Bayesian framework to estimate a posterior distribution of the possible diffusion 53

coefficients underlying single-trajectory dynamics. This framework generates look-up 54

tables predicting the detectability of differences in diffusion coefficients, conditional on 55

the ratio of their values and amount of trajectory data collected. 56

Other packages with information theoretic frameworks for trajectory analysis have 57

been released; for example, the Single-Molecule Analysis by Unsupervised Gibbs 58
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sampling (“SMAUG”) software package [9] also uses Bayesian estimation to characterize 59

diffusive environments. However, our package is unique because it is intended 60

specifically to provide lightweight trajectory analysis and prediction that can be used by 61

those with a biological background to inform microscopy experiment design, without 62

requiring deep statistical or computational knowledge. 63

Materials and Methods 64

Trajectory simulation and localization error 65

We generated sample trajectories with known diffusion coefficients by simulating 66

Brownian motion of particles in a d-dimensional space. At each time-point and along 67

each spatial dimension, a step size was drawn from a zero-mean Gaussian N (µ = 0, σ2) 68

with variance σ2 defined by the diffusion coefficient: σ2 = 〈|∆x|2〉 = 2dD∆t, where d is 69

the number of spatial dimensions, D is the homogeneous isotropic diffusion coefficient, 70

and ∆t is the time-step. At each time point, a new step size in each dimension was 71

drawn from the normal distribution, to generate the displacement vector ~∆x. This 72

displacement vector was added to the position ~x(t) to generate the next position 73

~x(t+ ∆t). We recorded the position of the particle at each frame in a time-series, 74

constructing a trajectory mimicking the data one would get from tracking an object 75

from time-series images (Fig 2). 76

To mimic the static localization error inherent in microscopy-generated trajectories 77

in our simulated trajectories, we added Gaussian error to the locations of simulated 78

particles at each time point [10]. After each successive location was stochastically 79

chosen based on a model of Brownian motion, an additional draw from another normal 80

distribution was made to select a shift in position in each spatial dimension. The 81

variance of this Gaussian localization error can be tuned to the user’s own specific 82

microscope configuration. 83

The locations of the simulated particle at each time-point (with and without error 84

included) are stored in a DataFrame, and these trajectories are digested into 85

frame-to-frame displacements; realistically these step sizes were used to generate the 86

trajectories, making back-calculating them seem tedious. However, the remainder of our 87
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Fig 2. Sample trajectory with and without localization error. A 2D diffusive
trajectory with no localization error is drawn for T time-steps.At each time-step, a
cloud of Gaussian uncertainty is drawn; the shape and shading of this cloud
demonstrate how likely it is for the position of be measured at any of the surrounding
points rather than in the true position. A sample alternative trajectory is drawn
(purple) showing the path we might observe the particle to take, due to the localization
error in measuring the true position as a function of time.

toolkit is designed for analysis of any trajectory - simulated or tracked from images. 88

Therefore a user can choose to either input their own image-derived trajectories or use a 89

simulated trajectory to perform estimation of the unknown diffusivity. 90

Bayesian inference of diffusivity 91

To estimate the diffusivity underlying a single trajectory (and our uncertainty in this 92

estimation), we employ Bayesian inference. This method is focused on generating a 93

“posterior probability distribution”: the probability that a random variable takes on any 94

of a set of values, based on provided evidence and a prior distribution. In our case, the 95

random variable is the diffusivity, and the evidence is the set of step sizes from a single 96

trajectory. The prior distribution for the variance of a normal distribution with known 97

mean is an inverse-gamma distribution. This acts as a conjugate prior; that is, a class of 98

distributions for which the prior and posterior distributions take on the same 99

mathematical form; therefor our posterior will also be an inverse-gamma function. The 100

inverse-gamma distribution’s probability density function over diffusion coefficients 101

D > 0 is parameterized by the shape (α) and scale (β): 102

IG(D;α, β) =
βα

Γ(α)
(1/D)(α+1)e−β/D. (2)

The posterior distribution peaks near the true diffusion coefficient and has a width 103

corresponding to the confidence interval of our estimate, which is largely determined by 104

the trajectory length and magnitude of localization error. 105

Characterizing the distinguishability of diffusivity posteriors 106

To characterize our uncertainty on whether trajectories come from regions with different 107

diffusivities, we require a way to quantitatively discriminate between pairs of posterior 108
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distributions. To achieve this, we use the Kullback-Leibler (KL) divergence. The KL 109

divergence acts as a single-value estimation of how well we can analytically distinguish 110

whether the step sizes from a trajectory came from the diffusivity predicted by one 111

posterior or the other. The KL divergence of two inverse-gamma distributions p(α, β) 112

and q(α̂, β̂) is calculated as follows [11]: 113

KL(α, β, α̂, β̂) = (α− α̂)Ψ(α) + β̂(
α

β
)− α+ log

βα̂+1Γ(α̂)

ββ̂α̂Γ(α)
(3)

where Ψ(α) is the digamma function, defined as the logarithmic derivative of the 114

gamma function (Γ(α)). Since this metric is not symmetric and we have no preference 115

between distributions p and q, we use a symmetrized version of the KL divergence 116

KL = 1
2

(
KL(α, β, α̂, β̂) +KL(α̂, β̂, α, β)

)
. 117

Code availability 118

A repository for our source code is publicly available at the Allen Cell Modeling GitHub 119

page https://github.com/AllenCellModeling/diffusive_distinguishability, 120

conveniently packaged with ReadTheDocs documentation and a tutorial Jupyter 121

notebook demonstrating usage and reproducible figure production. This package is 122

registered under DOI 10.5281/zenodo.2662552. 123

Results and Discussion 124

Bayesian inference of diffusivity 125

When the position of a diffusing object is recorded as a trajectory of discrete steps in 126

time, the sizes of those steps can be mathematically represented as stochastic draws 127

from a distribution characterized by the diffusion coefficient. Our method for estimating 128

the diffusion coefficient relies on breaking individual trajectories into frame-to-frame 129

steps, and applying a Bayesian statistical framework to predict the diffusivity 130

underlying each set of stochastically derived step sizes. From a single trajectory, this 131

framework provides not only an estimation of the diffusivity, but also a representation 132

of our uncertainty. While our framework could be adapted to analyze more complex 133

dynamic models, our current implementation introduces a workflow for analyzing 134

August 15, 2019 6/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/740175doi: bioRxiv preprint 

https://doi.org/10.1101/740175
http://creativecommons.org/licenses/by/4.0/


isotropic homogeneous diffusion; therefore, trajectories with unknown diffusivity will 135

result in a step-size distribution which is normally distributed, with zero mean and 136

unknown variance N (µ = 0, σ2). 137

Bayesian inference is built on the use prior and posterior distributions. Our “prior” 138

distribution is an initial guess at the solution to a problem before using our observations 139

or data to inform our expectations (i.e. a priori); for instance, if I have no intuition for 140

the solution to my estimation problem, I would use a flat prior telling my model that I 141

think any solution is equally likely. We then use our data to narrow down our solution 142

estimation (i.e. a posteriori), resulting in a “posterior” distribution. In our case, the 143

step size distribution from a single trajectory would be the observations, and the 144

posterior might look like a distribution of diffusivity values, peaked around some value 145

indicating a likely estimate of the underlying diffusion coefficient. The longer the 146

trajectory is, the more information we can use to narrow down our answer, leading to a 147

more tightly peaked posterior (discussed in greater detail in the Sources of posterior 148

estimate error). 149

Inverse-gamma distribution as diffusivity conjugate prior 150

In this section, we will step through the process of applying Bayesian analysis to our 151

particular case. First, we will get introduced to the governing principle of this approach, 152

called Bayes’ theorem, then we will carefully digest this principle into pieces and see 153

how it applies to our own application. 154

Bayes’ theorem tells us that the posterior distribution for an unknown variable θ is 155

proportional to the product of the prior distribution p(θ) and the “likelihood function”, 156

or the function giving the probability of making observation x given the unknown 157

variable p(θ|x). Mathematically, this if often represented: 158

p(θ|x) ∝ p(θ)p(x|θ). (4)

How does this apply to the diffusion process we have been exploring? In our 159

problem, we have taken single particle trajectories and split them into frame-to-frame 160

step sizes. We can say, then, that our Bayesian “observed variable x” is the step size 161

∆x. We’ve discussed previously that we expect the step sizes for diffusive trajectories to 162
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be normally distributed, with a mean of zero and an unknown variance. Translating 163

again to the Bayesian framework, we can say that our unknown variable θ is the 164

variance σ2, and our likelihood function is the normal distribution of step sizes, i.e. 165

p(x|θ) = p(∆x|σ2) = N (0, σ2). 166

The prior is our initial guess of the probability distribution of values for our unknown 167

variable, σ2. To determine the prior distribution for our cases, p(θ) = p(σ2), we consider 168

the mathematical dependence of the normally distributed step sizes on the variance σ2: 169

p(∆x|σ2) ∝ (1/σ2)ae−b/σ
2

(5)

We see that this dependence looks a bit like a gamma distribution, except that our 170

variable of interest is found in the denominator. This class of function is intuitively 171

called an inverse-gamma function (IG, Eq. 2). We can now say a priori that we expect 172

our estimated σ2 values to follow an inverse-gamma distribution, and therefore this is 173

the form of our prior: p(θ) = p(σ2) = IG(σ2). 174

We have now seen how to place the observed and unknown Bayesian variables in the 175

context of our problem, and explored the Normal and inverse gamma distributions 176

which can be used as our likelihood and prior distributions, respectively. With these 177

pieces in hand, we can now find the class of function for our posterior distribution, as 178

the product of our prior and likelihood distributions (Eq 4). In our case, we find that 179

the product of p(σ2) and p(∆x|σ2) also has an inverse gamma dependence on σ2. We 180

note that our posterior distribution is a function of the same class as the posterior - we 181

will come back to this after a brief note. 182

In this section we have built up a framework for performing Bayesian analysis to 183

estimate a distribution of variances, but we promised an estimation of the diffusion 184

coefficient. Now let us recall that the variance of the diffusive step size distribution is 185

directly proportional t the diffusion coefficient (σ2 = 2dD∆t), and therefore, with the 186

inclusion of a multiplicative constant, this analysis is easily transferred into a Bayesian 187

estimation of diffusivity D, with inverse gamma prior and posterior distributions IG(D). 188

In general, when the prior and posterior for Bayesian analysis take the same 189

mathematical form, the prior is referred to as a “conjugate prior.” The matching of the 190

conjugate prior and posterior function types simplifies the statistical method, presenting 191
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one advantage of this prior. A second advantage of our prior is that the inverse-gamma 192

distribution acts a conservative initial “guess,” with any order of magnitude diffusivity 193

is equally likely, before the introduction of any data. The distribution and quantity of 194

values in our set of step sizes will determine the scale (α) and shape (β) parameters for 195

our posterior inverse-gamma distribution IG(D;α, β). 196

Sources of posterior estimate error 197

The estimation of diffusivity from a single trajectory is limited by the finite trajectory 198

length and accuracy in localizing the object at each time point. As a result, careful 199

consideration of how each of these factors will impact the estimation uncertainty is 200

necessary when constructing an experimental design. To address this, we have 201

constructed a framework for generating look-up tables predicting the percent error 202

posterior diffusivity estimation conditional on a set of trajectory lengths and 203

localization errors. 204

Many methods for estimating diffusivity from a single trajectory rely on the analysis 205

of the frame-to-frame step-size distribution extracted from that trajectory. However, 206

during a microscopy experiment, there will always be an inherent limitation to the 207

degree of accuracy that an object can be localized in each frame. This arises from both 208

static and dynamic sources of localization error; static localization error occurs due to 209

the inherent limit to spatial resolution of imaging experiments, while dynamic 210

localization error comes from the non-instantaneous nature of capturing an image 211

resulting in object movement during image acquisition [12]. Since dynamic localization 212

error is most relevant for quickly moving objects, such as small substrates, we have 213

chosen to simulate and provide example analysis of the effects of static localization error. 214

As a result of limitations in spatial resolution, when the object is tracked and 215

trajectories generated, an inherent limitation in localization accuracy is encoded in the 216

trajectory, and therefore skews the step-size values being used to infer the diffusion 217

coefficient. To demonstrate the impact of localization error on SPT, we provide an 218

example simulated trajectory with varying amounts of localization error applied (Fig 3). 219

Figure 4 demonstrates the impact of underlying diffusion coefficients and localization 220

errors on posterior estimates. We provide examples of trajectories in two regions with 221
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Fig 3. Sample trajectory with and without localization error. A 2D diffusive
trajectory with no localization error is drawn for T time-steps. That same trajectory is
then redrawn in increasingly light colors, for increasing levels of localization error. This
error is parameterized in the form of the standard deviation of a Gaussian blur, in
microns. This example allows us to visualize the impact that a range of localization
errors would have on the same trajectory.

differing diffusion coefficients, each with and without localization error included in the 222

trajectory simulation. We then plot the posteriors for all four of these trajectories on 223

one set of axes. Our tool aims to quantify the effects of this localization error on the 224

estimation of diffusivity by generating trajectories with varying known degrees of 225

localization error and reporting their impact on the error of the posterior estimation of 226

the known underlying diffusivity. 227

Fig 4. Sample trajectories and diffusivity posteriors, with and without
localization error.Left: Sample simulated 2D trajectories composed of 100 steps with
diffusion coefficient D1 = 0.01 µm2/s and D2 = 0.02 µm2/s . The “Observed”
trajectories are generated with localization error 0.05 µm, while the “True” trajectories
have no localization error. Right: Posterior distributions for all trajectories. These
posteriors are all inverse-gamma distributions generated using our Bayesian inference
framework.

Diffusive trajectories are composed of successive steps, whose sizes are stochastic 228

draws from a distribution set by the diffusivity. When only short trajectories are 229

available, we have only a limited set of draws from this distribution - as a result, the 230

variance of this distribution is difficult to accurately predict, and the posterior 231

distribution of diffusivity probabilities will be less accurate and precise. While it would 232

be ideal to simply collect longer trajectories, this is often experimentally impossible; 233

therefore, we aim to give experimentalists an analysis framework to estimate how 234

accurately they can predict diffusivity given their own limitations in tracking. 235

Because our trajectories are simulated, we benefit from the knowledge of the true 236

diffusivity and degree of localization error, and can therefore precisely quantify the 237

relation between the error in our Bayesian estimation of diffusivity and the level of 238

localization error. This provides a look-up table for experimentalists to predict the 239

accuracy in diffusivity estimation that can be achieved with their own particular 240

microscopy experiment, shown in Figure 4. We quantify the error in our estimates as 241

the magnitude of the percent error between the true diffusivity and the mode of the 242

posterior probability distribution as calculated by the posterior’s scale and shape 243
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parameters: 244

%error = |100
(β + 1

α
−Dtrue

)
/Dtrue|. (6)

Of course, due to the stochastic nature of diffusive properties, even with all the same 245

simulation parameters, the posterior error will vary from one simulation to the next. In 246

order to capture the mean effect of each parameter on posterior error, the results in Fig 247

5 represent the average percent error for N = 104 replicates of the same simulation 248

parameterization. 249

Fig 5. Percent posterior estimation error conditional on static localization
accuracy and trajectory lengths.The percent error for a given posterior is
measured as the percent error between the true diffusion coefficient used to generate the
trajectory, and the mode of the posterior distribution (or the diffusion coefficient which
gives the maximum value of the probability density function). This heatmap reports the
mean percent error for 104 posteriors generated under each set of trajectory length and
localization error conditions, with diffusion coefficients of (A) 0.1 µm2/s and (B) 0.01
µm2/s. Please note the difference in heatmap scale bars.

In addition, it should be noted that the number of spatial dimensions of the assay 250

(i.e. whether trajectories are measured in two or three spatial dimensions) as well as the 251

mean-squared displacement (related to the diffusion coefficient) can impact the 252

relationship between localization error and Bayesian estimation error. For a more 253

in-depth discussion and simulation of this, please see the tutorial Jupyter notebook in 254

our project GitHub repository. 255

Distinguishability of trajectory diffusivities 256

With the above percent error analysis derived for simulated trajectories with known 257

diffusivities, a picture arises of how our estimates of the diffusivity differ from the true 258

values. As a result, when this technique is applied to experimentally-derived trajectories 259

whose underlying diffusivities are unknown, we may want to ask ‘how likely is it that 260

two trajectories resulting in different diffusivity estimates were actually derived from 261

regions with the same diffusivity?’ The biological motivation and analog for this 262

technical question is ‘how heterogeneous is the physical cellular environment?’ 263

This will depend on the amount of overlap between the two diffusivity posterior 264

distributions, which is determined by: (1) how different the underlying diffusion 265

coefficients are (how far apart the theoretical maxima of posteriors are) and (2) how 266
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uncertain we are in our estimations (how wide the posterior distributions are). One way 267

to measure the difference between two distributions is to use the Kullback-Leibler 268

divergence (KL divergence). A KL divergence of zero indicates that two distributions 269

are identical; one interpretation of this metric is that its inverse tells you the number of 270

times you can draw samples from one distribution in place of the other before there is 271

significant information loss. 272

In order to communicate the distinguishability of pairs of posteriors conditional on 273

their trajectory parameters, we have created a heatmap look-up table of the KL 274

divergence of posterior pairs, dependent upon the ratio of their underlying diffusion 275

coefficients (i.e. D2/D1), and the trajectory length. An example of this look-up table 276

heatmap is provided in Figure 6. The complete code used to generate this map is 277

provided in the tutorial Jupyter notebook found in the GitHub repository for this 278

project. By cloning the repository, users can directly edit this example code to recreate 279

this map with a different localization error or different distribution of trajectory lengths 280

and diffusion coefficient values. An experimentalist may generate their own heatmap for 281

trajectories with their specified degree of localization error, and get a table to tell them 282

how distinguishable differences in diffusion coefficients will be for different lengths of 283

trajectories that they can collect. This framework could therefore play a valuable role in 284

describing the feasibility of and requirements for experiments addressing the spatial 285

heterogeneity of the intra-cellular diffusive environment. 286

Fig 6. Look-up table for posterior KL divergence, conditional on
diffusivities and trajectory lengths. Heatmap displaying the average KL
divergence of diffusivity posteriors. For each entry in the heatmap, two trajectories of
the same length (x-axis) are produced, with differing underlying diffusivities with the
ratio D2/D1 (y-axis). A posterior is estimated for each, and their KL divergence is
calculated as a measure of the distinguishability of the underlying diffusivities. As this
process is stochastic, this is repeated 104, with the average being the value reported in
the heatmap.

Comparison with MSD analysis 287

Given a single trajectory, let us compare what we could learn of the underlying 288

diffusivity through MSD analysis and our Bayesian framework. In MSD analysis, the 289

trajectory would be split into step sizes associated with every possible lag time (that is, 290

the mean of the squared displacement for all step sizes between frames τ = 1, 2, 3... 291
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frames apart. The diffusivity can be calculated by fitting the MSD using Eq 1, often 292

using a loglog plot. This provides a single prediction of the average diffusivity over the 293

course of the trajectory. In contrast, our Bayesian framework outputs a probability 294

distribution of diffusivity values; the diffusivity giving the highest probability can be 295

extracted to give a single-values diffusivity estimation, but the distribution as a whole 296

offers the appealing advantage of giving a quantitative measure of our confidence in this 297

estimate. 298

This confidence interval offers an added benefits over MSD analysis. Through 299

posterior visualization and the KL divergence analysis described in the previous section, 300

this Bayesian estimation framework provides us with a straightforward visual and 301

quantitative way to diagnose how likely it is that diffusivity estimates from two 302

trajectories are actually describing regions with different physical properties. In the case 303

of MSD, comparison of single-trajectory diffusivity estimates is done by plotting 304

MSD(τ) for each trajectory on the same log-log plot and comparing their intercepts. 305

This methodology fails to capture information about uncertainty, and may lead to the 306

false conclusion that each trajectory is taken from a region with a unique diffusivity. In 307

many cases Bayesian posterior analysis will reveal significant overlap between these 308

trajectories’ posteriors, indicating the analyzed trajectories do not mark the region as 309

having heterogeneous diffusivity. 310

Application to spatially dependent diffusivity characterization 311

In the introduction of this paper, we discussed the importance of analysis techniques 312

that acknowledge the heterogeneity of cellular environments. The single-trajectory 313

dependence of this tool offers a framework to build on for characterizing variations in 314

the diffusivites felt by trajectories recorded in different cellular regions. By mapping the 315

diffusivity estimates from each trajectory (value most probable from posterior 316

distribution) to the spatial region where the tracked substrate was localized, the user 317

can build up a spatial mapping of the diffusivity. While frameworks exist for spatial 318

mapping of the physical properties of cells, such as nanorheology of injected 319

particles [13] and SMAUG [9], these techniques respectively require an extensive and 320

invasive experimental design or in-depth knowledge of computational Bayesian inference. 321

August 15, 2019 13/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/740175doi: bioRxiv preprint 

https://doi.org/10.1101/740175
http://creativecommons.org/licenses/by/4.0/


Our tools offers a flexible and approachable framework for experimental design of 322

studies to probe the spatial variation of physical properties of the cell. 323

Framework limitations 324

As we have discussed, the presence of localization error and the finite nature of 325

trajectories will contribute to the uncertainty in any analysis of single particle 326

trajectories. Here, we discuss several other important limitations to be considered when 327

using this software package. 328

This framework is currently only implemented for the analysis of pure diffusion, 329

however anomalous diffusion (particularly sub-diffusion) is commonly reported in the 330

analysis of biological trajectories. Users could adapt the package to analyze trajectories 331

undergoing anomalous diffusion by editing our Bayesian estimation code. We have 332

described how our conjugate prior and posterior model have been selected specifically to 333

analyze a normal distribution of step sizes with zero mean; because the step size 334

distribution is dependent upon the diffusion model, the class of function used for the 335

prior and posterior will also be dependent upon the diffusion model. To modify this 336

framework for other diffusion models, users would therefore select new prior and 337

posterior distributions, and require a new equation for calculating the KL divergence for 338

a pair of distributions belonging to this mathematical function class (i.e. a replacement 339

for Eq 3). 340

Realistic intra-cellular transport is additionally complicated by the presence of active 341

transport and flow. Furthermore, the affects of confinement and characterization of the 342

physical properties of the cytoplasm (i.e. elasticity) can further complicate intra-cellular 343

dynamics. As these factors are not considered in the current implementation of our 344

framework, they will contribute to the error in the analysis of experimentally derived 345

trajectories. 346

Conclusion 347

Heterogeneity of diffusive dynamics may majorly impact the transport of essential 348

cellular substrates but remains largely uncharacterized. To shed light on the feasibility 349

of resolving spatial from stochastic drivers of diffusive heterogeneity in trajectory data, 350
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we developed a framework for predicting our ability to detect differences in diffusivity 351

under different experimental regimes. Our framework is intended to inform the design of 352

experiments characterizing the spatial dependence of diffusivity on sub-cellular location. 353
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