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Abstract  

In situations when our experience violates our predictions, it is adaptive to upregulate encoding 

of novel information, while down-weighting retrieval of erroneous memory predictions to 

promote an updated representation of the world. We asked whether mnemonic prediction 

errors promote distinct hippocampal processing ‘states’ by leveraging recent results showing 

that encoding and retrieval processes are supported by distinct patterns of connectivity, or 

‘states’, across hippocampal subfields. During fMRI scanning, participants were cued to retrieve 

well-learned room-images and were then presented with either an image identical to the 

learned room or a modified version (1-4 changes). We found that CA1-entorhinal connectivity 

increased, and CA1-CA3 connectivity decreased, with the number of changes to the learned 

rooms. Further, stronger memory predictions measured in CA1 during the cue correlated with 

the CA1-entorhinal connectivity increase in response to violations. Our findings provide a 

mechanism by which mnemonic prediction errors may drive memory updating - by biasing 

hippocampal states. 
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Introduction 

As our day unfolds, much of what we encounter is expected: we typically navigate to work or 

school along the same route, sit in the same seats in the same space and engage with the same 

people. However, layered on top of the repetition of similar places and events are novel or 

surprising events; and when we travel to unfamiliar places, we experience even more novelty. 

This interplay between similarity and novelty poses different demands on our memory system. 

On the one hand, the repeating aspects of each day may trigger the retrieval of related 

memories that may allow those memories to then serve as predictions to guide adaptive 

behavior (Bar, 2009; Lisman & Redish, 2009; Stachenfeld, Botvinick, & Gershman, 2017). By 

contrast, surprising events may shift the memory system towards encoding of those 

contextually novel events (Duncan, Sadanand, & Davachi, 2012; Hasselmo & Stern, 2014; 

Hasselmo, Wyble, & Wallenstein, 1996; Kumaran & Maguire, 2007b; Meeter, Murre, & 

Talamini, 2004). Intriguingly, the hippocampus has been proposed to mediate both the 

encoding of new events and the retrieval of previous related experiences (Eichenbaum, 

Yonelinas, & Ranganath, 2007; Marr, 1971; Scoville & Milner, 1957; Squire & Alvarez, 1995). 

However, at a mechanistic level, these processes require seemingly conflicting processes: new 

encoding benefits from plasticity in hippocampal networks while this kind of plasticity during 

retrieval may permanently alter the veracity of long-term memories (Hasselmo, Bodelón, & 

Wyble, 2002; Hasselmo & Stern, 2014; O’Reilly & McClelland, 1994). Furthermore, at the neural 

population level, encoding presumably requires that current experiences be represented in an 

activity pattern distinct from other stored memories, a process known as ‘pattern separation’ 

(O’Reilly & McClelland, 1994; Yassa & Stark, 2011). Retrieval, on the other hand, may be 

supported by the recovery of a previously encoded activity pattern, or ‘pattern completion’ 

(Knierim & Neunuebel, 2016; Marr, 1971; O’Reilly & McClelland, 1994; Treves & Rolls, 1994). 

Thus, a critical question is how can the hippocampal system balance these two seemingly 

opposing processes? And what factors may bias the hippocampus towards one over the other? 

(Colgin, 2016; Colgin et al., 2009; Duncan, Sadanand, et al., 2012; Duncan, Tompary, & Davachi, 

2014; Hasselmo & Stern, 2014; Hasselmo et al., 1996). 
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Current models of hippocampal function propose that communication along distinct 

CA1 pathways may be associated with encoding and retrieval ‘states’ (Colgin, 2016; Hasselmo 

et al., 2002; Hasselmo & Stern, 2014). Specifically, it has been proposed that, during encoding 

of novel experiences, input from the medial temporal cortical regions that receive numerous 

sensory inputs such as the entorhinal cortex (Burwell, 2000; McClelland, McNaughton, & 

Oreilly, 1995; Schultz, Sommer, & Peters, 2015; Suzuki & Amaral, 1994), may be prioritized by 

hippocampal area CA1. By contrast, during retrieval, CA1 may preferentially process input from 

hippocampal area CA3. CA3 neurons are highly-interconnected, a feature proposed to facilitate 

pattern completion and promote the retrieval of encoding related ensembles, which can then 

be conveyed to area CA1 (Marr, 1971; Montgomery & Buzsaki, 2007; Nakazawa et al., 2002; 

Norman & O’Reilly, 2003; O’Reilly & McClelland, 1994; Rolls, 2016; Treves & Rolls, 1994). 

Empirical work in rodents has shown that CA1-entorhinal coherence is higher in the fast-gamma 

band compared to the slow-gamma band, while CA1-CA3 coherence is higher in the slow versus 

fast gamma band, supporting a functional distinction between these pathways (Colgin et al., 

2009; Kemere, Carr, Karlsson, & Frank, 2013). These different gamma band frequencies have 

also been linked to different behaviors such as fast or slow running speed (Colgin, 2016; 

Kemere et al., 2013; Zheng, Bieri, Trettel, & Colgin, 2015). More recently, CA1 fast-gamma band 

activity was observed during learning of spatial routes in a maze, compared to slower-gamma 

activity evident during retrieval of learned routes (Lopes-dos-Santos et al., 2018). Further, CA1-

CA3 coherence has been shown to be enhanced in the central arm of a T-maze, potentially 

reflecting retrieval of the goal location (Montgomery & Buzsaki, 2007). Additional support of 

the dissociation between the two pathways comes from studies showing that CA1 coupling with 

entorhinal cortex and area CA3 occurs at different phases of a theta cycle (Fernández-Ruiz et 

al., 2017; Hasselmo et al., 2002; Hasselmo & Stern, 2014; Newman, Gillet, Climer, & Hasselmo, 

2013; Schomburg et al., 2014; Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009). 

Extending this theoretical and empirical framework to humans, we have recently shown, using 

functional magnetic resonance imaging (fMRI), that CA1-CA3 functional connectivity is 

significantly enhanced during episodic memory retrieval compared to novel associative 

encoding (Duncan et al., 2014). Importantly, the magnitude of CA1-CA3 connectivity during 
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retrieval predicted retrieval success (Duncan et al., 2014). Together, these results provide 

support for the idea that the hippocampus may shift between encoding and retrieval ‘states’ by 

modulating CA1 connectivity with distinct input regions. 

One prominent factor that may bias hippocampal dynamics towards encoding rather 

than retrieval is mnemonic prediction error (Hasselmo, Schnell, & Barkai, 1995; Hasselmo et al., 

1996; Meeter et al., 2004). There is now much work demonstrating that hippocampal activity 

increases when sequential predictions are violated (Axmacher et al., 2010; Chen, Cook, & 

Wagner, 2015; Kumaran & Maguire, 2006, 2007a). This increase has been localized to 

hippocampal area CA1 in both humans and rodents (Allen, Salz, McKenzie, & Fortin, 2016; Chen 

et al., 2015; Chen, Olsen, Preston, Glover, & Wagner, 2011; Duncan, Ketz, Inati, & Davachi, 

2012). One interpretation of this increased CA1 BOLD signal during mnemonic prediction errors 

is that it may facilitate the encoding of the novel, unexpected, information, and thus promote 

memory updating and the improvement of future predictions (Henson & Gagnepain, 2010; 

McClelland et al., 1995). Indeed, there is some behavioral evidence that mnemonic prediction 

errors facilitate episodic memory (Chen et al., 2015; Greve, Cooper, Kaula, Anderson, & Henson, 

2017).  We set out examine whether mnemonic prediction errors are associated with a shift in 

hippocampal processing towards an encoding state that prioritizes input from entorhinal cortex 

and away from a retrieval state (Colgin & Moser, 2010; Hasselmo & Stern, 2014; Meeter et al., 

2004; O’Reilly & McClelland, 1994). Furthermore, we aimed to link these effects with the 

quality of the prediction itself.  

To test these hypotheses, participants underwent extensive training to learn the 

furniture and layout of 30 distinct rooms. Then, in the fMRI scanner, we probed participants to 

retrieve each learned room by presenting a verbal cue (e.g. Johnsons boy’s bedroom), which 

was then followed by a room image that either matched the learned room image or included 

changes (Figure 1A).  We operationalized the retrieval of the image as a form of memory 

‘prediction’ and prediction errors were cases when the presented perceptual image was a 

violation of the actual learned image. Using high resolution imaging, we find that mnemonic 

prediction errors biased CA1 functional connectivity towards entorhinal cortex and away from 

subregion CA3. Moreover, the extent to which the hippocampus exhibited a shift into an 
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encoding state during mnemonic prediction errors correlated with the strength of the 

prediction. Taken together, these findings show that mnemonic prediction errors bias CA1 

functional connectivity, potentially to shift hippocampal processing to favor encoding and 

down-weight retrieval. 

 

 

 

 

 

 

Figure 1. Top: Trial example: participants were presented with a cue 
probing them to retrieve a room image that they had extensively 
learned prior to the scan. After a short delay, they saw a probe image 
that included 0-4 changes relative to the learned image (4 changes 
here), and indicated whether the seen image matched the learned 
image (see Methods). Bottom right: accuracy and reaction times (RTs) 
in the match task. 
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Results 

Behavior 

A full reporting of the behavioral results has been provided in Duncan et al. (2012) and is 

summarized here following a brief description of the task. We had 2 types of change-detection 

task: a Furniture task and a Layout task, in which participants indicated whether a change 

occurred in the identity or the layout of the furniture, correspondingly. On each trial, the room 

image included 0-2 task relevant changes and 0-2 irrelevant changes. For example, in the 

Furniture task there can be 2 task-relevant changes in the identity of the furniture, and 1 task-

irrelevant change in the layout of the furniture (see Methods). As reported in Duncan et al. 

(2012), A 2 (Task) by 3 (Relevant changes) by 3 (Irrelevant changes) repeated-measures ANOVA 

revealed that participants were more accurate in the Layout task compared to the Furniture 

task. Relevant changes did not interact with Task, however, introducing irrelevant changes did 

reduce accuracy in the Furniture task more than in the Layout task. Finally, relevant and 

irrelevant changes interacted, such that having no irrelevant changes increased accuracy, but 

only if there were no relevant changes as well (for more details, see Duncan et al., 2012). 

However, despite some differences in behavioral effects of irrelevant and relevant changes, 

CA1 BOLD response predominately tracked the total number of changes, irrespective of 

relevance to the task (Duncan et al., 2012). Thus, in subsequent analyses we collapse across 

relevant and irrelevant changes and report the behavioral and neural data as a function of the 

total number of changes. Accuracy data in the change-detection tasks were entered to a 5 

(Changes:  0-4) by 2 (Task: Furniture/Layout) repeated measures ANOVA. This ANOVA revealed 

main effects of Changes and Task, as well as an interaction (Changes: F(4,72) = 33.48, p < .001; 

Task: F(1,18) = 8.50, p < .01; Interaction:  F(4,72) = 3.24, p < .02). In both tasks, accuracy was highest 

when there was no change (0-change) and in the 4-changes conditions in comparison to the 1- 

to 3-changes conditions.  

Response times (RTs) also tracked the accuracy data: RTs were significantly shorter in 

the 0-changes and the 4-changes conditions compared to the 1- to 3-changes. These results 

reflect the relative ease of indicating “match” when there were no changes at all, or 

“mismatch” when there were many changes which provides support for the rooms having been 
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well learned. RTs were also entered into the same ANOVA as the accuracy data, which again 

revealed main effects of Changes and Task, and an interaction (Changes: F(4,72) = 5.83, p < .001; 

Task: F(1,18) = 7.57, p < .02; Interaction:  F(4,72) = 9.1, p < .001). Mean and SD of accuracy and RT in 

each of the number of changes and each task are provided in Table 1, and collapsed across 

tasks in Figure 1. Importantly, in the neural data we did not observe a main effect of Task nor 

an interaction between Task and Changes; thus, we collapsed across tasks (see Results). 

Accuracy:           
  

Task 
Number of changes 

0 1 2 3 4 
Layout .89 (.10) .69 (.09) .74 (.08) .75 (.10) .90 (.11) 
Furniture .88 (.10) .65 (.10) .68 (.10) .72 (.11) .77 (.17) 
        
Reaction times:      
  Number of changes 

Task 0 1 2 3 4 
Layout 2.29 (.34) 2.36 (.30) 2.37 (.27) 2.27 (.32) 2.04 (.37) 
Furniture 2.30 (.35) 2.42 (.30) 2.40 (.27) 2.28 (.29) 2.37 (.34) 

 

 

 

Mnemonic prediction errors decrease CA1-CA3 functional connectivity, while increasing CA1-

Entorhinal connectivity 

 

Functional connectivity was measured using a beta-series correlation approach (Rissman, 

Gazzaley, & D’Esposito, 2004). Prior to testing our main hypothesis, we conducted, in each pair 

of anatomically defined ROIs, a 5 (Changes: 0-4) by 2 (Task: Furniture/Layout) repeated-

measures ANOVA, to test whether collapsing across tasks is warranted. Indeed, there was no 

main effect of Task nor a Changes by Task interaction in functional connectivity between CA1-

CA3 (The CA3 ROI included CA2,CA3, and dentate gyrus ) or CA1-entorhinal, for the left and the 

right hemispheres (all p’s > .17). Given this, we collapsed across tasks for our main analyses. In 

the left hemisphere, we found an interaction between Changes (0-4) and ROI (entorhinal, CA3) 

using a repeated measures ANOVA (F(4,72) = 6.04, p < .001, ηp
2 = 0.25), confirming our prediction 

that the number of changes in the presented room differentially modulated CA1 connectivity 

Table 1. Accuracy rates and reaction times in the Layout and Furniture 
tasks. Reaction times are in seconds. SDs are in parentheses 
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with entorhinal cortex and area CA3 (Figure 2). However, the same ANOVA conducted on the 

right hemisphere did not reveal a significant interaction (p > .68; no main effect of Changes, p > 

.96; a main effect of ROI was observed, p < .005). This laterality of the interaction was also 

confirmed by a 3-way interaction of Hemisphere (right, left) by ROI (CA3, entorhinal), by 

Changes (0-4) (F(4,72) = 4.24, p < .005, ηp
2 = 0.19). Thus, due to the specificity of the interaction 

to the left hemisphere, further analyses were restricted to the left hemisphere ROIs.  

Having established that the number of changes differentially modulated connectivity in 

CA1 pathways, we moved on to examine the connectivity of CA1 with each region (entorhinal, 

CA3) separately. As predicted, a one-way ANOVA with the factor of Changes (0-4) revealed a 

significant increase in CA1-entorhinal connectivity as number of changes increased (F(4,72) = 

4.49, p < .003, ηp
2 = 0.20). By contrast, and again consistent with our predictions, CA1-CA3 

connectivity decreased as number of changes increased (F(4,72) = 3.58, p < .02, ηp
2 = 0.17). 

Although not the main aim of the current study, we sought to further characterize the 

observed connectivity changes. To that end, we asked, for each pair of ROIs (CA1-

entorhinal/CA1-CA3), whether connectivity changes correspond more to a linear trend, or 

rather to a simpler match < mismatch pattern. For each pair of ROIs, we constructed a mixed-

level model in which functional connectivity was the explained variable. As explaining variables, 

we included both a linear trend contrast in which the number of change (0-4) were coded as 

linearly increasing numbers, and a match < mismatch contrast, in which the 0-change condition 

(i.e., match to the learned image) was compared to the 1-4 changes conditions grouped 

together, treating all trials with any change identically (see Methods). We then compared this 

full model to either a model including only the linear trend contrast, or only the match < 

mismatch contrast. In CA1-entorhinal connectivity, we found that the full model significantly 

outperformed the linear model (c2 = 4.39, p < .05), but not the match < mismatch model (c2 = 

1.31, p > .25), suggesting that the match < mismatch contrast better describes CA1-entorhinal 

connectivity. For CA1-CA3 connectivity, the full mode significantly outperformed the match < 

mismatch model (c2 = 8.63, p < .005) but not the linear model (c2 = .59, p > .4), suggesting that 

CA1-CA3 connectivity may decrease linearly as number of changes increase. 
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Figure 2. Functional connectivity with region CA1. Top: mnemonic prediction errors 
decreased CA1-CA3 interaction, while increasing CA1-Entorhinal cortex interaction, 
potentially reflecting reduced processing of erroneous predictions, and up-regulating 
processing of sensory evidence. Bottom: functional connectivity of CA1 with region 
CA2/CA3/DG (blue) and Entorhinal (green), for each number of changes. F-transformed 
beta-series correlation was our measure of functional connectivity. Data are from the 
left hemisphere (see main text). ** p < .01, *** p < .005 
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Functional connectivity between CA1 and entorhinal cortex correlates with mnemonic prediction 
strength 
 
In the previous analysis, we operationalized mnemonic prediction error as increasing with the 

number of changes present in the probe room image. However, if the response is related to 

prediction error, per se, it should be modulated by the strength with which an individual uses 

the cue to internally generate the memory-based prediction. While participants were all 

extensively trained on all 30 rooms in the experiment, we could ask whether variance in 

mnemonic reinstatement across individuals correlates with CA1 connectivity in response to 

room alterations. To that end, we assessed whether the strength of the prediction, as 

estimated by the level of neural pattern similarity between a retrieved memory for a room 

compared to viewing of the same room, was related to the changes in connectivity between 

CA1 and entorhinal cortex or CA3 during prediction violations. Specifically, prediction-strength 

was estimated by correlating the multivariate BOLD activity pattern in CA1 during the 

presentation of each cue (e.g. ‘Johnson’s boy’s bedroom,’ to which participants were instructed 

to retrieve a memory of that room) with the activity pattern measured when participants 

actually viewed the same room (the 0-changes image of the corresponding room) and 

comparing it to the correlation with the pattern evoked by 0-changes images of other rooms. 

Thus, the strength of mnemonic prediction should be reflected by the degree to which cue 

periods (when memories are generated) are more correlated with viewing the same as 

compared to other rooms. This analysis was restricted to the left hemisphere, where we had 

already obtained significant connectivity differences with the number of changes (Figure 2). 

While we found that the correlation with the corresponding room was numerically higher than 

to the other rooms, the difference did not reach statistical significance (match: M = .004, SD = 

0.01; other: M = .0004, SD = .005; t(18) = 1.3, p = .11, one-tailed), suggesting large variance in 

reinstatement. Thus, in order to ask whether individual differences in prediction strength relate 

to increases in CA1-entorhinal connectivity in response to the altered room images, for each 

subject we took the match < mismatch contrast score (0-changes vs. all levels of changes) 

because this score best characterized increases in CA1-entorhinal connectivity when viewing 

altered rooms in our experiment. Second, taking a within-participant difference score rather 
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than a raw connectivity measure ensured that we are not simply using some baseline measure 

of participants’ connectivity but rather a within-participant measure of how much connectivity 

increased across experimental conditions. We found that prediction-strength in CA1 and the 

increase in CA1-entorhinal connectivity were significantly correlated (Pearson’s r =.51, p <.013, 

one-tailed; Figure 3), lending further support for our suggestion that functional connectivity 

increases are related to predictions and their violations. Prediction strength did not correlate 

with CA1-CA3 decreases in connectivity (linear decrease score, better accounting for 

connectivity changes between CA1 and CA3: r = .16, p = .74; match > mismatch score: r = -.12, p 

= .68; one-tailed). 

  

 

 
 

Figure 3. Top: CA1 prediction 
strength correlated with increase in 
functional connectivity between 
CA1 and Entorhinal cortex. As a 
connectivity measure, we took the 
mismatch - match contrast score 
for each participant (see main 
text).  Bottom: we quantified 
prediction strength by computing 
multivariate representational 
similarity between the cue part of a 
trial, and the match image of the 
same room (see main text for 
controlling for average “room” 
prediction by subtracting the 
similarity to match images of other 
rooms). 
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CA1 multivoxel activity patterns reflect mnemonic prediction errors 
 
The previous analysis demonstrated that, across participants, those with stronger memory 

reinstatement in CA1, and presumably stronger prediction errors during viewing changes in the 

rooms, also had higher CA1-entorhinal connectivity in response to such violations. While the 

previous result addresses participants’ mnemonic predictions, it does not directly examine 

participants’ prediction errors. Here, we estimated a mnemonic prediction error ‘signal’ in 

region CA1 by measuring the difference between participants’ multivoxel activity patterns 

during the cue (i.e. the mnemonic prediction) and during the violations. To assess the level of 

mnemonic prediction errors in CA1, we computed the correlation between the multivoxel 

activity patterns of the prediction during the memory cue and the violation when viewing the 

room in the same trial. First, correlation values were submitted to a repeated-measures 

ANOVA, with Changes (0-4) and Task (Furniture/Layout) as within-participant factors. Since no 

interaction was obtained, we collapsed across tasks for further analyses (F(4,72) = .36, n.s.). We 

found that pattern similarity in CA1 decreased as the number of changes increased (see Figure 

4). Interestingly, a match > mismatch contrast seemed to characterize the decrease slightly 

better than the linear contrast (match > mismatch: t(18) = 2.21, p = .04, Cohen’s d = .5; linear: 

t(18) = 1.54, p = .14, Cohen’s d = .35; see Figure 4). CA1 activity patterns thus are sensitive to the 

mismatch between a retrieved memory and perceptual input that is an altered version of that 

memory.   
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Discussion 

Behavioral and physiological work have implicated hippocampal processing in both laying down 

new memories and retrieving past memories (Eichenbaum, Yonelinas, & Ranganath, 2007; 

Hasselmo, Bodelón, & Wyble, 2002; Marr, 1971; O’Reilly & McClelland, 1994; Scoville & Milner, 

1957; Squire & Alvarez, 1995). The computational principles that underlie these processes are 

in conflict as encoding will benefit most from synaptic plasticity, while, during retrieval, 

plasticity may alter the memory trace and lead to inaccurate memory representations 

(Hasselmo et al., 1996; O’Reilly & McClelland, 1994; Treves & Rolls, 1994; Yassa & Stark, 2011). 

To address this apparent conundrum, it has been proposed that encoding and retrieval may be 

mediated by distinct hippocampal ‘states’ (Colgin, 2016; Hasselmo et al., 2002; Hasselmo & 

Figure 4. Mnemonic prediction errors in CA1. 
Top: Mnemonic prediction error was assessed 
by computing the pattern similarity between 
the cue and the probe parts of the trial. 
Bottom: CA1 similarity between the cue and 
the image decreased when changes were 
introduced in the images. * p < .05, ~ p < .1 
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Stern, 2014; Kay & Frank, 2018; Meeter et al., 2004). Specifically, recent work has linked 

functional coupling between CA1 and the entorhinal or perirhinal cortices with encoding and 

CA1-CA3 coupling with retrieval operations (Colgin et al., 2009; Duncan et al., 2014; Fernández-

Ruiz et al., 2017; Hasselmo & Stern, 2014; Kemere et al., 2013; Montgomery & Buzsaki, 2007; 

Newman et al., 2013; Schomburg et al., 2014; Tort et al., 2009; Zheng et al., 2015).  

Here we leveraged these findings to ask whether interactions between internal memory 

states and conflicting environmental evidence can dynamically modulate or bias hippocampal 

processing ‘states’ in predictable ways. To the extent that violations of expectations drive new 

learning or encoding, they should adaptively bias CA1 processing of inputs from medial 

temporal lobe (MTL) cortical regions. At the same time, these mnemonic prediction errors 

might down-weight projections from the now incorrect memory-based predictions from CA3 to 

CA1. To test that hypothesis, participants were cued to retrieve previously well-learned images 

of rooms. Memory retrieval was then followed by the visual presentation of images that either 

matched or mismatched the learned information (Methods and Results). Consistent with our 

hypothesis, we found that CA1 connectivity with entorhinal cortex increased as mnemonic 

prediction errors increased. This was accompanied by a decrease in CA1-CA3 connectivity for 

those same trials. Thus, mnemonic prediction errors do not simply lead to an overall general 

increase (or decrease) in functional connectivity of the CA1 region, but rather they selectively 

and differentially modulate processing along distinct hippocampal pathways.  

To support the notion that connectivity changes were related to participants’ internal 

memory predictions, we quantified prediction strength by examining the multi-voxel similarity 

in CA1 between a retrieved memory of a room and viewing of the room. We found that 

participants with better cued memory reinstatement showed a greater increase in CA1-

entorhinal connectivity in response to subsequent violations of the remembered rooms. These 

results suggest that an interplay between internal memory predictions and environmental 

evidence modulate further hippocampal processing ‘states’, potentially driving hippocampal 

processing towards an encoding ‘state’ and away from a ‘retrieval’ state (Colgin, 2016; 

Hasselmo et al., 1995, 1996; Meeter et al., 2004; O’Reilly & McClelland, 1994). Such state shifts 
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may prove to be an adaptive mechanism for memory updating: by reducing processing of 

erroneous retrieved predictions while up-regulating encoding of the novel sensory evidence.  

 How the hippocampus shifts between memory states is largely unknown. It is possible 

that both acetylcholine (ACh) and dopamine (DA) play a role in biasing hippocampal states 

(Duncan, Sadanand, et al., 2012; Giocomo & Hasselmo, 2007; Hasselmo, 2006; Lisman & Grace, 

2005; Meeter et al., 2004). Some models propose that novelty detection in the hippocampus 

upregulates ACh input, which in turn increases excitation in the CA1-entorhinal pathway, while 

dampening CA1-CA3 communication (Meeter et al., 2004; Newman et al., 2013). It has also 

been proposed that ACh input may further entrain theta and gamma frequencies associated 

with encoding versus retrieval states (Colgin et al., 2009; Hasselmo, 2006; Meeter et al., 2004; 

Newman et al., 2013; Vandecasteele et al., 2014). Another influential theory suggests that 

increased CA1 activity in response to prediction errors leads to an increase in activation in the 

ventral tegmental area (VTA), a primary source of DA, which in turn projects back to CA1 and 

entorhinal cortex (Lisman & Grace, 2005). Supporting evidence comes from fMRI studies 

showing concomitant hippocampal and VTA activation in response to novel and unexpected 

events (Bunzeck & Duezel, 2006; Wittmann, Bunzeck, Dolan, & Düzel, 2007) and VTA-CA1 

interactions were recently shown to mediate associative memory encoding (Tompary, Duncan, 

& Davachi, 2015; see also Shohamy & Adcock, 2010, for review). In rodents, injection of DA 

agonist to the CA1-entorhinal pathway increased the CA1 post-synaptic potential, suggesting 

that DA can increase CA1-entorhinal synaptic transmission (Vago, Bevan, & Kesner, 2007; cf. 

Otmakhova & Lisman, 1999). Thus, it is possible that CA1 activation leads to engagement of the 

postulated back-projection from VTA to CA1 and entorhinal cortex (Lisman & Grace, 2005) and 

serves to functionally couple these regions and enhance CA1-entorhinal connectivity. 

Consistent with that notion, we found that connectivity in CA1-entorhinal cortex was correlated 

with the strength of the memory predictions measured in area CA1. Namely, those participants 

who showed greater similarity between a viewed room and the rooms’ retrieval cue, our 

measure of a mnemonic prediction, also exhibited larger increases in CA1-entorhinal 

connectivity in response to presented rooms that contained changes, or violations, of the 

learned room. More work is needed, however, to better understand how neurotransmitters 
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such as DA, ACh, and potentially norepinephrine (Clewett, Huang, Velasco, Lee, & Mather, 

2018; Giocomo & Hasselmo, 2007; Kafkas & Montaldi, 2018) contribute to a shift in 

hippocampal connectivity with changing mnemonic demands. 

While the accounts discussed above place the CA1 region as the source of violation-

detection and connectivity changes (Chen et al., 2015; Duncan, Ketz, et al., 2012; Hasselmo et 

al., 2002, 1996; Kumaran & Maguire, 2007b, 2009; Lisman & Grace, 2005; Meeter et al., 2004), 

it is possible that prediction errors are also detected in earlier brain regions. Experimental and 

computational work in the predictive coding framework converge on the notion that high-level 

areas project top-down predictions to earlier visual cortices, where these predictions are then 

compared to incoming sensory information (Friston, 2005; Friston, 2018; Rao & Ballard, 1999). 

Consistent with this, after learning that a stimulus predicts another visual stimulus, greater 

activity was reported in visual cortex of both humans and monkeys in response to stimuli that 

violated such memory-based predictions, compared to stimuli that confirmed prior 

expectations (e.g. Kok, Jehee, & de Lange, 2012; Meyer & Olson, 2011: for recent reviews, see 

e.g., de Lange, Heilbron, & Kok, 2018; Ouden, Kok, & Floris, 2012). Moreover, it is now widely 

reported that memory reinstatement in cortical regions is correlated with hippocampal activity 

(Bosch, Jehee, Fernandez, & Doeller, 2014; Danker, Tompary, & Davachi, 2017; Hindy, Ng, & 

Turk-Browne, 2016; Kok & Turk-Browne, 2018; Long, Lee, & Kuhl, 2016; Ritchey, Wing, Labar, & 

Cabeza, 2012; Staresina, Henson, Kriegeskorte, & Alink, 2012). While fMRI studies cannot 

resolve the temporality of neural activity, a recent ECoG study found that memory 

reinstatement in visual processing regions preceded hippocampal reinstatement in humans 

(Lohnas et al., 2018). Together, these studies suggest that memory reinstatement, or 

predictions, may occur in early processing stages, and hence then influence subsequent 

hippocampal processing. Like memory-predictions, it is also possible that early prediction-error 

signals as those mentioned above may propagate forward to influence hippocampal processing 

(Henson & Gagnepain, 2010) and potentially mediate connectivity changes.  

 A critical assumption in models of CA1 function is that CA1 may be ideally suited to 

compare internal memory output with input from visual cortical regions representing ongoing 

visual experience (Hasselmo & Wyble, 1997; Hasselmo et al., 1996; Kumaran & Maguire, 2007b; 
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Lisman & Grace, 2005). While earlier investigations have reported increased BOLD signal during 

mnemonic prediction errors in the hippocampus and, specifically, in area CA1 (Chen et al., 

2015; Duncan, Ketz, et al., 2012; Kumaran & Maguire, 2006, 2007a), these studies did not 

specifically measure memory predictions in CA1, nor could they address the content of CA1 

processing. Thus, whether the content of CA1 processing indeed reflects predictions as well as 

incoming sensory input, or whether univariate findings reflect other violation-related processes 

remained unknown. Here, we found that in CA1, activity patterns during cued memory 

reinstatement were more similar to activity patterns during viewing the same image, compared 

to viewing an altered version of image (Results, Figure 4). This result suggests that the content 

of CA1 representations are sensitive to the difference between internal memory 

representations and sensory evidence, thus providing essential evidence to support the role of 

CA1 as a violation detector (Hasselmo & Wyble, 1997; Hasselmo et al., 1996; Kumaran & 

Maguire, 2007b, 2009; Lisman & Grace, 2005).  

 In summary, we found that mnemonic prediction errors biased hippocampal area CA1 

connectivity towards entorhinal cortex and away from area CA3. We propose that this bias may 

reflect a shift in hippocampal ‘states’ towards encoding of the novel sensory information and 

away from retrieval of erroneous memory-based predictions. How the hippocampus supports 

both encoding and retrieval is an intriguing question that has received increased attention in 

recent years (Colgin, 2016; Colgin & Moser, 2010; Duncan, Sadanand, et al., 2012; Hasselmo & 

Stern, 2014). The current results contribute to this on-going line of research by measuring 

hippocampal states in humans, and by suggesting that the interplay between memory 

reinstatement as a prediction and their subsequent violation, or mnemonic prediction errors, 

may be an important factor in biasing these states. Thus, in addition to understanding the 

distinct neural mechanisms that allow shifting between encoding and retrieval, future research 

should aim at understanding the psychological factors that may shift our cognitive system 

between these different mnemonic states (Duncan, Sadanand, et al., 2012; Hasselmo et al., 

2002; Meeter et al., 2004). 
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Methods 

Participants. Twenty participants were included in the current study (Mean age: 25.4 years). 

Further information can be found in Duncan et al. (2012), where the results of univariate 

analyses of these data were previously published. One participant was removed from all 

analyses due to substantial entorhinal dropout (see Regions of Interest). 

 

Procedure. In the training phase (~24h prior to scanning, and again before entering the 

scanner), participants were extensively trained to identify each of 30 named rooms (e.g., 

“Johnson’s boy bedroom”) to criteria (Duncan et al., 2012). While scanning, participants were 

employed in two change-detection tasks. In both tasks, the room’s name appeared for 1.5 s, 

followed by 1 s blank and a probe image (4 s). The probe image contained 0-2 changes in the 

individual pieces of furniture, along with 0-2 changes in the layout of the furniture, relative to 

the learned image, making a total of 0-4 changes per image. In the Furniture task, participants 

were asked to indicate whether all pieces of furniture were identical to the studied image. In 

the Layout task, participants were asked to indicate whether the layout of the furniture was 

identical to the learned image. This resulted in a 2 (Task: Furniture/Layout) by 5 (Changes: 0-4 

total changes) within-participant design. Each room appeared once in every trial type (9 trial 

types: 0/1/2 furniture changes by 0/1/2 layout changes), across both tasks, to make a total of 

270 trials. Here, we focused on total number of changes (0-4 total changes, see below). Thus, 

analysis was conducted on 30 trials in each of the 0 and 4 changes, 60 trials in the 1 and 3 

changes conditions, and 90 trials in the 2 changes condition (across both tasks). Tasks were 

blocked, such that each scan included one task (10 scans, 5 per task), and the blocks alternated 

between the Furniture and the Layout task. One participant had 8 blocks, and another had 7. 

The minimal number of trials per condition was 24 and 21, correspondingly, still allowing a 

meaningful analysis. Hence these participants were included in the analysis. 

 

FMRI parameters. Scanning was performed using a 3T Siemens Allegra MRI system. A high-

resolution EPI sequence was used to collect functional data (TR=2.5 s, TE=49 ms, FOV = 192 X 96 
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mm, 26 interleaved slices, distance factor of 20%, 1.5 X 1.5 X 2 mm voxel size). A T1-weighted 

high-resolution MPRAGE (1 X 1 X 1 mm voxel size) was used as an anatomical scan. 

 

Regions of Interest (ROIs). Anatomical ROIs were drawn manually by K.D. on each participant’s 

MPRAGE anatomical image, and were then registered to functional space. The same 

hippocampal ROIs (CA1, CA2/CA3/DG) reported in Duncan et al. (2012) were used here. These 

ROIs were drawn in a similar procedure to Kirwan et al. 2007 (Duncan, Ketz, et al., 2012; 

Kirwan, Jones, Miller, & Stark, 2007). The entorhinal cortex was drawn using guidelines 

discussed by (Insausti et al., 1998; Pruessner et al., 2002). ROIs were also masked to remove 

voxels with substantial signal dropout, a concern mainly in the entorhinal cortex (Carr, Rissman, 

& Wagner, 2010). One participant with only 12 voxels in the left entorhinal and 80 voxels in the 

right entorhinal was excluded from all analyses. All other participants had on average 234 

voxels in the left entorhinal ROI (range: 127-344), comprising 84% (range: 44%-93%) of the 

anatomical left entorhinal. In the right entorhinal ROI, participants averaged 255 (range: 165-

337) voxels, which were 87% (59%-95%) of the anatomical right entorhinal. 

 

Functional connectivity: fMRI beta-series correlation. Functional connectivity between regions 

was computed using a beta-series correlation approach (Rissman et al., 2004), in which a 

timeseries of single-trial parameter estimates in two regions are correlated. To obtain the 

single-trial estimates we used an LSS (Least-Square-Separate) approach (Mumford, Davis, & 

Poldrack, 2014; Mumford, Turner, Ashby, & Poldrack, 2012; Turner, Mumford, Poldrack, & 

Ashby, 2012). We reasoned that this approach would maximize our ability to capture the 

variance explained by the image portion of each trial (our focus of interest) and distinguish this 

variance from preceding cue part of each trial (the name of each room). Thus, in the first level 

analysis, a separate GLM was computed for each trial. Each model included the image portion 

of a single trial as a regressor of interest. The cue portion in all trials were included in one 

regressor of no interest. Other images were binned based on trial type to make 9 additional 

regressors of no interest. In all regressors, events were modeled as boxcars lasting for the 

duration of the event (1.5s for cues, 4s for images) convolved with a double gamma function to 
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approximate the hemodynamic response. A temporal derivative regressor was also added for 

each regressor. GLMs were implemented using FSL FEAT. This procedure yielded 270 parameter 

estimates, one for each trial. A t-stat was computed for each parameter estimate, and these 

were averaged, per each trial, across all voxels in each ROI (CA1, CA2/CA3/DG, entorhinal 

cortex, and perirhinal cortex, separately for right and left hemispheres). T-stats were then 

binned based on experimental conditions: number of changes (0-4) and task (Furniture/Layout) 

to make 10 t-series for each ROI.  We then computed functional connectivity between area CA1 

and the other brain regions of interest: CA2/3/DG and entorhinal cortex in each of the 10 

conditions separately for each hemisphere. The Pearson’s r values per each participant, 

condition and pair of ROIs were Fisher transformed and entered to the group-level analysis. 

 

CA1 mnemonic prediction strength analysis. In order to measure the strength of participants’ 

mnemonic predictions, we used a representational similarity analysis (RSA; Kriegeskorte, 

Goebel, & Bandettini, 2006; Kriegeskorte, Mur, & Bandettini, 2008). To obtain the multivoxel 

activity pattern for each cue, we used the same LSS procedure as for the images (see Functional 

connectivity: beta-series correlation). Each cue was allocated a separate GLM, which included 

one regressor of interest for the cue, and a few regressors of no interest: one regressor for all 

other cues, and 9 additional regressors modelling the images – one for every trial type. As with 

the image models, a time-derivative regressor was added for each regressor. Parameter 

estimates were then converted to t-statistics, which were taken to the RSA.  

To compute the strength of participants’ mnemonic predictions, we correlated the 

multivoxel activity pattern in CA1 observed in response to each room cue with the multivoxel 

activity pattern measured when participants viewed the intact room image (i.e., the 0-changes 

image). For example, the CA1 activity pattern in response to the verbal cue “Johnsons boy’s 

bedroom” was correlated with the CA1 activity in response to the intact image of Johnsons 

boy’s bedroom. To compute the similarity to the specific match image, while controlling for 

condition-level effects and general similarity to all 0-changes images, we computed, for each 

cue, the correlation between the activity pattern during the cue and the activity pattern of 

other 0-changes images, and averaged across these correlation values. Then, we subtracted this 
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average correlation with other 0-changes images from the correlation with the intact image 

corresponding to the cue (e.g., the intact image of Johnsons boy’s bedroom). This yielded, for 

each cue, a measure of how good the prediction of the specific corresponding room was, 

beyond overall similarity to a 0-changes image. This procedure further controlled for 

differences in average similarity values between participants, which is critical for a meaningful 

interpretation of across participant correlations of prediction strength with connectivity. Cues 

in some trials were excluded from this analysis: first, we excluded cues in the 0-changes 

condition. These cues were presented in the same trial as the corresponding intact image while 

all other 0-changes images were presented in other trials, thus we avoided comparing within-

trial similarity to across-trial similarity. Second, we excluded cues and intact images that were 

presented in the same scan to avoid inflating similarity values within the same scan (Mumford 

et al., 2014). Third, we only took cues in which the cue and the intact image were presented in 

the same task, to avoid introducing task differences between the cue and the image. For each 

participant, the correlation values between the cues that entered the analysis and their 

corresponding 0-changes images (other 0-changes images subtracted, as detailed above) were 

averaged and Fisher-transformed to obtain a prediction index per participant. These values 

were then used to correlate the prediction strength with CA1-entorhinal connectivity. As a 

connectivity measure summarizing the change in connectivity in response to mnemonic 

prediction errors per participant, we used the match < mismatch contrast score, computed by 

multiplying, per participant, the connectivity in the 0-changes condition by -1, and each of the 

number of changes (1-4) by .25, and summing these values (see also below). This contrast 

revealed to well characterize CA1-entorhinal connectivity (see Results).  

 

CA1 multivariate mnemonic prediction error analysis. To further support our hypothesis that 

mnemonic prediction errors modulate hippocampal connectivity, we aimed to compute a 

measure of mnemonic prediction error in our study. To this end, we correlated the CA1 activity 

pattern during the presentation of each cue when participants were instructed to retrieve a 

memory of the cued room (i.e., the mnemonic prediction) with the CA1 activity pattern 

measured when viewing the probe image on each trial (the sensory evidence). We reasoned 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

that the difference between the representation of the mnemonic prediction and that of the 

sensory evidence can be interpreted as mnemonic prediction error. We averaged this value 

across all the trials within each number of changes (0-4), and separately in each task, and 

Fisher-transformed these correlation values for statistical analysis. If indeed participants 

retrieved the intact image on each trial, we predicted a decrease in similarity, or increased 

prediction error, as number of changes increased, reflecting larger divergence between the 

retrieved memory and the sensory evidence. 

 

Statistical tests for the functional connectivity analysis. In the group-level analysis of the 

functional connectivity data (beta-series correlation), Fisher-transformed r values in each pair 

of ROIs were entered to a 5 (Changes: 0-4) by 2 (Task: Furniture/Layout) repeated-measures 

ANOVA. We saw no interaction between Task and Changes in CA1 connectivity with either CA3 

or entorhinal cortex. Thus, for CA1-CA3 and CA1-entorhinal, for each participant in each 

number of changes, we collapsed across tasks to obtain an average beta-series correlation 

value. To directly test our hypothesis that mnemonic prediction errors modulate CA1 

connectivity with CA3 vs. entorhinal cortex, we conducted a 5 (Changes: 0-4) by 2 (ROI: CA3 vs. 

entorhinal) repeated-measures ANOVA. Where a Changes by ROI interaction was observed, we 

tested how Changes (0-4) influenced connectivity separately in each pair of ROIs (CA1-CA3, 

CA1-entorhinal), using a one-way repeated-measures ANOVA. 

Although we had no specific hypothesis regarding the shape of the increase or decrease 

in connectivity, we sought to further characterize connectivity changes. We asked whether 

connectivity changed linearly with number of changes, or, alternatively, whether changes may 

reflect a binary match-mismatch signal, whereby any level of change is different from no-

changes at all, with no or little difference between level of changes. To that end, we defined a 

linear contrast by allocating for each number of changes (0,1,2,3,4) linear-trend values (-2,-

1,0,1,2) correspondingly. The match < mismatch contrast was defined as by coding the 0-

changes condition as -1, whereas the 1-4 changes conditions were coded 0.25 each. We directly 

compared the linear trend contrast to the match < mismatch contrast by using a mixed-effects 

model approach as implemented by lmer function in R (Bates, Mächler, Bolker, & Walker, 
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2014). We included both contrasts as explanatory variables in the same model (the beta series 

correlation value per participant per number of changes was the explained variable) and then 

compared this full model to either a model including only the linear trend contrast, or only the 

match < mismatch contrast (match < mismatch was treated as a factor, an intercept per 

participant was included in all models). This analysis thus examines whether one contrast 

significantly explains variance above and beyond the other contrast. 

 

Statistical tests for the prediction strength and mnemonic prediction error analyses. The 

significance of the correlation of prediction strength with functional connectivity was tested 

using a one-tailed t-test for Pearson’s correlation. One-tailed was used since there was a clear 

prediction that stronger predictions would correlate with connectivity changes. 

For the mnemonic prediction error analysis, we first entered the Fisher-transformed 

similarity values to a 5 (Changes: 0-4) by 2 (Task: Furniture/Layout) repeated-measures ANOVA. 

To preview, since there was no interaction between Changes and Task in CA1, we collapsed 

across Task in all further analyses. Like in the functional connectivity analysis, we then 

estimated this decrease using a linear trend analysis, as well as a match < mismatch analysis, 

using the same contrasts as described above. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

References 

Allen, T. A., Salz, D. M., McKenzie, S., & Fortin, N. J. (2016). Nonspatial Sequence Coding in CA1 

Neurons. Journal of Neuroscience, 36(5), 1547–1563. 

https://doi.org/10.1523/JNEUROSCI.2874-15.2016 

Axmacher, N., Cohen, M. X., Fell, J., Haupt, S., Dümpelmann, M., Elger, C. E., … Ranganath, C. 

(2010). Intracranial EEG Correlates of Expectancy and Memory Formation in the Human 

Hippocampus and Nucleus Accumbens. Neuron, 65(4), 541–549. 

https://doi.org/10.1016/j.neuron.2010.02.006 

Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern Separation in the Human 

Hippocampal CA3 and Dentate Gyrus. 319, 1640–1643. 

https://doi.org/10.1126/science.1152882 

Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the 

Royal Society of London. Series B, Biological Sciences, 364(1521), 1235–1243. 

https://doi.org/10.1098/rstb.2008.0310 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using 

lme4. 67(1). https://doi.org/10.18637/jss.v067.i01 

Bosch, S. E., Jehee, J. F. M., Fernandez, G., & Doeller, C. F. (2014). Reinstatement of Associative 

Memories in Early Visual Cortex Is Signaled by the Hippocampus. Journal of Neuroscience, 

34(22), 7493–7500. https://doi.org/10.1523/JNEUROSCI.0805-14.2014 

Bunzeck, N., & Duezel, E. (2006). Absolute Coding of Stimulus Novelty in the Human Substantia 

Nigra / VTA. Neuron, 369–379. https://doi.org/10.1016/j.neuron.2006.06.021 

Burwell, D. (2000). The Parahippocampal Region: Corticocortical Connectivity. Annals of the 

New York Academy of Sciences, 911(1), 25–42. https://doi.org/10.1111/j.1749-

6632.2000.tb06717.x 

Carr, V. A., Rissman, J., & Wagner, A. D. (2010). Imaging the Human Medial Temporal Lobe with 

High-Resolution fMRI. Neuron, 65(3), 298–308. 

https://doi.org/10.1016/j.neuron.2009.12.022 

Chanales, A. J. H., Oza, A., Favila, S. E., & Kuhl, B. A. (2017). Overlap among Spatial Memories 

Triggers Repulsion of Hippocampal Representations Article Overlap among Spatial 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Memories Triggers Repulsion of Hippocampal Representations. Current Biology, 27(15), 

2307–2317. https://doi.org/10.1016/j.cub.2017.06.057 

Chen, J., Cook, P. A., & Wagner, A. D. (2015). Prediction strength modulates responses in 

human area CA1 to sequence violations. Journal of Neurophysiology, jn.00149.2015. 

https://doi.org/10.1152/jn.00149.2015 

Chen, J., Olsen, R. K., Preston, A. R., Glover, G. H., & Wagner, A. D. (2011). Associative retrieval 

processes in the human medial temporal lobe: hippocampal retrieval success and CA1 

mismatch detection. Learning & Memory (Cold Spring Harbor, N.Y.), 18(8), 523–528. 

https://doi.org/10.1101/lm.2135211 

Clewett, D., Huang, R., Velasco, R., Lee, T.-H., & Mather, M. (2018). Locus coeruleus activity 

strengthens prioritized memories under arousal. The Journal of Neuroscience, 2097–17. 

https://doi.org/10.1523/JNEUROSCI.2097-17.2017 

Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4), 

239–249. https://doi.org/10.1038/nrn.2016.21 

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … Moser, E. I. (2009). 

Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 

462(7271), 353–357. https://doi.org/10.1038/nature08573 

Colgin, L. L., & Moser, E. I. (2010). Gamma Oscillations in the Hippocampus. Physiology, 25(5), 

319–329. https://doi.org/10.1152/physiol.00021.2010 

Danker, J. F., Tompary, A., & Davachi, L. (2017). Trial-by-Trial Hippocampal Encoding Activation 

Predicts the Fidelity of Cortical Reinstatement During Subsequent Retrieval. (July), 3515–

3524. https://doi.org/10.1093/cercor/bhw146 

de Lange, F. P., Heilbron, M., & Kok, P. (2018). How Do Expectations Shape Perception ? Trends 

in Cognitive Sciences, 22(9), 764–779. https://doi.org/10.1016/j.tics.2018.06.002 

Duncan, K. D., Ketz, N., Inati, S. J., & Davachi, L. (2012). Evidence for area CA1 as a 

match/mismatch detector: A high-resolution fMRI study of the human hippocampus. 

Hippocampus, 22(3), 389–398. https://doi.org/10.1002/hipo.20933 

Duncan, K. D., Sadanand, A., & Davachi, L. (2012). Memory’s Penumbra: Episodic memory 

decisions induce lingering mnemonic biases. Science, 337(6093), 485–487. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

https://doi.org/10.1126/science.1221936 

Duncan, K. D., Tompary, A., & Davachi, L. (2014). Associative Encoding and Retrieval Are 

Predicted by Functional Connectivity in Distinct Hippocampal Area CA1 Pathways. Journal 

of Neuroscience, 34(34), 11188–11198. https://doi.org/10.1523/JNEUROSCI.0521-14.2014 

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and 

recognition memory. Annual Review of Neuroscience, 30, 123–152. 

https://doi.org/10.1146/annurev.neuro.30.051606.094328 

Favila, S. E., Chanales, A. J. H., & Kuhl, B. A. (2016). Experience-dependent hippocampal pattern 

differentiation prevents interference during subsequent learning. Nature Communications, 

6, 1–10. https://doi.org/10.1038/ncomms11066 

Fernández-Ruiz, A., Oliva, A., Nagy, G. A., Maurer, A. P., Berényi, A., & Buzsáki, G. (2017). 

Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma 

Coupling. Neuron, 93(5), 1213-1226.e5. https://doi.org/10.1016/j.neuron.2017.02.017 

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society 

B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622 

Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 1019–

1021. https://doi.org/10.1038/s41593-018-0200-7 

Giocomo, L. M., & Hasselmo, M. E. (2007). Neuromodulation by glutamate and acetylcholine 

can change circuit dynamics by regulating the relative influence of afferent input and 

excitatory feedback. Molecular Neurobiology, 36(2), 184–200. 

https://doi.org/10.1007/s12035-007-0032-z 

Greve, A., Cooper, E., Kaula, A., Anderson, M. C., & Henson, R. (2017). Does prediction error 

drive one-shot declarative learning? Journal of Memory and Language, 94, 149–165. 

https://doi.org/10.1016/j.jml.2016.11.001 

Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in 

Neurobiology, 16(6), 710–715. https://doi.org/10.1016/j.conb.2006.09.002 

Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A Proposed Function for Hippocampal 

Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior 

Learning. Neural Computation, 14(4), 793–817. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

https://doi.org/10.1162/089976602317318965 

Hasselmo, M. E., Schnell, E., & Barkai, E. (1995). Dynamics of learning and recall at excitatory 

recurrent synapses and cholinergic modulation in rat hippocampal region CA3. Journal of 

Neuroscience, 15(7), 5249–5262. 

Hasselmo, M. E., & Stern, C. E. (2014). Theta rhythm and the encoding and retrieval of space 

and time. NeuroImage, 85, 656–666. https://doi.org/10.1016/j.neuroimage.2013.06.022 

Hasselmo, M. E., & Wyble, B. P. (1997). Free recall and recognition in a network model of the 

hippocampus : simulating effects of scopolamine on human memory function. Behavioural 

brain research, 89(1-2), 1-34. 

 Hasselmo, M. E., Wyble, B. P., & Wallenstein, G. V. (1996). Encoding and Retrieval of Episodic 

Memories: Role of Cholinergic and GABAergic Modulation in the Hippocampus. 

Hippocampus, 6(6), 693-708. 

Henson, R. N., & Gagnepain, P. (2010). Predictive, Interactive Multiple Memory Systems. 

Hippocampus, 20(11), 1315–1326. https://doi.org/10.1002/hipo.20857 

Hindy, N. C., Ng, F. Y., & Turk-Browne, N. B. (2016). Linking pattern completion in the 

hippocampus to predictive coding in visual cortex. Nature Neuroscience, 19(5), 665–667. 

https://doi.org/10.1038/nn.4284 

Insausti, R., Juottonen, K., Soininen, H., Insausti, A. M., Partanen, K., Vainio, P., … Pitkänen, A. 

(1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar 

cortices. American Journal of Neuroradiology, 19(4), 659–671. 

Kafkas, A., & Montaldi, D. (2018). How do memory systems detect and respond to novelty? 

Neuroscience Letters, 680, 60-68. https://doi.org/10.1016/j.neulet.2018.01.053 

Kay, K., & Frank, L. M. (2018). Three brain states in the hippocampus and cortex. Hippocampus. 

https://doi.org/10.1002/hipo.22956 

Kemere, C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Rapid and Continuous Modulation 

of Hippocampal Network State during Exploration of New Places. PLoS ONE, 8(9), e73114. 

https://doi.org/10.1371/journal.pone.0073114 

Ketz, N., Morkonda, S. G., & Reilly, R. C. O. (2013). Theta Coordinated Error-Driven Learning in 

the Hippocampus. 9(6). https://doi.org/10.1371/journal.pcbi.1003067 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Kirwan, C. B., Jones, C. K., Miller, M. I., & Stark, C. E. L. (2007). High-resolution fMRI 

investigation of the medial temporal lobe. Human Brain Mapping, 28(10), 959–966. 

https://doi.org/10.1002/hbm.20331 

Knierim, J. J., & Neunuebel, J. P. (2016). Tracking the flow of hippocampal computation: Pattern 

separation, pattern completion, and attractor dynamics. Neurobiology of Learning and 

Memory, 129, 38–49. https://doi.org/10.1016/j.nlm.2015.10.008 

Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less Is More: Expectation Sharpens 

Representations in the Primary Visual Cortex. Neuron, 75(2), 265–270. 

https://doi.org/10.1016/j.neuron.2012.04.034 

Kok, P., & Turk-Browne, N. B. (2018). Associative Prediction of Visual Shape in the 

Hippocampus. The Journal of Neuroscience, 38(31), 6888–6899. 

https://doi.org/10.1523/JNEUROSCI.0163-18.2018 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain 

mapping. Proceedings of the National Academy of Sciences of the United States of America, 

103(10), 3863–3868. https://doi.org/10.1073/pnas.0600244103 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - 

connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. 

https://doi.org/10.3389/neuro.06.004.2008 

Kumaran, D., & Maguire, E. A. (2006). An unexpected sequence of events: Mismatch detection 

in the human hippocampus. PLoS Biology, 4(12), 2372–2382. 

https://doi.org/10.1371/journal.pbio.0040424 

Kumaran, D., & Maguire, E. A. (2007a). Match-mismatch processes underlie human 

hippocampal responses to associative novelty. Journal of Neuroscience, 27(32), 8517–

8524. https://doi.org/10.1523/jneurosci.1677-07.2007 

Kumaran, D., & Maguire, E. A. (2007b). Which Computational Mechanism Operate in the 

Hippocampus During Novelty Detection? Hippocampus, 17, 735–748. 

https://doi.org/10.1002/hipo 

Kumaran, D., & Maguire, E. A. (2009). Novelty signals: a window into hippocampal information 

processing. Trends in Cognitive Sciences, 13(2), 47–54. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

https://doi.org/10.1016/j.tics.2008.11.004 

Leutgeb, J. K., Leutgeb, S., Moser, M., & Moser, E. I. (2007). Pattern Saparation in the Dentate 

Gyrus and CA3 of the Hippocampus. Science, 315(5814), 961–966. 

https://doi.org/10.1126/science.1135801 

Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of 

information into long-term memory. Neuron, 46(5), 703–713. 

https://doi.org/10.1016/j.neuron.2005.05.002 

Lisman, J. E., & Redish, A. D. (2009). Prediction, sequences and the hippocampus. Philosophical 

Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1193–

1201. https://doi.org/10.1098/rstb.2008.0316 

Lohnas, L. J., Duncan, K. D., Doyle, W. K., Thesen, T., Devinsky, O., & Davachi, L. (2018). Time-

resolved neural reinstatement and pattern separation during memory decisions in human 

hippocampus. Proceedings of the National Academy of Sciences, 115(31), E7418–E7427. 

https://doi.org/10.1073/pnas.1717088115 

Long, N. M., Lee, H., & Kuhl, B. A. (2016). Hippocampal mismatch signals are modulated by the 

strength of neural predictions and their similarity to outcomes. Journal of Neuroscience, 

36(50), 1850–16. https://doi.org/10.1523/JNEUROSCI.1850-16.2016 

Lopes-dos-Santos, V., van de Ven, G. M., Morley, A., Trouche, S., Campo-Urriza, N., & Dupret, D. 

(2018). Parsing Hippocampal Theta Oscillations by Nested Spectral Components during 

Spatial Exploration and Memory-Guided Behavior. Neuron, 940–952. 

https://doi.org/10.1016/j.neuron.2018.09.031 

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: a network model of category 

learning. Psychological Review, 111(2), 309–332. https://doi.org/10.1037/0033-

295X.111.2.309 

Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the 

Royal Society of London. Series B, Biological Sciences, 262(841), 23–81. 

McClelland, J. L. (2013). Incorporating Rapid Neocortical Learning of New Schema-Consistent 

Information Into Complementary Learning Systems Theory. Journal of Experimental 

Psychology-General, 142(4), 1190–1210. https://doi.org/10.1037/a0033812 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

McClelland, J. L., McNaughton, B. L., & Oreilly, R. C. (1995). Why there are complementary 

learning-systems in the hippocampus and neocortex – insights from the success and 

failures of connectionist models of learning and memory. Psychological Review, 102(3), 

419–457. https://doi.org/10.1037/0033-295x.102.3.419 

Meeter, M., Murre, J. M. J., & Talamini, L. M. (2004). Mode shifting between storage and recall 

based on novelty detection in oscillating hippocampal circuits. Hippocampus, 14(6), 722–

741. https://doi.org/10.1002/hipo.10214 

Meyer, T., & Olson, C. R. (2011). Statistical learning of visual transitions in monkey 

inferotemporal cortex. Proceedings of the National Academy of Sciences, 108(48), 19401–

19406. https://doi.org/10.1073/pnas.1112895108 

Montgomery, S. M., & Buzsaki, G. (2007). Gamma oscillations dynamically couple hippocampal 

CA3 and CA1 regions during memory task performance. Proceedings of the National 

Academy of Sciences, 104(36), 14495–14500. https://doi.org/10.1073/pnas.0701826104 

Mumford, J. A., Davis, T., & Poldrack, R. A. (2014). The impact of study design on pattern 

estimation for single-trial multivariate pattern analysis. NeuroImage, 103, 130–138. 

https://doi.org/10.1016/j.neuroimage.2014.09.026 

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD 

activation in event-related designs for multivoxel pattern classification analyses. 

NeuroImage, 59(3), 2636–2643. https://doi.org/10.1016/j.neuroimage.2011.08.076 

Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., … 

Tonegawa, S. (2002). Requirement for Hippocampal CA3 NMDA Receptors in Associative 

Memory Recall. Science, 297(5579), 211–218. 

Newman, E. L., Gillet, S. N., Climer, J. R., & Hasselmo, M. E. (2013). Cholinergic Blockade 

Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta 

Frequency Consistent with Behavioral Effects on Encoding. Journal of Neuroscience, 33(50), 

19635–19646. https://doi.org/10.1523/JNEUROSCI.2586-13.2013 

Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to 

recognition memory: a complementary-learning-systems approach. Psychol Rev, 110(4), 

611–646. https://doi.org/10.1037/0033-295X.110.4.611 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and 

recall: Avoiding a trade-off. Hippocampus, 4(6), 661–682. 

https://doi.org/10.1002/hipo.450040605 

Otmakhova, N. A., & Lisman, J. E. (1999). Dopamine selectively inhibits the direct cortical 

pathway to the CA1 hippocampal region. Journal of Neuroscience, 19(4), 1437–

1445.http://www.ncbi.nlm.nih.gov/pubmed/9952420 

den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How prediction errors shape perception, 

attention, and motivation. Frontiers in Psychology, 3, 548. 

https://doi.org/10.3389/fpsyg.2012.00548 

Pruessner, J. C., Kohler, S., Crane, J., Pruessner, M., Lord, C., Byrne, A., … Evans, A. C. (2002). 

Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-

resolution MR images: considering the variability of the collateral sulcus. Cereb Cortex, 

12(12), 1342–1353. https://doi.org/10.1093/cercor/12.12.1342 

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rao, R. P., & Ballard, D. H. (1999). Hierarchical Predictive Coding Model Hierarchical Predictive 

Coding of Natural Images. Nature Neuroscience, 2(1), 79–87. 

Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during 

distinct stages of a cognitive task. Neuroimage, 23(2), 752–763. 

https://doi.org/10.1016/j.neuroimage.2004.06.035 

Ritchey, M., Wing, E. A., Labar, K. S., & Cabeza, R. (2012). Neural Similarity Between Encoding 

and Retrieval is Related to Memory Via Hippocampal Interactions. Cerebral Cortex, 23(12), 

2818–2828. https://doi.org/10.1093/cercor/bhs258 

Rolls, E. T. (2016). Pattern separation, completion, and categorisation in the hippocampus and 

neocortex. Neurobiology of Learning and Memory, 129, 4–28. 

https://doi.org/10.1016/j.nlm.2015.07.008 

Schomburg, E. W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C. A., Koch, C., & 

Buzsáki, G. (2014). Theta Phase Segregation of Input-Specific Gamma Patterns in 

Entorhinal-Hippocampal Networks. Neuron, 84(2), 470–485. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

https://doi.org/10.1016/j.neuron.2014.08.051 

Schultz, H., Sommer, T., & Peters, J. (2015). The Role of the Human Entorhinal Cortex in a 

Representational Account of Memory. Frontiers in Human Neuroscience, 9(November), 1–

8. https://doi.org/10.3389/fnhum.2015.00628 

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. 

Journal of Neurology, Neurosurgury and Psychiatry, 20(1), 11–21. Retrieved from %3CGo 

Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive 

Sciences, 14(10), 464–472. https://doi.org/10.1016/j.tics.2010.08.002 

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, 

H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and 

implementation as FSL. NeuroImage, 23 Suppl 1, S208-19. 

https://doi.org/10.1016/j.neuroimage.2004.07.051 

Squire, L. R., & Alvarez, P. (1995). Reterograde amnesia and memory consolidation: a 

neurobiological persepctive. Current Opinion in Neurobiology, (5), 169–177. 

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive 

map. Nature Neuroscience, 20(11), 1643–1653. https://doi.org/10.1038/nn.4650 

Staresina, B. P., Henson, R. N. A., Kriegeskorte, N., & Alink, A. (2012). Episodic reinstatement in 

the medial temporal lobe. Journal of Neuroscience, 32(50), 18150–18156. 

https://doi.org/10.1523/JNEUROSCI.4156-12.2012 

Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque 

monkey: Cortical afferents. Journal of Comparative Neurology, 350, 497–533. 

https://doi.org/10.1002/cne.903500402 

Tompary, A., Duncan, K. D., & Davachi, L. (2015). Consolidation of Associative and Item Memory 

Is Related to Post-Encoding Functional Connectivity between the Ventral Tegmental Area 

and Different Medial Temporal Lobe Subregions during an Unrelated Task. Journal of 

Neuroscience, 35(19), 7326–7331. https://doi.org/10.1523/JNEUROSCI.4816-14.2015 

Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-

gamma coupling increases during the learning of item-context associations. Proceedings of 

the National Academy of Sciences, 106(49), 20942–20947. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

https://doi.org/10.1073/pnas.0911331106 

Treves, A., & Rolls, E. T. (1994). Computational Analysis of the role of hippocampus in memory. 

Hippocampus, 4(3), 374–391. 

Turner, B. O., Mumford, J. A., Poldrack, R. A., & Ashby, F. G. (2012). Spatiotemporal activity 

estimation for multivoxel pattern analysis with rapid event-related designs. Neuroimage, 

62(3), 1429–1438. https://doi.org/10.1016/j.neuroimage.2012.05.057 

Vago, D. R., Bevan, A., & Kesner, R. P. (2007). The Role of the Direct Perforant Path Input to the 

CA1 Subregion of the Dorsal Hippocampus in Memory Retention and Retrieval. 

Hippocampus, 17, 977–987. https://doi.org/10.1038/mp.2011.182.doi 

Vandecasteele, M., Varga, V., Berényi, A., Papp, E., Barthó, P., & Venance, L. (2014). 

Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and 

enhances theta oscillations in the hippocampus. Proceedings of the National Academy of 

Sciences, 111(37), 13535-13540. https://doi.org/10.1073/pnas.1411233111 

Wittmann, B. C., Bunzeck, N., Dolan, R. J., & Düzel, E. (2007). Anticipation of novelty recruits 

reward system and hippocampus while promoting recollection. Neuroimage, 38(1), 194–

202. https://doi.org/10.1016/j.neuroimage.2007.06.038 

Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in 

Neurosciences, 34(10), 515–525. https://doi.org/10.1016/j.tins.2011.06.006 

Zheng, C., Bieri, K. W., Trettel, S. G., & Colgin, L. L. (2015). The relationship between gamma 

frequency and running speed differs for slow and fast gamma rhythms in freely behaving 

rats. Hippocampus, 25(8), 924–938. https://doi.org/10.1002/hipo.22415 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/740563doi: bioRxiv preprint 

https://doi.org/10.1101/740563
http://creativecommons.org/licenses/by-nc-nd/4.0/

