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Abstract 11 

Biological products of importance in food (f.i. milk) and medical (f.i. donor blood derived products) 12 

sciences often correspond to mixtures of samples contributed by multiple individuals.  Identifying 13 

which individuals contributed to the mixture and in what proportions may be of interest in several 14 

circumstances.  We herein present a method that allows to do this by shallow whole genome 15 

sequencing of the DNA in mixed samples from hundreds of donors.  We demonstrate the efficacy of 16 

the approach for the detection of cows with subclinical mastitis by analysis of farms’ tank mixtures 17 

containing milk from as many as 500 cows.               18 

 19 

Introduction 20 

Mastitis, i.e. the inflammation of the udder, is the most important health issue in dairy cattle.  It is 21 

estimated to cost European farmers > 1 billion € per year in treatment and milk loss (Hogeveen et al., 22 

2011).  Upon inflammation, immune cells migrate in the udder and milk.  While milk from healthy 23 

cows typically contains > 100,000 cells per milliliter (ml) of milk, these numbers (referred to as Somatic 24 

Cell Counts or SCC) typically increase into the millions in case of mastitis.   Prior to the manifestation 25 

of overt clinical symptoms, SCC progressively increase in the milk of cows developing mastitis:   SCC ≥ 26 

200,000 are typically considered to be a sign of pre- or sub-clinical mastitis.   Both yield and quality of 27 

the milk of cows with subclinical mastitis is reduced (Schukken et al., 2003). Mastitis is routinely 28 

managed by periodically counting SCC in milk samples to preemptively identify cows developing 29 

subclinical udder inflammation. As profit margins decrease, farmers tend to forgo milk testing thereby 30 

compromising health management. Cost-effective alternatives for rapid detection of cows with 31 

subclinical mastitis are hence needed (Viguier et al., 2009).   32 

The milk obtained from individual cows is typically collected in one or more large “milk tanks” on the 33 

farm, before being shipped to dairy factories.  We previously proposed that somatic cell counts (SCC) 34 
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in the milk of individual cows could be estimated by measuring the allelic frequencies in the tank milk 35 

for sufficient numbers of SNPs, provided that all cows contributing milk to the tank be genotyped once 36 

for the corresponding variants.  Thus, the proposed method would allow the identification of a 37 

minority of cows with subclinical mastitis by regularly analyzing a single sample containing a mixture 38 

of milk from all the cows on the farm, hence dramatically reducing costs.  Prior to ~2010 estimation 39 

of breeding values to select the best dairy sires and dams used pedigree-based estimates of kinship.  40 

Since then, selection methods increasingly use genome-wide SNP information in a process referred to 41 

as “genomic selection” (GS) (Georges et al., 2019).  As GS is becoming routine in dairy cattle (including 42 

for dams), herds that are fully genotyped with genome-wide SNP arrays are becoming standard, and 43 

the proposed method feasible.  We herein demonstrate that by combining low density SNP 44 

genotyping or shallow sequencing of the cows and tank milk’s DNA with in silico genotype imputation, 45 

individual SCC can be accurately determined and cows with subclinical mastitis effectively identified 46 

even in the largest farms (≥ 500).  The proposed method has the potential to dramatically improve 47 

the monitoring of udder health in dairy farms, and to allow the tracing of the origin of bulk animal 48 

food products other than milk.     49 

 50 

Results 51 

Principle of the proposed method. Assume that cows and tank (i.e. the reservoir in which the milk of 52 

the cows is collected) milk are genotyped for a collection of SNPs.  Assume that the interrogated SNPs 53 

are biallelic, each characterized by a A (say the allele of the reference genome) and a B allele (say the 54 

alternate allele).  If all cows contribute identical amounts of DNA to the milk, the expected proportion 55 

of the B allele (commonly referred to as “B-allele frequency” when analyzing SNP array data 56 

particularly to search for Copy Number Variants) in the tank milk corresponds to the frequency of the 57 

B allele in the farm’s cow population.  The actual DNA amount contributed by each cow depends on 58 

the volume of milk that she produced and its SCC.  Unequal DNA contributions will cause slight 59 

departures from the expected B allele frequencies in the tank milk.  Integrating these shifts over a 60 

large number of SNPs in conjunction with the known genotypes of individual cows allows for the 61 

estimation of the relative DNA contribution of each cow.  This can for instance be achieved using a set 62 

of 𝑚 linear equations in which the “B-allele frequency” of each SNP 𝑗 (of 𝑚) is modelled as the sum 63 

(over 𝑛 cows) of the products of the dosage of the B allele in the genotype of cow 𝑗 (𝑑)*, known from 64 

her SNP genotype) multiplied by the proportion of DNA contributed by cow 𝑖 (𝑓)) to the milk.   The 65 

proportions of DNA contributed by each cow can then be estimated using for instance least square 66 

methods.   Accounting for individual milk volumes and for the SCC in the tank milk allows for the 67 

estimation of SCC for individual cows (Fig. 1 and Methods). 68 
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Evaluating the proposed method by simulation.  We first evaluated the proposed method by 69 

simulation (cfr. Methods).  Genotyping the cows and the tank milk using 10K SNP arrays (i.e. low-70 

density (LD) arrays as generally used in the context of genomic selection) allowed for the accurate 71 

estimation of individual SCC for farms with up to 100 cows (𝑟	 ≥ 0.9, where 𝑟 is the correlation 72 

between real and estimated SCC) (scheme I).  However, farms with > 100 cows are increasingly 73 

common.   Medium- (MD, f.i. 50K) and high-density (HD, f.i. 700K) SNP arrays would be needed for 74 

the approach to be effective in farms with ≥	250 or ≥	500 cows, respectively.   Yet – being too 75 

expensive - this is presently not a viable proposition (Fig. 2A and Supplemental Table 1).   We therefore 76 

envisaged a second scheme (II) in which the cows would still be genotyped with LD SNP arrays (as 77 

done in practice) yet imputed (Marchini & Howie, 2010) to whole genome (8 million SNPs in the 78 

simulations) using a sequenced reference population (Daetwyler  et al., 2014), while the DNA of the 79 

tank milk would by genotyped by shallow whole-genome sequencing (SWGS).  We found that under 80 

this scenario sequencing the tank milk at a depth of 0.25 was sufficient for farms with 100 cows, 0.5 81 

for farms with 250 cows, and 2 for farms with 500 cows (Fig. 2B).  Accuracies were not significantly 82 

affected by the density of the SNP arrays, i.e. the method performed as well with LD as with MD arrays 83 

(data not shown).   Anticipating further advances in sequencing technology, we also envisaged a 84 

scheme (III) in which both cows and tank milk would be genotyped by SWGS.  We found that a 1-fold 85 

sequencing depth of the tank milk would be sufficient when combined with a 0.25-fold depth for 100 86 

cows, while a 5-fold sequencing depth of the tank milk would be needed in combination with 0.25-87 

fold depth for 250 cows and 1-fold depth for 500 cows (Fig. 2C&D).  In scheme III, allelic dosage in the 88 

cows is directly measured from the number of alternative and reference alleles in the sequence reads.  89 

We further explored the effectiveness of augmenting the cow genotype information from SWGS by 90 

imputation (scheme IV).  This proved to be effective, reducing the required sequence depth to 0.25-91 

fold for tank milk and 0.25-fold for 100 cows, to 1-fold for tank milk and 0.25-fold for 250 cows, and 92 

to 5-fold for tank milk and 0.25-fold for 500 cows (Fig. 2). The previous simulations make a number of 93 

assumptions that may not apply in the real world: (i) SNPs were sampled from a uniform distribution 94 

(i.e. rare and common SNPs equally represented), (ii) SNPs were assumed to be in linkage equilibrium, 95 

(iii) cows on the farm were assumed to be unrelated, and (iv) milk volumes were assumed to be known 96 

without error.   To more accurately mimic real conditions we repeated the simulations by (i) sampling 97 

genotypes from a phased dataset of 750 Holstein-Friesian whole genome sequences (hence properly 98 

accounting for true MAF distribution, true linkage disequilibrium (LD) and relatedness - many of the 99 

sequenced animals were related as parent offspring, full- or half-sibs), and (ii) adding a normally 100 

distributed error with mean 0 and standard deviation of five liter to the simulated milk volumes 101 

(normally distributed with mean of 30 liter and standard deviation of 10 liter). This error rate 102 
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corresponds approximately to that expected when having to estimate the daily milk volume from the 103 

total lactation yield using a standard lactation curve (Miel Hostens, personal communication). We 104 

assumed in these simulations that the genotypes of the cows were known without error and that the 105 

milk was sequenced at a depth ranging from 0.25 to 5 as before.    MAF, LD and relatedness jointly 106 

had a relatively modest impact on the accuracy of the method, which could be compensated for by 107 

increasing the sequencing depth of the milk to five-fold and still allowing for accurate estimates even 108 

in farms with 500 cows.    Estimating the milk volume with error had a more pronounced impact on 109 

the accuracy making it possible difficult to reach a correlation reaching 0.9 in farms with 500 cows 110 

(Fig. 2).                    111 

          112 

Real-world application of the proposed method. To test the feasibility of our method in the real 113 

world, we first collected cow (blood) and tank (milk) samples from a farm milking 133 Holstein-Friesian 114 

cows.  When only using genotypes from the Illumina LD arrays (17K SNPs) for both cows and tank milk 115 

(scheme A), correlations between predicted and measured SCC were 0.91 (or 0.79 when ignoring one 116 

cow with SCC > 3 million).   We then imputed the cows to whole genome (13M SNPs) using a reference 117 

population of ~750 whole genome sequenced Holstein-Friesian animals, and sequenced the tank milk 118 

at ~3.5-fold depth.  The corresponding correlations (scheme B) were 0.97 (0.95) when using all 119 

sequence information, or 0.96 (0.92) when down-sampling sequence information as low as 0.1-fold 120 

depth (Fig. 3A).  We next performed a similar experiment on a farm milking 520 Holstein-Friesian cows.   121 

The correlation between predicted and measured SCC was 0.78 (or 0.42 when ignoring 23 cows with 122 

SCC > 3 million) when only using information from the LD array for both cows and tank milk (scheme 123 

A).    When imputing the cows to whole genome (13M SNPs) and sequencing the milk at ~3.5-fold 124 

depth (scheme B), the correlation increased to 0.89 (0.83).  Down-sampling the sequence information 125 

to 0.1-fold depth reduced the correlation to 0.79 (0.57) (Fig. 3B).   126 

As shown in both farms, correlation estimates are affected by SCC spread: small numbers of cows with 127 

very high SCC tend to inflate 𝑟.   We therefore computed accuracies, computed as the proportion of 128 

correctly classified cows for different SCC thresholds, which is how farmers would likely use the 129 

information.  It can be seen that for a threshold value of for example 500,000 SCC, accuracies > 0.85 130 

were obtained when sequencing (scheme B) the tank milk at respectively 0.1x (133 cows) and 3.5x 131 

depth (520 cows).  Thus - as predicted by the simulations -  scheme A provided adequate precision for 132 

the farm with 133 cows, but not for the farm with 520 cows.   However, in this large farm, combining 133 

SWGS of the tank milk with whole genome imputation of the cows (i.e. scheme B) was indeed effective 134 

(Fig. 3).  135 
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As costs per bp continue to decline, sequencing is likely to replace array-based genotyping in the 136 

future.  To test the feasibility of schemes C and D (i.e. genotype the cows by SWGS rather than with 137 

SNP arrays, without (C) and with (D) imputation), we collected samples from a farm with 120 Holstein-138 

Friesian cows.  All cows were genotyped with the Illumina LD array (17K) as well as sequenced at 139 

average 1.08 -fold depth (range: 0.26-1.73).  The milk was sequenced at ~3.5-fold depth.  The 140 

correlation between predicted and measured SCC was 0.97 (or 0.96 when ignoring one cow with SCC 141 

> 3 million) under scheme A.  Under scheme C, correlations were 0.82 (0.83) when sequencing the 142 

milk at 3.5x and 0.75 (0.76) when down-sampling the milk to 0.1x.  We then imputed the sequenced 143 

cows to HD (770K SNPs) using a population of 800 reference animals genotyped with the HD array 144 

(scheme D).  The correlation increased to 0.93 (0.94) when sequencing the milk at 3.5x and to 0.83 145 

(0.77) when down-sampling the milk to 0.1x (Fig. 3C).  Accuracies at SCC threshold of 500,000 were 146 

0.96 (scheme A), 0.95 (3.5x) and 0.80 (0.1x) (scheme B), 0.82 (3.5x) and 0.81 (0.1x) (scheme C), and 147 

0.95 (3.5x) and 0.88 (0.1x) (scheme D) (Fig. 3C).  In summary, (i) combining cow genotyping using SNP 148 

arrays with genome-wide imputation with SWGS of tank milk allows for cost-effective identification 149 

of cows with subclinical mastitis even in farms with as many as 500 cows per milk tank, and (ii) as 150 

sequencing costs continue to decline, arrays-based targeted SNP genotyping of the cows could be 151 

replaced by genotyping by SWGS and yield comparable results.         152 

Monitoring SCC dynamics with the proposed method. Farmers typically measure individual SCC once 153 

a month or less.  Yet, SCC may rapidly change.  The SCC measured on the milk testing date may not be 154 

a reliable indicator of the cow’s udder health during the intervening period.  To examine the SCC 155 

dynamics over time, we collected 20 tank milk samples over a 100-day period (day -84 to +17 from 156 

day of milk testing) for the farm with 120 cows.  Milk samples were genotyped using the Illumina LD 157 

array, and individual SCC estimated using scheme A.   Fig. 4A shows the SCC predicted every 5 days on 158 

average for the 120 cows, sorted by SCC measured on day 0 (=milk testing day).    Of note, the 159 

correlation between the SCC measured on day 0 and the average of the SCC estimates for the 21 160 

collection dates was low (𝑟	 = 0.52)(Fig. 4B) and decreased rapidly with the number of days from milk 161 

testing day (Fig. 4C). 162 

 163 

Discussion 164 

We herein demonstrate that by combining array-based SNP genotyping and whole-genome 165 

imputation for the cows with SWGS of the tank milk, it is possible to accurately estimate SCC for 166 

individual cows and hence effectively identify animals with subclinical mastitis even for tanks 167 

collecting milk for >500 cows, and this by performing a single analysis for the entire herd.  Reagent 168 

costs to sequence a mammalian genome at 1-fold depth are now <20€ thus making this a cost-169 
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effective proposition.   As a matter of fact, the method is being deployed in the field in several 170 

countries.  171 

Implementing the method requires all cows on the farm to be genotyped. This will increasingly 172 

correspond to reality as genotyping costs continue to decrease and genomic selection is more and 173 

more used for the selection of cows.   In 2016 more than 1.2 million dairy cows had been reportedly 174 

genotyped in the US alone8 and present worldwide numbers are likely ≥ 3 million.   In addition, a 175 

reference population of a few hundred animals of the breed of interest that are either HD genotyped 176 

(700K) or better whole-genome sequenced are required for accurate imputation.  Such reference 177 

populations are already available for the most important dairy cattle breeds7,9, and could be easily 178 

generated for the remaining ones. 179 

We show that SCC are dynamic and rapidly change over time.  SCC measured on day 0 are poor 180 

indicators of SCC in previous and future weeks: cows with high SCC on the day of milk testing may 181 

have low SCC a few days later (or earlier) and vice versa. The proposed method would allow tighter 182 

monitoring of SCC hence improving udder health management.   More frequent monitoring of SCC for 183 

large number of cows may reveal interindividual differences with regards to SCC dynamics that may 184 

be correlated with mastitis resistance, heritable and hence amenable to selection including by GS. 185 

Sequencing of the DNA in the tank milk allows simultaneous characterization of the tank’s 186 

microbiome.   As a matter of fact, ~1% of reads in this study mapped to bacterial genomes (data not 187 

shown).  This information may be very useful both from a farm health management point of view as 188 

well as from a downstream dairy processing point of view.  Whole genome sequence data of bulk milk 189 

also informs about the herd frequency of functional variants such casein variants affecting consumer 190 

health or processing properties10, or variants causing inherited defects or embryonic lethality in cows4.   191 

In many countries, it is not allowed to add milk from cows being treated with antibiotics to the tank.  192 

As suggested before, the proposed approach can be adapted to verify whether a specific cow did 193 

contribute milk to the tank or not (f.i. by testing the significance of the corresponding cow effect in 194 

the linear model) 3.      The described method may have applications in tracing the origins of bulk animal 195 

food products other than milk, as well as in monitoring the composition of mixed-donor blood-derived 196 

transfusion products.                                    197 
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Figure 1: Estimating Somatic Cell Counts (SCC) in the milk of individual cows by analyzing a sample of 228 
milk from the farm’s tank.  Cows 1 to n contribute different amounts of milk (buckets of various sizes 229 
in the figure) to the farm’s tank.  The milk contains somatic cells (shown as small spheres in the milk 230 
colored by cow) whose numbers reflect the health status of the cow’s udder.  Cow 1 has higher SCC, 231 
an indicator of subclinical mastitis.  SCC are unknown upon milking (indicated by the “?”).   Cows are 232 
individually SNP genotyped once.  In scheme I this is done using SNP arrays (illustrated by the mesh) 233 
yielding genotype information for the limited number of interrogated SNPs (high bars) that can be 234 
summarized by the B-allele frequency as shown (white: 0, halve colored: 0.5, fully colored: 1).  SNP 235 
genotypes of individual cows are coded in the same colors as the SCC.  In scheme II, the genotypes of 236 
the interrogated SNPs are augmented by imputation (illustrated by the computer rack), yielding 237 
dosage information (B-allele frequency) for many more SNPs (small bars).  In scheme III, cows are 238 
genotyped individually by shallow whole genome sequencing (SWGS) (illustrated by the sequencer).  239 
Sequence reads (gray lines) are aligned to the reference genome and alternate alleles at SNP positions 240 
highlighted as color-coded tics. The B-allele frequency at specific SNP positions is measured as the 241 
ratio of the number of reads with the B allele vs the total number of reads.  In scheme IV, the genotype 242 
information from SWGS is augmented by imputation improving the accuracy of the B-allele frequency 243 
estimates for millions of SNPs (small bars). A small sample of milk (T(ank) M(ilk)) is periodically (f.i. 244 
monthly or weekly) collected from the farm’s tank.  DNA is extracted from TM and genotyped using 245 
SNP arrays (scheme I) or SWGS (schemes II, III and IV).  B-allele frequency for SNP 𝑗 in the milk (𝐵𝐴𝐹78 ) 246 
is estimated from the ratio of fluorescence intensities when using SNP arrays, or from the proportion 247 
of reads with B allele in SWGS. The SCC of individual cows are estimated from a set of linear equations 248 
modelling 𝐵𝐴𝐹78	as the sum of B allele dosage (𝑑)*) multiplied by the proportion of the DNA in the tank 249 
contributed by cow 𝑖 (𝑓)).  The estimated proportions of DNA contributed by each cow correspond to 250 
the values of 𝑓)’s that minimize the sum of squared errors (𝜀*) over all SNPs.  The SCC for individual 251 
cows, per se, can be estimated as 𝑆𝐶𝐶) = 𝑆𝐶𝐶<=>? × 𝑉<=>? × 𝑓)/𝑉), where 𝑆𝐶𝐶<=>? is the SCC 252 
measured in the farm’s tank, and 𝑉) 𝑉<=>?⁄  is the proportion of the milk volume contributed by cow 𝑖.  253 
   254 
  255 
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Figure 2:  Evaluating the efficiency of the proposed approach by simulation. (A) Reference scheme I in 257 
which individual cows and tank milk are genotyped with the same array interrogating 10K (LD), 50K 258 
(MD) or 700F (HD) SNPs. (B) Scheme II in which individual cows are genotyped with a LD 10K SNP array 259 
and imputed to whole-genome (8 million SNPs), while the tank milk is whole-genome sequenced at 260 
depth ranging from 0.25x to 5x. (C) Scheme III in which individual cows (0.25x) and tank milk (range: 261 
0.25x to 5x) are genotyped by shallow whole-genome sequencing (SWGS).  (D) Same as C except that 262 
individual cows are sequenced at 1x depth. (E) Scheme IV in which individual cows are genotyped by 263 
SWGS (0.25x) followed by imputation to whole genome (8M SNPs), and tank milk is genotyped by 264 
SWGS (range: 0.25x to 5x). (F) Same as E except that individual cows are sequenced at 1x depth. (G) 265 
Scheme in which the cow genotypes are sampled from a real dataset hence conform to reality with 266 
regards to distribution of MAF, LD and relatedness. Genotypes of the cows are assumed to be known 267 
(very similar to II and IV) and tank milk genotyped by SWGS (range: 0.25x to 5x). (H) Same as G except 268 
that the milk volume is estimated with error.  The color code used to quantify the correlations 269 
between predicted and real SCC is shown.  Corresponding numerical values are provided in Suppl. 270 
Table 1 271 
  272 
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Figure 3: Correlation between predicted and measured SCC in the milk of individual cows (A,C,E), as 277 
well as accuracies in classifying cows with SCC above and below a chosen threshold value (B,D,F), in 278 
farms with 133 (A,B), 520 (C,D) and 120 (E,F) cows, using scheme I (blue), scheme II (red), or scheme 279 
IV (green). Scheme I: cows and tank milk genotyped with LD SNP arrays (17K), no imputation. Scheme 280 
II: cows genotyped with LD array and imputed to 13M SNPs, tank milk sequenced 3.5x (red) or 0.1x 281 
(orange). Scheme IV: cows genotyped by whole-genome sequencing (1x) and imputation to HD, and 282 
tank milk sequenced at 3.5x (dark green) or 0.1x (light green).        283 
     284 
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Figure 4: (A) SCC predicted using scheme A for 21 tank milk samples collected over a 100-day period 287 
from 125 cows total. Small grey circles: 20 predictions per cow.  Large grey circles: average of 21 288 
measurements per cow. Red square: SCC measured on day 0.  Green triangle: SCC predictions on day 289 
0. (B) Relationship between SCC values measured on day 0 and average of 21 predictions sampled 290 
over a 100-day period (days -84 to +17). (C) Correlations between measured (day 0) and predicted 291 
(day x) SCC as a function of the number of days from day 0. 292 
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Methods  294 

Simulated data.  Reference scheme (A): We simulated farms with n (25, 50, 100, 250 and 500) cows 295 

contributing milk to the tank.  Cows were genotyped with SNP arrays for m (10K, 50K, or 750K) markers 296 

without error. Minor Allele Frequencies (MAFs) were sampled from a uniform ]0,0.5] distribution, and 297 

genotypes from the corresponding Hardy-Weinberg distributions.   SCC of individual cows (𝑆𝐶𝐶) ) were 298 

simulated by sampling values from a Weibull distribution with scale parameter 𝛼=1 and shape 299 

parameter 𝛽=2, and multiplying the ensuing value by 200,000.  Exact B-allele frequencies of individual 300 

SNPs (𝐵𝐴𝐹*) in the milk were determined for each SNP 𝑗 based on the combination of cellular 301 

contribution of the n cows to the milk, and their genotype.  It was assumed that B-allele frequencies 302 

were estimated with a normally distributed error 𝑁(0, 0.0025) (i.e. SE = 0.05), yielding m 𝐵𝐴𝐹78 .   303 

Scheme B: Same setting as in the reference scheme with the following additions.  For cows genotyped 304 

for 10K or 50K SNPs, we simulated imputation by augmenting the data to 8 million (M) genotypes 305 

using an error model mimicking real, MAF-dependent imputation accuracy.  The error model was 306 

constructed using a real data set for 800 unrelated Holstein-Friesian individuals that were genotyped 307 

for the Illumina 777K array. This data set was split into a set of 200 and a set of 600 individuals.   The 308 

set of 200 was reduced first to the genotypes interrogated by the Illumina 10K (LD) array and then to 309 

the genotypes interrogated by the Illumina 50K SNP arrays.  The reduced SNP sets were imputed back 310 

to the content of the Illumina 777K (HD) SNP array using the 600 individuals as reference population. 311 

The frequencies of imputing a given genotype depending on the real genotype, were scored for MAF 312 

bins of 0.01 separately for the LD and 50K array data. We simulated genotyping-by-sequencing of tank 313 

milk as follows. For each of the 8M SNP positions, we sampled local read depth (𝑟 ∈	integers) from a 314 

Poisson distribution with mean C, where C is the average genome-wide coverage (0.25, 0.5, 1, 2 or 5).   315 

We then sampled r reads, each with a probability = 𝐵𝐴𝐹*  (computed as above) of being the B-allele.  316 

Scheme C:  Individual SNP genotypes and tank B-allele frequencies (𝐵𝐴𝐹*) were generated as in 317 

scheme A (genotypes at 8 M SNP positions).  It was assumed that milk tank was genotyped by SWGS 318 

at average coverage of C (0.25, 0.5, 1, 2 or 5) and cows were genotyped by SWGS at average coverage 319 

of C (0.25, 0.5, or 1).  Genotyping-by-sequencing of individual cows was simulated by (i) sampling, for 320 

each of 8M SNP positions, local read depth (𝑟 ∈	integers) from a Poisson distribution with mean C, 321 

and (ii) sampling r reads with probability 0, 0.5 or 1 to be the alternate allele (B) depending on the 322 

genotype of the cow (AA, AB or BB).  Genotyping-by-sequencing of the tank milk was done as in 323 

Scheme A.  Scheme D:  Identical to scheme C except that cow genotypes were generated at 8M SNP 324 

position using a MAF- and sequence-depth dependent imputation error model. The error model was 325 

constructed using available SWGS data down sampled to 1x (176 cows) or 0.25x coverage (192 cows).  326 

The cows were imputed to HD (777K SNPs) using a reference population of 800 unrelated Holstein-327 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2020. ; https://doi.org/10.1101/740894doi: bioRxiv preprint 

https://doi.org/10.1101/740894


Coppieters et al.    Page 15 of 17 

Friesian individuals that were genotyped with the Illumina 777K array.  At each of the 777K SNP 328 

positions, the likelihood of the sequence data under the three possible genotypes (AA, AB and BB), 329 

were computed following Chan et al.3, as: 330 

𝐿(𝑛𝑟L, 𝑛𝑟M|"AA", 𝜀) = O
𝑛𝑟L + 𝑛𝑟M
𝑛𝑟M

Q × (1 − 𝜀)>TU × 𝜀>TV  331 

𝐿(𝑛𝑟L, 𝑛𝑟M|"AB", 𝜀) = O
𝑛𝑟L + 𝑛𝑟M
𝑛𝑟M

Q × 0.5(>TUW>TV) 332 

𝐿(𝑛𝑟L, 𝑛𝑟M|"BB", 𝜀) = O
𝑛𝑟L + 𝑛𝑟M
𝑛𝑟M

Q × (1 − 𝜀)>TV × 𝜀>TU  333 

where 𝑛𝑟L (respectively 𝑛𝑟M) is the number of A (respectively B reads) and 𝜀 is the sequencing error 334 

rate set at 0.01.  The corresponding log[\ 𝐿 were used as input for Beagle41.   Variant positions without 335 

sequence coverage in any of the 176 (192) cows (hence not imputed by Beagle4) were dealt with in a 336 

second round of imputation using Beagle52.  The imputation accuracy was evaluated in 0.01 MAF-bins 337 

by comparing imputed and real genotypes at the ~17K variant positions interrogated by the Illumina 338 

LD array. 339 

Real data.  Data set 1: We obtained a sample of tank milk from a farm in France milking 133 Holstein-340 

Friesian cows. All had been genotyped with an Illumina LD array interrogating 17K SNPs using standard 341 

procedures.  For all cows, genotypes were imputed to whole genome using a reference population of 342 

743 Holstein-Friesian animals sequenced at average depth of 15x (range: 4-48) and the Beagle 343 

software (v5.0)1 yielding allelic dosages for a total of 13 million SNPs. Individual milk records, including 344 

volume and SCC (cells/ml) measured on the day of the sample collection, were obtained for all cows 345 

that had contributed milk to the tank.   DNA was isolated from 1.5 ml tank milk using the NucleoMag 346 

kit (Macherey-Nagel).  The tank milk DNA was first genotyped using the Illumina LD array interrogating 347 

17K SNPs.  An Illumina compatible NGS library was then prepared with 50ng of genomic DNA using 348 

the KAPA HyperPlus kit (Roche).  Sequencing was performed on a NextSeq500 instrument (Illumina), 349 

yielding 63 million paired end reads of 2*75 bp, corresponding to a genome coverage of 3.5x. Reads 350 

were mapped to the bosTau8 genome build using BWA mem.  Reference (R) and alternate (A) alleles 351 

were counted at 13M SNP positions of the HD array using the Bam-ReadCount tool 352 

(https://github.com/genome/bam-readcount.git) for reads with a minimum mapping quality of 30.  353 

Data set 2: We obtained samples of tank milk from a Belgian farm including milk from 520 Holstein-354 

Friesian cows.  Milk volume and SCC (cells/ml) measured on the same day, were obtained for all cows 355 

that had contributed milk to the tank. All cows were genotyped with the Illumina LD array 356 

interrogating 17K SNPs using standard procedures, and imputed to whole genome using whole 357 

genome sequence data (average depth: 15x; range: 4x-48x) from 743 Holstein-Friesian animals as 358 

reference (M. Georges, unpublished) and the Beagle software (v5.0)2 yielding allelic dosages for a total 359 

of 13 million SNPs. DNA extraction from the tank milk samples and genotyping with the Illumina LD 360 
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(17K) array were conducted as for dataset 1.  For sequencing of the tank milk, an illumina compatible 361 

sequencing library was prepared using 12 ng of DNA and the Riptide High Throughput Rapid Library 362 

Prep Kit  (iGenomx). The library was sequenced on an Illumina NextSeq500 2*150 paired end flow cell 363 

at 4X coverage.  Data set 3: We obtained samples of tank milk from a Belgian farm including milk from 364 

120 Holstein-Friesian cows.  Milk volume and SCC (cells/ml) measured on the same day, were obtained 365 

for all cows that had contributed milk to the tank. All cows were genotyped with the Illumina LD array 366 

interrogating 17K SNPs using standard procedures, and imputed to whole genome using whole 367 

genome sequence data (average depth: 15x; range: 4x-48x) from 743 Holstein-Friesian animals as 368 

reference (M. Georges, unpublished) and the Beagle software (v5.0)2 yielding allelic dosages for a total 369 

of 13 million SNPs. We additionally prepared Illumina compatible NGS library for each cow, using 12 370 

ng of genomic DNA and the Riptide High Throughput Rapid Library Prep Kit (iGenomx).  Libraries were 371 

sequenced on an Illumina Novaseq S4 2*150 paired end flow cell at average 1.08x depth (range: 0.26x-372 

1.73x). Cow genotype-by-sequencing data were imputed to HD (777K) density using a reference 373 

population of 800 Holstein-Friesian animals genotyped with the bovine HD Illumina array (777K SNPs) 374 

and the Beagle software (v5.0)2 yielding allelic dosages for a total of 777K SNPs.      DNA extraction 375 

from the tank milk samples, genotyping with the Illumina LD (17K) array, and sequencing (coverage 376 

4x) were conducted as for datasets 1&2. Data set 4:  In addition to obtaining a sample of tank milk on 377 

the day of the milk recording (i.e. yielding the SCC measured using with a cell counter) for the Belgian 378 

farm with 120 cows, we weekly collected an additional 11 tank milk samples before and 9 samples 379 

after, spanning a total period of ~3 months.  The corresponding DNA samples were genotyped using 380 

the Illumina LD (17K) array.        381 

            382 

Statistical model.   We defined a set of m linear equations of the form: 383 

𝐵𝐴𝐹78 =	] 𝑓) × 𝑑)*
>

*^[
+ 𝜀* 384 

in which 𝑓)	is the proportion of the DNA in the tank milk contributed by cow i, 𝑑)*	is the “dosage” of 385 

the alternate allele A for cow i and marker j, and 𝜀*   is the error term for marker j.  When genotyping 386 

the tank milk with arrays, 𝐵𝐴𝐹78  corresponds to the B-allele frequency estimated by Genome Studio 387 

(Illumina). When genotyping the tank milk by SWGS, 𝐵𝐴𝐹78  corresponds to the proportion of A reads 388 

at the corresponding genome position.  For cow genotypes obtained with arrays, 𝑑)* corresponds to 389 

0, 0.5 or 1 for genotypes AA, AB and BB, respectively.  For cow genotypes obtained by imputation,  𝑑)* 390 

is the dosage of the B allele estimated by Beagle. For cow genotypes obtained by SWGS, 𝑑)* =391 

0.5 × 𝑃`"𝐴𝐵"b𝑛𝑟L, 𝑛𝑟M, 𝑞*d + 𝑃`"𝐵𝐵"b𝑛𝑟L, 𝑛𝑟M, 𝑞*d where 𝑛𝑟L (respectively 𝑛𝑟M) is the number of A 392 
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(respectively B reads) for marker j and cow i, and 𝑞* is the population frequency of the B allele of 393 

marker j.   394 

 395 

𝑃`"𝐴𝐵"b𝑛𝑟L, 𝑛𝑟M, 𝑞*d =
efg`[hfgd×\.ijkU×\.ijkV×

`jkUljkVd!
jkU!×jkV!

`[hfgd
n×[jkU×\jkVWefg`[hfgd×\.ijkU×\.ijkV×

`jkUljkVd!
jkU!×jkV!

Wfg
n×\jkU×[jkV

     396 

 397 

𝑃`"𝐵𝐵"b𝑛𝑟L, 𝑛𝑟M, 𝑞*d398 

=
𝑞*e × 0>TU × 1>TV

`1 − 𝑞*d
e
× 1>TU × 0>TV + 2𝑞*`1 − 𝑞*d × 0.5>TU × 0.5>TV ×

(𝑛𝑟L + 𝑛𝑟M)!
𝑛𝑟L! × 𝑛𝑟M!

+ 𝑞*e × 0>TU × 1>TV
 399 

 400 

For SNPs j without usable information for cow i (f.i. genotyping failure or no covering reads) 𝑑)* was 401 

set at 𝐵𝐴𝐹78 .    402 

The 𝑓)’s were estimated by least square analysis, i.e. by minimizing ∑ 𝜀*ep
*^[ . When the tank milk was 403 

genotyped by SWGS, we also performed a weighted least square analysis, i.e. we estimated		𝑓)’s by 404 

minimizing  ∑ 𝑤*𝜀*ep
*^[  , where   𝑤*	 is the coverage (𝑛𝑟L + 𝑛𝑟M). 405 

The	𝑆𝐶𝐶)’s were calculated from the	𝑓)’s  406 

𝑆𝐶𝐶) = 𝑆𝐶𝐶<=>? × 𝑉<=>? × 𝑓)/𝑉) 407 
Where 𝑉<=>? and 𝑉) are the volumes of milk in the tank and contributed by cow i, respectively. 408 

The accuracies of the predictions were measured by the (i) correlation (𝑟) between real and estimated 409 

𝑆𝐶𝐶) , and/or (ii) the ability to discriminate animals with SCC above versus below a certain threshold 410 

value measured as (𝑇s + 𝑇t)/𝑛 , where 𝑇s  stands for the number of true positives, 𝑇t  for the number 411 

of true negatives, and 𝑛 for the total number of cows. 412 

To test the effect of sequence depth on accuracy we sampled reads overlapping SNP positions with 413 

probability 𝑥, such that 𝐸(𝐶 × 𝑥) = 𝐷, where 𝐷	is the desired sequence depth.   414 

 415 
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