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Abstract 7 

Motivation 8 

Decrypting the interface residues of the protein complexes provide insight into the functions 9 

of the proteins and hence the overall cellular machinery. Computational methods have been 10 

devised in the past to predict the interface residues using amino acid sequence information 11 

but all these methods have been majorly applied to predict for prokaryotic protein complexes. 12 

Since the composition and rate of evolution of the primary sequence is different between 13 

prokaryotes and eukaryotes, it is important to develop a method specifically for eukaryotic 14 

complexes. 15 

Results 16 

Here we report a new hybrid pipeline for the prediction of protein-protein interaction 17 

interfaces from the amino acid sequence information which is based on the framework of co-18 

evolution, machine learning (random forest) and network analysis named CoRNeA trained 19 

specifically on eukaryotic protein complexes. We use conservation, structural and contact 20 

potential as major group of features to train the random forest classifier. We also incorporate 21 

the intra contact information of the individual proteins to eliminate false positives from the 22 

predictions keeping in mind that the amino acid sequence also holds information for its own 23 

folding and not only the interface propensities. Our prediction on example datasets shows that 24 

CoRNeA not only enhances the prediction of true interface residues but also reduces false 25 

positive rates significantly. 26 

 27 

 28 

 29 
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Introduction 30 

The biological machinery performs its cellular functions when its basic units such as DNA, 31 

RNA and proteins interact with each other. To understand the overall functioning of the cell, 32 

it is important to delineate the pairwise interactions of these basic units such as DNA-protein, 33 

RNA-protein and protein-protein. Of these, the inter protein interactions that a cell possesses 34 

play a very crucial role in understanding the various cellular processes and hence also their 35 

functioning or misfunctioning in the disease models. There are various experimental methods 36 

known for examining these interactions such as yeast two hybrid (Y2H)(Godwin et al. 2000), 37 

co-immunoprecipitation (co-IP)(Masters 2004), mass spectrometry (Sobott and Robinson 38 

2002) etc. which are labor, cost and time intensive.  Deciphering the PPI (Protein-Protein 39 

Interaction) at the highest resolution through x-ray crystallography or cryo-electron 40 

microscopy methods is even more challenging due to their intrinsic technical difficulties. 41 

 A number of in-silico methods have been described earlier to predict these PPI based on 42 

available data such as 1) homology 2) machine learning and 3) co-evolution based. 43 

Homology based methods are generally applied when confident homologs of both the 44 

interacting proteins are available, followed by protein-protein docking for visualizing the 45 

protein interaction interfaces such as PredUS (Zhang et al. 2011), PS-HomPPI (Xue, Dobbs 46 

and Honavar 2011), PriSE (Honavar et al. 2012) etc.  The machine learning (ML) methods 47 

which have been described till date are either structure based or sequence based. The 48 

structure-based ML methods (SPPIDER(Porollo and Meller 2007), PINUP(Liang et al. 49 

2006), PAIRpred(Afsar Minhas, Geiss and Ben-Hur 2014), PIER(Kufareva et al. 2007), 50 

ProMate(Neuvirth, Raz and Schreiber 2004), Cons-PPISP(Chen and Zhou 2005), Meta-51 

PPISP(Qin and Zhou 2007), CPort(de Vries and Bonvin 2011), WHISCY(Vries, Dijk and 52 

Bonvin 2006), InterProSurf(Negi, S.S.; Catherine, H.S.; Oezguen, N.; Power 2007), 53 

VORFFIP(Segura, Jones and Fernandez-Fuentes 2011), eFindSite(Maheshwari and Brylinski 54 

2016) etc.) require three-dimensional information of the interacting proteins which can be 55 

either experimental or homology driven to incorporate the geometrical complementarities of 56 

amino acids as training features. Only a few sequence-based ML methods are known such as 57 

BIPSPI (Ruben Sanchez-Garcia et al. 2019), PSIVER (Murakami and Mizuguchi 2010), and 58 

ComplexContact (Zeng et al. 2018) which derive features based on conservation, 59 

physicochemical properties of amino acids etc. However, the predictability of these ML 60 

methods is affected by the prevalence of high false positive rates due to limitation of small 61 
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number of protein-complex structures in the protein structure database (PDB) which restrict 62 

the training of these machine learning algorithms in terms of variability.  63 

The third class, co-evolution-based methods which were originally formulated to predict 64 

contact forming residues within a single protein and therefore for the prediction of the 65 

structure of the protein. These methods have been extrapolated to also predict the inter- 66 

protein interaction interfaces based on the multiple sequence alignments (MSA) of the 67 

proteins. Concatenating the MSA of an interacting pair and using the same statistical 68 

formulae as described for intra pairs have been implemented to predict the co-evolving 69 

contact forming pairs by various methods such as DCA(Weigt et al. 2009), 70 

EvComplex(Green et al. 2014) etc. However, there are two main caveats known for these 71 

methods. Firstly, they use different downstream methods to filter out their results by using 72 

homology-based models and docking predictions in combination with their results. Secondly, 73 

most of these methods have been tested on prokaryotic proteins and have a limitation of 74 

predicting only for a maximum combined length of 1500 residues per protein pair. Almost all 75 

co-evolution-based methods have been only tested on prokaryotic lineage probably due to 76 

availability of huge number of sequences for generating variable multiple sequence 77 

alignments. Recently a hybrid method (co-evolution and machine learning based- 78 

ComplexContact (Zeng et al. 2018)) was reported, however, its performance was also the 79 

tested on prokaryotic datasets. Overall these methods could not perform with similar 80 

accuracy when applied to eukaryotic complexes. 81 

The low predictability of these methods for eukaryotic protein complexes can be attributed to 82 

the differences in the rate of evolution of the proteins in the two lineages. It has been reported 83 

that there is a difference in the composition of type of amino acids present in prokaryotic 84 

versus eukaryotic proteins and also in the radius of gyration and planarity in the interaction 85 

interface. Since the eukaryotic proteins are not exclusive to only one set of function, it has 86 

been perceived that most of the eukaryotic protein interactions are transient, having smaller 87 

interaction hotspot zones and have more planar binding sites consisting of more polar and 88 

aromatic residues. These properties of the eukaryotic protein interactions make them essential 89 

part of cell signaling pathways (Goncearenco et al. 2015).  90 

Hence to delineate the vast PPI network of eukaryote lineage, e.g. human protein interaction 91 

network, which contains about 1,50,000 interactions (with only about 10% of known 92 

structures of these protein complexes)(Rodriguez-Rivas et al. 2016), it is important to 93 
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develop a method specific for eukaryotic predictions. In this report, we present a new hybrid 94 

pipeline based on the framework of co-evolution, random forest (ML method) and network 95 

analysis (CoRNeA) for predicting the pairwise residues of the PPI interface from the protein 96 

sequence information of two interacting proteins (Figure 1). We also developed a new hybrid 97 

method for calculating co-evolving positions in the interacting pairs based on mutual 98 

information and Statistical Coupling analysis (SCA)(Lockless 2002). Owing to high signal to 99 

noise ratio, this method in consensus with the other co-evolution-based method does not 100 

perform well independently to extract the precise interacting pair of residues specially for 101 

eukaryotic proteins. Hence, we used this method as one of the features for machine learning 102 

pipeline. The other features derived for the random forest classifier are based on the 103 

physicochemical properties of the amino acids such as charge, size and hydrophobe 104 

compatibility, secondary structure information and relative solvent accessibility, which were 105 

also derived using amino acid sequence information.  To include the energetics of 106 

interactions, contact potentials were also included as features. Similar to other machine 107 

learning classifiers, our pipeline also predicted a number of false positives. In order to reduce 108 

them we employed network analysis by incorporating the intra contact information to 109 

generate residual networks for PPI interface. In summary, the major highlight of this method 110 

as compared to other methods developed on the similar lines are 1) use of eukaryotic protein 111 

structure database for training the classifier. 2) use of co-evolution information as 112 

conservation-based feature. 3) use of intra contact pairs to eliminate false positive pairs 113 

through network analysis. Thus, we present a holistic approach to this complex problem of 114 

identifying pair of residues forming the interaction interface in the heterodimers from the 115 

amino acid sequence information.  116 
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 117 

Figure 1: CoRNeA pipeline for predicting co-evolving contact forming residues in 118 

interacting pair of proteins. The method for predicting the protein-protein interaction 119 

interface consists of three levels. The top panel depicts the features used for machine learning 120 

pipeline. (A). Conservation based (coevolution) (B) Structure based (Charge, Size, 121 

Hydropathy, Secondary structure and Relative solvent accessibility) and (C) contact 122 

potential- based features (both for buried and exposed residues). (D) Random forest 123 

classification where pairwise values for both proteins are considered depicted in half green 124 

and pink circles for binary classification (Class 1: protein interface, Class 0: non interface). 125 

The bottom panel depicts the application of network analysis by combining intra and intra 126 

protein contact predictions for reducing the false positives. (E) Prediction of intra contacts of 127 

Protein A and B. (F) Combined network analysis of inter and intra predicted contacts. (G) 128 

Interface prediction for PDB ID: 1H9D.  129 

2. Methodology 130 

The overall pipeline to predict pairwise contact forming residues from sequence derived data 131 

can be divided into three distinct parts as depicted in figure 1. The first step is to generate 132 

pairwise features (conservation, structural and contact potential based) from amino acid 133 

sequence of the two interacting proteins. The second step is to feed these pairwise features in 134 

a random forest classifier and hence optimize its various hyperparameters to obtain the best 135 

evaluation statistics. The third step is to combine the intra protein contact forming residues 136 
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from co-evolution-based method and inter-protein contact forming residues from random 137 

forest classifier and perform network analysis to predict the exclusive pair of residues 138 

forming the interface of the two interacting proteins. 139 

2.1 Datasets 140 

The Affinity Database version 2.0(Kastritis et al. 2011) was used to select the protein 141 

complex structures for training. The amino acid sequences of the complex structures were 142 

extracted from www.rcsb.org and used as query to search for homologs. PHMMER(Finn et 143 

al. 2015) was used to fetch maximum homologs of the query sequence which were then 144 

manually curated to remove redundant sequences. The sequences having less than 25% 145 

sequence identity were removed. The final dataset for each of the interacting protein 146 

consisted of identical species.  147 

2.2 Multiple Sequence Alignments 148 

The datasets for each interacting pair of proteins having identical species were subjected to 149 

structure guided multiple sequence alignments using PROMALS3D(Pei, Kim and Grishin 150 

2008). The alignments were then analyzed/edited in JalView(Waterhouse et al. 2009) and 151 

then concatenated (Last residue of Protein A followed by first residue of Protein B) in R 152 

using package seqinr(Gouy et al. 1984). These concatenated MSA datasets were used for co-153 

evolution matrix calculations. 154 

2.3 Features  155 

For calculating sequence-based features, the sequences were extracted from the protein 156 

databank (www.rcsb.org) and any missing regions reported in the structure were removed 157 

from the sequence data. All the features for training and testing were compiled as all versus 158 

all residue pairs between sequence of the interacting pair of protein (Protein A and Protein B) 159 

in form of MXN matrix (M=length of Protein A and N= length of Protein B). All the feature 160 

values were scaled between 0 and 1. (Figure S1) 161 
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 162 

Figure S1: Flowchart depicting the feature generation for predicting pair of protein-163 

protein interaction interface residues 164 

2.3.1 Evolution based features  165 

Co-evolution matrices (CMI) 166 

The co-evolution scores between the pair of residues of the interacting proteins were 167 

calculated based on Conditional Mutual Information as depicted in Figure 2. The 168 

concatenated MSA’s were subjected to perturbation experiment similar to that used in 169 

Statistical Coupling Analysis (SCA)(Lockless 2002). The amino acids were converted from 170 

alphabetic nomenclature to numeric for the ease of calculation (table S1). For each column in 171 

the MSA of Protein A and B, a condition pertaining to presence of one of the 20 amino acid 172 

was given to subset the concatenated MSA. For example, position 1 in concatenated MSA, a 173 

condition given to subset the MSA for the presence of valine (V). A subset of sequences was 174 

selected which had only valine at position 1 of MSA.  Frequencies of the amino acid present 175 

in the subset were calculated and subjected to the conditional mutual information 176 

formula(Wyner 1978). It resulted in 20 such conditions for each column in the MSA of 177 

Protein A which were summed up to obtain the final co-evolution MXN matrix.  178 
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 179 

Figure 2: Flow chart representing algorithm for calculating inter protein co-evolving 180 

positions from multiple sequence alignments.  181 

2.3.2 Structure based features  182 

Charge, Hydrophobe and size compatibility matrices 183 

The physicochemical properties of the residue can be derived from sequence information but 184 

to derive pair wise values for these properties, we employed the 20X20 residue matrices 185 

which were described to aid in ab initio modelling of single protein(Biro 2006). These 186 
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matrices were used to derive an all versus all residue matrix (MXN) for the interacting pair of 187 

proteins as features i.e. hydropathy compatibility (HCM), charge compatibility (CCM) and 188 

size compatibility matrices (SCM) 189 

Relative Solvent Accessibility (RSA) 190 

To calculate the pairwise RSA values, RSA of independent proteins were calculated using 191 

SPIDER3(Heffernan et al. 2017) and multiplied to form an all versus all (MXN) matrix of the 192 

pair of interacting proteins. 193 

Secondary Structure Predictions (SSP) 194 

The secondary structure of the proteins was predicted using PSIPRED(Jones 1999) and all 195 

residues were assigned numbers (i.e. 1= α-helix, 2=β-sheet and 3=l-loop). A simple 196 

multiplication and scaling of these numbers between 0 and 1 would yield in a combination 197 

where α-helix to α-helix instance will be ranked lowest. To avoid this mis scaling, the 198 

training dataset was inspected for the nature of residue-residue combinations in terms of 199 

secondary structures and the 6 possible combinations (i.e. α-α, α-β, α-l, β-β, β-l and l-l) were 200 

ranked in order of occurrence. These values were then used as standard to fill in all MXN 201 

matrices of the two interacting proteins.  202 

2.3.3. Contact Potential based features 203 

Three different approximations of contact potentials were used to generate contact potential-204 

based features. The first approximation was the original matrix (MJ matrix) (Miyazawa and 205 

Jernigan 1996) where the effective inter-residue contact energies for all amino acid pairs 206 

were calculated based on statistical analysis of protein structures. The other two 207 

approximations were derived from the MJ matrix, where a 2-body correction was applied on 208 

this matrix to generate two separate matrices (Zeng, Liu and Zheng 2012). One of them was 209 

specific for capturing the interactions between exposed residues and the other one for buried 210 

residues. Thus, all three possible combinations were used to derive three contact potential 211 

(MXN) matrices namely, CP: original MJ matrix, CPE: MJ matrix derived for exposed 212 

residues and CPB: MJ matric derived for buried residues, for the pair of interacting proteins.  213 

2.4. Environment features 214 

To include residue environment information for training the machine learning algorithm, a 215 

kernel matrix of size 5*5 was defined and convolved over the nine feature matrices as 216 
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described above. The convoluted features were generated by using OpenImageR 217 

(https://github.com/mlampros/OpenImageR) package in R and the size of the matrices were 218 

kept same to avoid any loss of information. Hence, 18 feature matrices were used for each 219 

pair of interacting protein for training the random forest classifier.  220 

2.5 Interface residue labelling  221 

The interface residues for the protein complexes were extracted using PISA(Krissinel and 222 

Henrick 2007). The number of residue pairs present in the interface (500 pairs for 42 223 

complexes) was far less than all possible residues pairs of the two interacting proteins 224 

(20,00,000 for 42 complexes). To increase the search space and take into consideration the 225 

environment of the contact forming residues, a distance cut off of 10Å was used to search for 226 

possible pair of residues flanking -2 to +2 positions of the interface residues extracted from 227 

PISA. This yielded ten times more positive labels (5000 pairs for 42 complexes) for training 228 

the classifier. 229 

2.6 Data Imbalance Problem 230 

Although increasing the search space as explained above yielded 10 times more datapoints, 231 

still the complete protein complex database exhibited highly imbalance data. 5000 pairs were 232 

labelled as positive out of the total 20,00,000 pairs. In order to address this imbalance class 233 

problem, the majority class which was the negative data labels (non-interface residues pairs) 234 

was down sampled. A number of ratios for negative to positive samples were tested 235 

iteratively (e.g. 2:1, 5:1, 10:1 and 20:1) and best evaluation statistics were obtained when the 236 

negative sample size was five times that of positive samples (5:1). This was used as training 237 

set for the supervised classification model. 238 

2.7 Random Forest Classifier 239 

The random forest classifier was trained first using grid search to optimize the 240 

hyperparameters for the model yielding the best evaluation statistics through cross validation. 241 

The hyperparameters obtained from the grid search were then used to train the classifier with 242 

a training to test sample split to 75:25. The scoring function used for optimizing the 243 

hyperparameters was chosen as F1 score owing to imbalanced nature of the dataset used for 244 

training. Scikit-learn(Pedregosa et al. 2011) was used to import the random forest classifier 245 

base algorithm. Training was performed on the same data sets both with and without 246 

environment features. All the data sets were compiled using R and 247 
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Rstudio( http://www.rstudio.com/) and machine learning was performed using python3.7 via 248 

anaconda-navigator (https://anaconda.com).  249 

2.8 Network Analysis 250 

To reduce the number of false positives obtained from the random forest classifier, a holistic 251 

approach was adopted as described in figure 3 to include the intra protein predictions. To 252 

determine the intra contacts, we used the co-evolution method as described in 2.3.1 by 253 

concatenating Protein A with itself (similarly for Protein B) (figure 3B). To determine the 254 

contact forming intra-protein residue pairs, the residues present at a sequential distance less 255 

than 5 residues were eliminated and only top 5% of the coevolution values were taken as 256 

positive. The residue pairs obtained from this analysis for both proteins were used to plot the 257 

intra-protein residue networks in Rstudio using igraph package(Csárdi and Nepusz 2006).  258 

The predictions from the random forest classifier were used to plot inter-protein residue 259 

network as a bipartite graph using the igraph package in Rstudio. Since the RSA for residues 260 

present in the core of the protein should be 0, these residues were extracted from 261 

SPIDER3(Heffernan et al. 2017) for both the proteins independently. A residual network was 262 

hence computed for the inter-protein contact predications by first eliminating the nodes 263 

representing RSA=0 and then the intra-protein contacts from Protein A and B (figure 3C and 264 

3D. This residual network was then analysed for the false positives and true positives on a 265 

protein complex with known 3D structure of the protein of interest. 266 
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 267 

Figure 3: Network analysis of intra and inter protein contacts. (A) Extraction of residues 268 

with RSA=0 for Protein A and B. (B) Intra contact prediction for Protein A and B (top 5% 269 

co-evolving residue pairs). (C) Predicted inter protein network from random forest classifier. 270 

(D) The false positive inter protein residue pairs obtained from the random forest classifier 271 

are reduced by removing nodes having RSA=0 for Protein A and B as well as top 5% co-272 

evolving intra protein residues of Protein A and B. (E) Analysis of the inter-contact from 273 

residual network onto the structure of Protein A and B. 274 

3. Result and Discussion  275 

3. 1 Feature Derivation 276 

The predictability of any supervised machine learning method is dependent on the nature of 277 

features used for training. Random forest classifier is a tree-structure based algorithm where 278 

the classification rules are learned based on the feature values and their target class provided 279 

while training. Various features generated for training the random forest classifier were 280 

divided into three categories viz conservational, structure based and contact potential-based 281 

features. For the conservation-based feature, a new co-evolution algorithm was derived as 282 

explained in 2.3.1 and figure 2. The new method as described in section 2.3.1 provided better 283 
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scores for the interface residues as opposed to other co-evolution methods (table S2). Another 284 

important difference was generation of only a single non-symmetric MXN matrix from this 285 

method as opposed to LXL (where L= M+N) from other methods which result in higher 286 

signal to noise ratios. Thus, the conditional mutual information (CMI) based method was able 287 

to provide more confidence to the co-evolving pair of residues and decreasing the noise by 288 

generating the MXN matrices.  Moreover, the co-evolving pair of residues in the interacting 289 

proteins maintain the homeostasis of the interaction across species hence using them as a 290 

feature as opposed to the standard PSSM based conservation methods(such as 291 

PAIRpred(Afsar Minhas, Geiss and Ben-Hur 2014), eFindSite(Maheshwari and Brylinski 292 

2016), Cons-PPISP(Chen and Zhou 2005), PSIVER(Murakami and Mizuguchi 2010) etc) 293 

provided better predictability.    294 

 The nature of physicochemical properties of the residue interaction in the protein interface 295 

are somewhere in between their properties when present in the core or on the surface of the 296 

protein. It has been reported that the interface environment is closer to that exhibited on the 297 

outside in contact with the solvent as opposed to that present in the core of the protein(Jones 298 

and Thornton 1995). For example, relative solvent accessibility of a residue which defines its 299 

possible position in the protein i.e. whether it will be present in the core of the protein 300 

(relative solvent accessibility of 0) or is solvent exposed (relative solvent accessibility >0). 301 

For the residues which lie in the PPI interface should have value as 0<RSA<1, if the value is 302 

scaled between 0 and 1. Due to lack of specific standard matrices for inter-protein residue 303 

contacts, those derived for intra-protein contacts were used for feature generation in this 304 

method which includes charge, hydrophobe and size compatibilities, relative solvent 305 

accessibility and secondary structure predictions.  306 

The knowledge based statistical potentials have also been used previously to mimic the 307 

interactions between the amino acids in a protein. One of such knowledge-based potential is 308 

the contact potential derived by Miyazawa and Jernigan based on statistical analysis of the 309 

protein structures. These contact potentials are widely used in the computational prediction 310 

for protein folding.  The contact potentials for the residue lying in the PPI interface should 311 

ideally lie in between those of buried and exposed residues. To access their applicability in 312 

identifying interface residues of the interacting proteins three approximations of these contact 313 

potentials were used as features.  314 
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The contacts between two residues of the interacting proteins also depends on its 315 

neighbouring residues by creating a favourable niche for the interaction to take place. Hence 316 

the properties governing the interaction (as described above) of the neighbouring residues 317 

will also have an impact on the overall predictability of the random forest classifier. To 318 

address this, the random forest classifier was trained in two different modes i.e. with and 319 

without environment features, the results of which are explained below. 320 

3.2 Evaluation of environment features in random forest classifier 321 

To validate the effect of the environment features on the random forest classifier, the 322 

classifier was trained both with and without the environment features. The evaluation metrics 323 

obtained for both the cases are listed in supplementary table S3. The overall accuracy 324 

obtained for the dataset trained with the environment features was 85.3% as opposed to that 325 

for without environment features was 80%. The Receiver-Operator Curve and confusion 326 

matrix for five-fold cross validation for dataset with environment features is shown in figure 327 

4 and that without environment is depicted in supplementary figure S2. As observed through 328 

all the evaluation statistics, the classifier predicts with better precision and recall and hence 329 

F1 measure, especially for the class label 1, when the environment features are used for 330 

training. Thus, validating that these derived features (environment features) are important in 331 

predicting the contact forming residue pairs for the interacting proteins.  332 

333 
 Figure 4: Statistics for the Random Forest Classifier Model for predicting contact 334 

forming residue pairs. (A) Receiver-operator curve (ROC) depicting Area under the curve 335 

(AUC) as 0.76 when the model is tested on the 75:25 data split. (B) Confusion matrix for the 336 

tested model on 75:25 data split with a final accuracy of 85.33% 337 
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338 
 Figure S2: Statistics for the Random Forest Classifier Model for predicting contact 339 

forming residue pairs without environmental features. (A) Receiver-operator curve 340 

(ROC) depicting Area under the curve (AUC) as 0.66 when the model is tested on the 75:25 341 

data split. (B) Confusion matrix for the tested model on 75:25 data split with a final accuracy 342 

of 80% 343 

Table S3: Comparison of evaluation statistics, with and without environmental features. 344 

 Class Precision Recall F1-score 

Without 

Environmental 

Features 

0 0.89 0.88 0.88 

1 0.43 0.44 0.43 

Weighted 

Avg 

0.81 0.81 0.81 

With 

Environmental 

Features 

0 0.92 0.91 0.91 

1 0.56 0.59 0.58 

Weighted 

Avg 

0.86 0.85 0.86 

 345 

3.3 Feature importance evaluation 346 

One of the marked features of random forest classifier is that it is able to decipher the 347 

importance of every feature used for training which can be used to determine the over-fitting 348 

of a model as well as to gain insights about the physical relevance of the features in 349 

predicting the PPI interface. The feature importance plot for the dataset without the 350 

environment features (supplementary figure S3) depicts that the three most important features 351 

are relative solvent accessibility (RSA), co-evolution scores (CMI) and the contact potentials 352 

(CP). However, the feature importance plot for the dataset with environment features (18 353 

features in all) (figure 5), depicts the importance of these derived features. Of the 18 features, 354 

used for training, top 12 positions have all 9 derived features along with RSA, CMI and CP. 355 
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Thus, it is evident that all these features play a crucial role for the prediction of protein 356 

interaction interfaces. 357 

 358 

Figure 5: Feature Importance obtained from Random Forest Classifier. 359 

Relative Solvent Accessibility (RSA/ERSA) and Co-evolution Scores (ECMI/CMI) as two of 360 

the most important features in training the model. RSA: Relative Solvent Accessibility. 361 

ERSA: Environment Relative Solvent Accessibility. ECMI: Environment Conditional 362 

Mutual Information. ECC: Environment Charge Compatibility. ESSP: Environment 363 

Secondary Structure Prediction. CMI: Conditional Mutual Information. ECP: Environment 364 

Contact Potential. ESCM: Environment Structure Compatibility Matrix. EHCM: 365 

Environment Hydropathy Compatibility Matrix. ECPE: Environment Contact Potential for 366 

Exposed residues. ECPB: Environment Contact Potential for Buried residues. CP: Contact 367 

Potential. CC: Charge Compatibility. SSP: Secondary Structure Prediction. SCM: Structure 368 

Compatibility Matrix. CPB: Contact Potential for Buried residues. CPE: Contact Potential 369 

for Exposed residues. HCM: Hydropathy Compatibility Matrix.  370 
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 371 

Figure S3: Feature Importance obtained from Random Forest Classifier without 372 

environmental features. 373 

Relative Solvent Accessibility (RSA) and Co-evolution Scores (CMI) as two of the most 374 

important features in training the model. RSA: Relative Solvent Accessibility. CMI: 375 

Conditional Mutual Information. CP: Contact Potential. SCM: Structure Compatibility 376 

Matrix. CPB: Contact Potential for Buried residues. CPE: Contact Potential for Exposed 377 

residues. CC: Charge Compatibility.  HCM: Hydropathy Compatibility Matrix. SSP: 378 

Secondary Structure Prediction. 379 

4. Validation of prediction onto test dataset 380 

The pipeline CoRNeA was used to test its predictability on a protein complexes with a known 381 

crystal structure. One of them was the crystal structure of Vav and Grb2 Sh2 domain (PDB 382 

ID: 1GCQ)(Nishida et al. 2001) which consists of three chains. One of Vav proto-oncogene 383 

(Chain C) and the other two of growth factor receptor-bound protein 2 (Chain A and Chain 384 

B). The dataset was compiled for this protein pair using Chain A and Chain C of 1GCQ as 385 

query. The features were calculated as described above and used as test dataset for evaluating 386 

the trained random forest model. The total size of the dataset created by these two chains 387 

amounted to 4002 pairs of residues. The random forest classifier predicted 25 pairs correctly 388 

as true positives and 967 pairs were predicted as false positives. 389 

To further reduce the number of false positive pairs, network analysis was performed. The 390 

intra protein contact forming residue pairs for Chain A (Protein A) and Chain C (Protein B) 391 

of 1GCQ were obtained from co-evolution analysis where only top 5% pairwise values were 392 
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considered to be true cases. The length of Chain A is 56 amino acids which would lead to 393 

3,136 intra pairs. The highest scoring 157 pairs were considered while constructing the intra 394 

protein contact forming residue network of Chain A of 1GCQ as depicted in supplementary 395 

figure S4 (A). The length of Chain C is 69 amino acids which would lead to 4,761 intra 396 

protein pairs. The highest scoring 238 pairs were considered while constructing the intra 397 

protein contact forming network of Chain C of 1GCQ as depicted in figure S4(B). The inter 398 

protein contact forming residue pair network of Chain A and Chain C as obtained from 399 

random forest classifier is shown in figure S4(C) which consisted to 992 predicted pairs of 400 

which 967 were false positives. A residual network was calculated from the three networks 401 

mentioned above (as shown in Figure S4(D)) to reduce the total pairs to 371 of which 52 402 

were true positives and 319 were false positives.   403 

 404 

Figure S4: Network analysis for PDB ID 1GCQ. (A) Intra-protein network for Chain A/B 405 

of 1GCQ obtained from top 5% co-evolving intra residue pairs. (B) Intra-protein network for 406 

Chain C of 1GCQ obtained from top 5% co-evolving intra residue pairs. (C) Inter-protein 407 

network for 1GCQ obtained from random forest classifier. (D) Inter-protein network for 408 

1GCQ after removing intra-protein network nodes and all nodes having relative solvent 409 

accessibility as 0.  410 
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The results obtained from the network are shown onto the structure of VAV and GRB2 SH3 411 

domains (PDB ID 1GCQ) (Figure 6A). Interestingly, the data labels provided while testing 412 

were only for Chain A and Chain C but the labels obtained after prediction were for both the 413 

pairs i.e. Chain A and Chain C (Figure 6B) as well as Chain B and Chain C (Figure 6C) 414 

(details in supplementary table S4) within 10Å distance. Thus, the overall pipeline to predict 415 

the PPI interface is fair in predicting the probable pairs of interacting residues as well as 416 

separate out the residue which might reside on the surface of the protein from those present in 417 

the core of the individual proteins only from amino acid sequence information. The confusion 418 

matrix before and after the network analysis is provided in supplementary table S5. 419 

 420 

421 
 Figure 6: PDB ID 1GCQ evaluated by CoRNeA.  422 

(A) Cartoon representation of 1GCQ. (B) Interface residues predicted by this method 423 

between Chain A (pink) and Chain C (green) within 5Å distance. (C) Interface residues 424 

predicted by this method between Chain B (pink) and Chain C (green) within 5Å distance. 425 

(D) Surface representation of 1GCQ depicting interface residues. Chain A and B in pink and 426 

their respective interface residues are shown in yellow. Chain C in green and its interface 427 

residues are depicted in red.  428 

Table S4: Pairwise true contacts predicted for PDB ID 1GCQ Chain A with Chain C 429 

and Chain B with Chain C within a distance cutoff of 10 Å. 430 

Residue number Residue number Distance (Å) Residue number Residue number Distance (Å) 
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(Chain A) (Chain C) (Chain B)  (Chain C) 

208 609 3 179 652 3.3 

208 608 3.3 165 657 3.6 

209 610 3.5 179 637 4 

192 611 3.6 165 656 5.3 

208 611 3.6 211 629 5.9 

193 610 4 179 653 6.6 

193 611 4 165 653 7.25 

208 612 4.3 179 651 7.7 

192 612 4.4 179 636 8 

165 608 4.8 179 656 8 

209 611 4.9 179 657 8 

208 610 5.2 209 612 8.3 

193 612 5.6 163 657 8.3 

206 612 6 179 630 8.7 

193 609 7.3 182 630 8.8 

208 607 7.7 179 627 9 

192 609 7.7 180 637 9 

166 653 7.8 208 593 9.3 

179 607 8.5 211 593 9.3 

165 609 8.7 179 629 9.5 

193 608 8.8 179 600 10 

165 610 8.9 180 630 10 

209 653 9.3 211 652 10 

192 608 9.6 192 657 10 

165 651 9.6 211 657 10 

179 608 9.8    

174 612 10    

 431 

Table S5: Confusion Matrix statistics for PDB ID 1GCQ before and after network 432 

analysis 433 

 

Before 

Network 

Analysis 

                         0 

True Class       1 

True Negatives= 2954 False Positives = 967 

False Negatives= 56 True Positives= 25 

                       0              Predicted Class       1 
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After 

Network 

Analysis 

                         0 

True Class       1 

True Negatives= 3575 False Positives = 319 

False Negatives= 56 True Positives= 52 

                       0              Predicted Class       1 

 434 

To test the applicability of the pipeline on larger protein complexes, the structure of the alpha 435 

gamma heterodimer of human IDH3 (PDB ID: 5YVT)(Liu et al. 2018) (Figure S5A) was 436 

used as a test dataset.  This protein complex is from mitochondrial origin and its length 437 

(M+N) is larger (693 amino acids) as compared to the previous example (PDB ID: 1GCQ, 438 

127 amino acids).  The random forest classifier was able to predict 64 out of 164 contacts 439 

with precision. Network analysis was performed for this dataset by calculating the intra 440 

contacts of both chains A and B. The residual network resulted in 992 edges of which 24 441 

pairs formed the actual contacts when mapped onto the structure. In terms of the interface 442 

residues covered amongst these 24 pairs, 50% of the pairs where correctly identified by 443 

CoRNeA as shown in figure 6A and 6B. Hence this new pipeline can be used for proteins 444 

from eukaryotic origin as well as the length of the pair of proteins in consideration is not a 445 

limiting factor.  446 
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 447 

Figure 6: PDB ID 5YVT evaluated using CoRNeA and BIPSPI 448 

A. Surface representation of 5YVT depicting interface residues predicted by CoRNeA. B. 449 

Cartoon representation of interface residues predicted by CoRNeA. C. Surface representation 450 

of 5YVT depicting interface residues predicted by BIPSPI. D. Cartoon representation of 451 

interface residues predicted by BIPSPI Chain A in pink and their respective interface residues 452 

are shown in yellow. Chain B in green and its interface residues are depicted in red. The 453 

black arrows indicate the regions of interface predicted by CoRNeA/BIPSPI. 454 

Comparison with other methods 455 

To access the predictability of CoRNeA, the results obtained from it for the two test cases 456 

described above, were compared to the predictions of recently published method 457 

BIPSPI(Ruben Sanchez-Garcia et al. 2019) which is closest to our implementation. The 458 

sequence mode of prediction on BIPSPI server was employed for predicting the interface 459 

residues of 1GCQ and 5YVT. In case of 1GCQ, none of the predicted pairs had a prediction 460 

score more than 0.5 which is the threshold for any machine learning based method. Of the top 461 

20 pairwise predictions obtained, only two pairs were found to be in the interface zone when 462 

mapped onto the structure. For 5YVT, 1234 pairs were reported by BIPSPI, above the 463 

threshold prediction value of 0.5, of which 24 were true interface forming pairs. The results 464 
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obtained were mapped onto the structure of 5YVT as shown in figure 6C and 6D. It was 465 

observed that the regions which spanned most of these predictions were smaller as compared 466 

to that predicted by CoRNeA (figure 6B). Moreover, the final predictions from CoRNeA 467 

yielded in fewer false positives than BIPSPI hence validating the overall improvement in the 468 

accuracy of the prediction of PPI interface residues (Table S6). 469 

Table S6: Comparison of predictions from CoRNeA with BIPSPI 470 

  

Method 

 

Expected no 

of residues 

within 10Å 

Number of True positives 

with probability more 

than 0.5 

Number of 

False 

Positives 

PDB ID: 1GCQ BIPSPI 108 0 N/A 

CoRNeA 52 56 

PDB ID: 5YVT BIPSPI 164 24 1210 

CoRNeA 24 968 

The numbers depicted for CoRNeA are post network analysis. For 1GCQ the total number of 471 

expected contacts and true positives are for both chain combinations i.e. Chain A and C; 472 

Chain B and C 473 

CoRNeA can however, be further optimized to reduce the false positive rates as well as 474 

improve the true positive predictions by increasing the training dataset. It is evident that the 475 

environmental features play a very important role in training the classifier and thus tweaking 476 

around the size and weights of the kernel matrix can be performed to generate the derived 477 

features and yield in better and specific results.  478 

Conclusions 479 

Predicting the pairwise interacting residues for any two-given pair of proteins from only the 480 

amino acid sequence still remains a challenging problem. In this study, the newly designed 481 

pipeline CoRNeA addresses some of the challenges for predicting the PPI interfaces such as 482 

applicability to eukaryotic PPI and high false positive rated by incorporating co-evolution 483 

information and intra contacts for improving the precision and recall of the pipeline. This 484 

pipeline can be utilized to predict the interface residues as a pairwise entity and also to 485 

understand folding of the individual proteins though intra contact predictions. Obtaining the 486 

structural information of proteins individually as well as in complex with their interacting 487 

partners is a tremendously challenging problem specially for large multimeric complexes. 488 

CoRNeA can be utilized to identify the minimal interacting regions in the heterodimers 489 
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which can then be utilized in structure elucidation studies. The information obtained from 490 

CoRNeA can also be used as a starting point for protein docking studies in case 3D structure 491 

models (experimental or homology based) are available.  492 

Author Contributions  493 

 494 

 495 

 496 
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Table S1: Numeric Coding for amino acids used for co-evolution score calculations 599 

Amino Acid Numeric Coding 

V (Valine) 1 

I (Isoleucine) 2 

L (Leucine) 3 

M (Methionine) 4 
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F (Phenylalanine) 5 

W (Tryptophan) 6 

Y (Tyrosine) 7 

S (Serine) 8 

T (Threonine) 9 

N (Asparagine) 10 

Q (Glutamine) 11 

H (Histidine) 12 

K (Lysine) 13 

R (Arginine) 14 

D (Aspartic Acid) 15 

E (Glutamic acid) 16 

A (Alanine) 17 

G (Glycine) 18 

P (Proline) 19 

C (Cysteine) 20 

- (Gap) 21 

X (Non-Standard Amino Acid) 22 

 600 

Table S2: Comparison of known methods for PPI interface prediction with the new 601 

hybrid method 602 

Interface residues (PISA) Various algorithms for finding contacts 

Nup107 Nup133 Distance(Å) MI 

(2.03) 

DCA 

(0.158) 

Evfold 

(0.155) 

SCA 

(3.86) 

New Method (CMI) 

(1.00) 

D 879 T 696 3.37 0.4285 0.0022 0.0052 0.618 0.804 

S 822 K 975 2.78 0.2379 0.0009 0.0023 0.1607 0.591 

E 884 K 975 2.69 0.2379 0.0001 0.0021 0.339 0.524 

D 917 K 966 2.53 0.0104 0.0005 0.0013 0.192 0.642 

Y 921 K 966 3.37 0.225 0.0008 0.003 0.616 0.364 
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E 922 R 962 3.18 0.7898 0.0015 0.002 0.742 0.342 

K 894 D 982 3.82 0.354 0.005 0.0005 0.223 0.371 

R 898 A 980 3.28 0.179 0.001 0.0025 0.039 0.233 

Q 902 Q 944 3.35 0.8474 0.002 0.001 1.46 0.159 

The interface residues for a test case as predicted by PISA. The value under the name of the method 603 

represents the highest score calculated by the algorithm. MI: Mutual information, DCA: Direct 604 

Coupling Analysis, SCA: Statistical Coupling Analysis. 605 
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