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 26 

Abstract 27 

Computational methods have been devised in the past to predict the interface residues using 28 

amino acid sequence information but have been majorly applied to predict for prokaryotic 29 

protein complexes. Since the composition and rate of evolution of the primary sequence are 30 

different between prokaryotes and eukaryotes, it is important to develop a method 31 

specifically for eukaryotic complexes. Here we report a new hybrid pipeline for the 32 

prediction of protein-protein interaction interfaces from the amino acid sequence information 33 

alone based on the framework of Co-evolution, machine learning (Random forest) and 34 

Network Analysis named CoRNeA trained specifically on eukaryotic protein complexes. We 35 

incorporate the intra contact information of the individual proteins to eliminate false positives 36 

from the predictions as the amino acid sequence also holds information for its own folding 37 

along with the interface propensities. Our prediction on various case studies shows that 38 

CoRNeA can successfully identify minimal interacting regions of two partner proteins with 39 

higher precision and recall.  40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/741280doi: bioRxiv preprint 

https://doi.org/10.1101/741280
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 54 

The biological machinery performs its cellular functions when its basic units such as DNA, 55 

RNA, and proteins interact with each other. To understand the overall functioning of the cell, 56 

it is important to delineate the pairwise interactions of these basic units such as DNA-protein, 57 

RNA-protein, and protein-protein. Of these, the inter protein interactions that a cell possesses 58 

play a very crucial role in understanding the various cellular processes and hence also their 59 

functioning or misfunctioning in the disease models. There are various experimental methods 60 

known for examining these interactions such as yeast two hybrid (Y2H)1, co-61 

immunoprecipitation (co-IP)2, mass spectrometry 3, etc. which provide information only 62 

about the domains necessary for maintaining the interaction or the proximity of the 63 

interactions. Moreover, these methods are labor, cost and time intensive.  Deciphering the 64 

PPII (Protein-Protein Interaction Interfaces) at the highest resolution through x-ray 65 

crystallography or cryo-electron microscopy methods is even more challenging due to their 66 

intrinsic technical difficulties. 67 

 A number of in-silico methods have been described earlier to predict these PPII based on 68 

available data such as 1) homology 2) machine learning and 3) co-evolution based. 69 

Homology based methods are generally applied when confident homologs of both the 70 

interacting proteins are available, followed by protein-protein docking for visualizing the 71 

protein interaction interfaces such as PredUS 4, PS-HomPPI 5, PriSE 6, etc.  The machine 72 

learning (ML) methods which have been described till date are either structure-based or 73 

sequence-based. The structure-based ML methods (such as SPPIDER7, PINUP8, PAIRpred9, 74 

PIER10, ProMate11, Cons-PPISP12, Meta-PPISP13, CPort14, WHISCY15, InterProSurf16, 75 

VORFFIP17, eFindSite18, etc.) require three-dimensional information of the interacting 76 

proteins which can be either experimental or homology driven to incorporate the geometrical 77 

complementarities of amino acids as training features. Only a few sequence-based ML 78 

methods are known such as BIPSPI19, PSIVER 20, and ComplexContact 21 which derive 79 

features based on conservation, physicochemical properties of amino acids, etc. However, the 80 

predictability of these ML methods is affected by the prevalence of high false-positive rates 81 

due to limitation of small number of protein-complex structures in the protein structure 82 

database (PDB) which restrict the training of these machine learning algorithms in terms of 83 

variability.  84 
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The third class, co-evolution-based methods which were originally formulated to predict 85 

contact forming residues within a single protein and therefore for the prediction of the 86 

structure of the protein. These methods have been extrapolated to also predict the inter- 87 

protein interaction interfaces based on the multiple sequence alignments (MSA) of the 88 

proteins. Concatenating the MSA of an interacting pair and using the same statistical 89 

formulae as described for intra pairs have been implemented to predict the co-evolving 90 

contact forming pairs by various methods such as DCA22, EvComplex23, etc. However, there 91 

are two main caveats known for these methods. Firstly, they use different downstream 92 

methods to filter out their results by using homology-based models and docking predictions 93 

in combination with their results. Secondly, most of these methods have been tested on 94 

prokaryotic proteins and have a limitation of predicting only for a maximum combined length 95 

of 1500 residues per protein pair. Almost all co-evolution-based methods have been only 96 

tested on prokaryotic lineage probably due to availability of huge number of sequences for 97 

generating variable multiple sequence alignments. Recently a hybrid method (co-evolution 98 

and machine learning based- ComplexContact 21) was reported, however, its performance 99 

was also the tested on prokaryotic datasets. Overall these methods could not perform with 100 

similar accuracy when applied to eukaryotic complexes. 101 

The low predictability of these methods for eukaryotic protein complexes can be attributed to 102 

the differences in the rate of evolution of the proteins in the two lineages. It has been reported 103 

that there is a difference in the composition of the type of amino acids present in prokaryotic 104 

versus eukaryotic proteins and also in the radius of gyration and planarity in the interaction 105 

interface. Since the eukaryotic proteins are not exclusive to only one set of function, it has 106 

been perceived that most of the eukaryotic protein interactions are transient, having smaller 107 

interaction hotspot zones and have more planar binding sites consisting of more polar and 108 

aromatic residues. These properties of the eukaryotic protein interactions make them essential 109 

part of cell signaling pathways 24.  110 

Hence to delineate the vast PPII network of eukaryote lineage, e.g. human protein interaction 111 

network, which contains about 1,50,000 interactions (with only about 10% of known 112 

structures of these protein complexes)25, it is important to develop a method specific for 113 

eukaryotic predictions. In this report, we present a new hybrid pipeline based on the 114 

framework of Co-evolution, Random forest (ML method) and Network Analysis (CoRNeA) 115 

for predicting the pairwise residues of the PPII from the protein sequence information of two 116 

interacting proteins (Figure 1). We also developed a new hybrid method for calculating co-117 
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evolving positions in the interacting pairs based on mutual information and Statistical 118 

Coupling Analysis (SCA)26. Owing to high signal to noise ratio, this method in consensus 119 

with the other co-evolution-based method does not perform well independently to extract the 120 

precise interacting pair of residues especially for eukaryotic proteins. Hence, we used this 121 

method as one of the features for machine learning pipeline. The other features derived for 122 

the random forest classifier are based on the physicochemical properties of the amino acids 123 

which depend on their side chain structure such as charge, size and hydrophobe 124 

compatibility, secondary structure information and relative solvent accessibility, were also 125 

derived using amino acid sequence information.  To include the energetics of interactions, 126 

contact potentials were also included as features. Similar to other machine learning 127 

classifiers, our pipeline also predicted a number of false positives. In order to reduce them we 128 

employed network analysis by incorporating the intra contact information to generate residual 129 

networks for PPII. In summary, the major highlight of this method as compared to other 130 

methods developed on the similar lines are 1) use of eukaryotic protein structure database for 131 

training the classifier. 2) use of co-evolution information as conservation-based feature. 3) 132 

use of intra contact pairs to eliminate false positive pairs through network analysis. Thus, we 133 

present a holistic approach to this complex problem of identifying pair of residues forming 134 

the interaction interface in the heterodimers from the amino acid sequence information.  135 
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 136 

Figure 1: CoRNeA pipeline for predicting co-evolving contact forming residues in an 137 

interacting pair of proteins. The method for predicting the protein-protein interaction 138 

interface consists of three levels. The top panel depicts the features used for machine learning 139 

pipeline. (A). Conservation based (co-evolution) (B) Structure-based (Charge, Size, 140 

Hydropathy, Secondary structure, and Relative solvent accessibility) and (C) contact 141 

potential- based features (both for buried and exposed residues). (D) Random forest 142 

classification where pairwise values for both proteins are considered depicted in half green 143 

and pink circles for binary classification (Class 1: protein interface, Class 0: non-interface). 144 

The bottom panel depicts the application of network analysis by combining intra and inter 145 

protein contact predictions for reducing the false positives. (E) Prediction of intra contacts of 146 

Protein A and B. (F) Combined network analysis of inter and intra predicted contacts. (G) 147 

Interface prediction for PDB ID: 1H9D.  148 

2. Methodology 149 

The overall pipeline to predict pairwise contact forming residues from sequence derived data 150 

can be divided into three distinct parts as depicted in Figure 1. The first step is to generate 151 
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pairwise features (conservation, structural and contact potential based) from the amino acid 152 

sequence of the two interacting proteins (Figure 1(A)-(C)). The second step is to feed these 153 

pairwise features in a random forest classifier and hence optimize its various hyperparameters 154 

to obtain the best evaluation statistics (Figure 1(D)). The third step is to combine the intra 155 

protein contact forming residues from co-evolution-based method and inter-protein contact 156 

forming residues from random forest classifier and perform network analysis to predict the 157 

exclusive pair of residues forming the interface of the two interacting proteins (Figure 1(E)-158 

(G)). 159 

2.1 Datasets 160 

The Affinity Database version 2.027 was used to select the protein complex structures for 161 

training (42 complexes were selected for training). The amino acid sequences of the complex 162 

structures were extracted from www.rcsb.org and used as a query to search for homologs. 163 

PHMMER28 was used to fetch maximum homologs of the query sequence which were then 164 

manually curated to remove redundant sequences. The sequences having less than 25% 165 

sequence identity were removed. The final dataset for each of the interacting protein 166 

consisted of identical species.  167 

 168 

2.2 Multiple Sequence Alignments 169 

The datasets for each interacting pair of proteins having identical species were subjected to 170 

structure-guided multiple sequence alignments using PROMALS3D29. The alignments were 171 

then analyzed/edited in JalView30 and then concatenated (Last residue of Protein A followed 172 

by first residue of Protein B) in R using package seqinr31. These concatenated MSA datasets 173 

were used for co-evolution matrix calculations. 174 

2.3 Features  175 

For calculating sequence-based features, the sequences were extracted from the protein 176 

databank (www.rcsb.org) and any missing regions reported in the structure were removed 177 

from the sequence data. All the features for training and testing were compiled as all versus 178 

all residue pairs between sequence of the interacting pair of protein (Protein A and Protein B) 179 

in form of M*N matrix (M=length of Protein A and N= length of Protein B). All the feature 180 

values were scaled between 0 and 1. (Figure S1) 181 
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2.3.1 Evolution based features  182 

Co-evolution matrices (CMI) 183 

The co-evolution scores between the pair of residues of the interacting proteins were 184 

calculated based on Conditional Mutual Information as depicted in Figure 2. The 185 

concatenated MSA’s were subjected to perturbation experiment similar to that used in 186 

Statistical Coupling Analysis (SCA)26. The amino acids were converted from alphabetic 187 

nomenclature to numeric for the ease of calculation (table S1). For each column in the MSA 188 

of Protein A and B, a condition pertaining to the presence of one of the 20 amino acid was 189 

given to subset the concatenated MSA. For example, position 1 in concatenated MSA, a 190 

condition given to subset the MSA for the presence of valine (V). A subset of sequences was 191 

selected which had only valine at position 1 of MSA.  Frequencies of the amino acid present 192 

in the subset were calculated and subjected to the conditional mutual information formula32. 193 

It resulted in 20 such conditions for each column in the MSA of Protein A which were 194 

summed up to obtain the final co-evolution M*N matrix.  195 
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 196 

Figure 2: Flow chart representing an algorithm for calculating inter protein co-evolving 197 

positions from multiple sequence alignments.  198 

2.3.2 Structure based features  199 

Charge, Hydrophobe and size compatibility matrices 200 

The physicochemical properties of the residue determined by the composition and chemical 201 

structure were used to derive the structure-based features.  These features can be derived 202 

from sequence information but to derive pair wise values for these properties, we employed 203 
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the 20X20 residue matrices which were described to aid in ab initio modeling of single 204 

protein33. These matrices were used to derive an all versus all residue matrix (M*N) for the 205 

interacting pair of proteins as features i.e. hydropathy compatibility (HCM), charge 206 

compatibility (CCM) and size compatibility matrices (SCM) 207 

Relative Solvent Accessibility (RSA) 208 

To calculate the pairwise RSA values, RSA of independent proteins were calculated using 209 

SPIDER334 and multiplied to form an all versus all (M*N) matrix of the pair of interacting 210 

proteins. 211 

Secondary Structure Predictions (SSP) 212 

The secondary structure of the proteins was predicted using PSIPRED35 and all residues were 213 

assigned numbers (i.e. 1= α-helix, 2=β-sheet and 3=l-loop). Simple multiplication and scaling 214 

of these numbers between 0 and 1 would yield in a combination where α-helix to α-helix 215 

instance will be ranked lowest. To avoid this mis scaling, the training dataset was inspected 216 

for the nature of residue-residue combinations in terms of secondary structures and the 6 217 

possible combinations (i.e. α-α, α-β, α-l, β-β, β-l and l-l) were ranked in order of occurrence. 218 

These values were then used as standard to fill in all M*N matrices of the two interacting 219 

proteins.  220 

2.3.3. Contact Potential based features 221 

Three different approximations of contact potentials were used to generate contact potential-222 

based features. The first approximation was the original matrix (MJ matrix) 36 where the 223 

effective inter-residue contact energies for all amino acid pairs were calculated based on the 224 

statistical analysis of protein structures. The other two approximations were derived from the 225 

MJ matrix, where a 2-body correction was applied on this matrix to generate two separate 226 

matrices 37. One of them was specific for capturing the interactions between exposed residues 227 

and the other one for buried residues. Thus, all three possible combinations were used to 228 

derive three contact potential (M*N) matrices namely, CP: original MJ matrix, CPE: MJ 229 

matrix derived for exposed residues and CPB: MJ matric derived for buried residues, for the 230 

pair of interacting proteins.  231 

 232 

 233 
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2.4. Environment features 234 

To include residue environment information for training the machine learning algorithm, a 235 

kernel matrix of size 5*5 was defined and convolved over the nine feature matrices as 236 

described above. The convoluted features were generated by using OpenImageR 237 

(https://github.com/mlampros/OpenImageR) package in R and the size of the matrices were 238 

kept same to avoid any loss of information. Additionally, various other kernel matrices were 239 

also used to train and test different datasets varying from 3*3 to 7*7 with varying percentage 240 

decrease in the weights from 10% to 25%. Hence, for each independent training/testing cycle, 241 

18 feature matrices were used for each pair of interacting protein for training the random 242 

forest classifier (9 original features and 9 derived features).  243 

2.5 Interface residue labeling  244 

The interface residues for the protein complexes were extracted using PISA38. The number of 245 

residue pairs present in the interface (500 pairs for 42 complexes) was far less than all 246 

possible residue pairs of the two interacting proteins (20,00,000 for 42 complexes). To 247 

increase the search space and take into consideration the environment of the contact forming 248 

residues, a distance cut off of 10Å was used to search for possible pair of residues flanking -2 249 

to +2 positions of the interface residues extracted from PISA. This yielded ten times more 250 

positive labels (5000 pairs for 42 complexes) for training the classifier. 251 

2.6 Data Imbalance Problem 252 

Although increasing the search space as explained above yielded 10 times more data points, 253 

still the complete protein complex database exhibited highly imbalanced data. 5000 pairs 254 

were labeled as positive out of the total 20,00,000 pairs. In order to address this imbalance 255 

class problem, the majority class, which was the negative data labels (non-interface residues 256 

pairs) was down sampled. A number of ratios for negative to positive samples were tested 257 

iteratively (e.g. 2:1, 5:1, 10:1 and 20:1) and best evaluation statistics were obtained when the 258 

negative sample size was five times that of positive samples (5:1). This was used as training 259 

set for the supervised classification model. 260 

2.7 Random Forest Classifier 261 

The random forest classifier39 was trained first using a grid search to optimize the 262 

hyperparameters for the model yielding the best evaluation statistics through cross-validation. 263 

The hyperparameters obtained from the grid search were then used to train the classifier with 264 
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training to test sample split to 75:25. The scoring function used for optimizing the 265 

hyperparameters was chosen as F1 score owing to imbalanced nature of the dataset used for 266 

training. Scikit-learn40 was used to import the random forest classifier base algorithm. 267 

Training was performed on the same data sets both with and without environment features. 268 

All the data sets were compiled using R and Rstudio( http://www.rstudio.com/) and machine 269 

learning was performed using python3.7 via anaconda-navigator (https://anaconda.com).  270 

2.8 Network Analysis 271 

To reduce the number of false positives obtained from the random forest classifier, a holistic 272 

approach was adopted as described in Figure 3 to include the intra protein predictions. To 273 

determine the intra contacts, we used the co-evolution method as described in 2.3.1 by 274 

concatenating Protein A with itself (similarly for Protein B) (Figure 3(B)). To determine the 275 

contact forming intra-protein residue pairs, the residues present at a sequential distance less 276 

than 5 residues were eliminated and only top 5% of the coevolution values were taken as 277 

positive. The residue pairs obtained from this analysis for both proteins were used to plot the 278 

intra-protein residue networks in Rstudio using igraph package41.  279 

The predictions from the random forest classifier were used to plot the inter-protein residue 280 

network as a bipartite graph using the igraph package in Rstudio. Since the RSA for residues 281 

present in the core of the protein should be 0, these residues were extracted from SPIDER334 282 

for both the proteins independently. A residual network was hence computed for the inter-283 

protein contact predictions by first eliminating the nodes representing RSA=0 and then the 284 

intra-protein contacts from Protein A and B (Fsigure 3(C) and 3(D)).  285 
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 286 

Figure 3: Network analysis of intra and inter protein contacts. (A) Extraction of residues 287 

with RSA=0 for Protein A and B. (B) Intra contact prediction for Protein A and B (top 5% 288 

co-evolving residue pairs). (C) Predicted inter protein network from random forest classifier. 289 

(D) The false-positive inter protein residue pairs obtained from the random forest classifier 290 

are reduced by removing nodes having RSA=0 for Protein A and B as well as top 5% co-291 

evolving intra protein residues of Protein A and B. (E) Analysis of the inter-contact from 292 

residual network onto the structure of Protein A and B. 293 

2.9 Scoring of positive pairs using convolution feature matrix 294 

The residual inter-protein network obtained were then plotted as a binary matrix of Protein A 295 

versus Protein B where 0 represented predicted non interface pairs and 1 represented 296 

predicted interface pairs. To identify the most probable interaction interfaces, cluster of 1’s 297 

was identified by convolving a unitary matrix of size equal to that of kernel matrix used for 298 

deriving environmental features (i.e. 3*3 or 5*5) over the prediction matrix. Sub sections 299 

having the maximum number of 1’s hence obtained the highest score (score of 9 for 3*3 300 

matrix and 25 for 5*5 matrix). A cut off value of 2 for 3*3 matrix and 6 for 5*5 matrix was 301 
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selected to sort the high scoring pairs considering that at least 25% of the 3*3 or 5*5 302 

subsections of the prediction matrix are populated with 1’s. These high scoring pairs were 303 

then extracted and mapped onto the test dataset structures to identify the true positives such 304 

that they also occur in the group of 3 residues at a stretch in both the proteins. 305 

2.10 Immunoprecipitation for validating interface residues 306 

Human Nup93 (KIAA0095) fragments (full length (1-819), 1-150, 1-82, 96-150) were cloned 307 

in pEGFP-C1 expression vector (Clontech) fused with GFP at N-terminus.  HEK293F cells 308 

(Invitrogen) cultured in freestyle media (Gibco) in a humidified incubator maintained with 309 

8% CO2, 37°C at 110 rpm, were transfected with plasmid DNA using Polyethylenimine 310 

(Polysciences). Cells were harvested after 60 hours and lysed with lysis buffer (1X DPBS 311 

(Gibco), 0.2% tween 20, protease inhibitor cocktail, 1mM PMSF) by incubating the cells on 312 

ice for 30 minutes followed sonication and centrifugation. 1 mg of supernatant was incubated 313 

with glutathione beads (Pierce) pre-bound with GST tagged Anti-GFP nanobody (Addgene 314 

ID # 61838)42 for 4 hours and 5% lysate was taken as input.  The beads were then washed 315 

with lysis buffer thrice and the pulled fractions were eluted by incubating with elution buffer 316 

(1X DPBS, 50 mM Tris Cl pH 8, 150 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 317 

10 mM reduced glutathione. Eluted fractions were separated on 10 % SDS PAGE, and 318 

transferred onto PVDF membrane (Millipore). Blots were then probed with primary antibody 319 

Anti-Nup205 at 1:4000 (Sigma HPA024574), Anti-GFP 1:3000 (Sigma G1546) followed by 320 

secondary HRP conjugate. Blots were developed using Quant HRP substrate (Takara) and 321 

images were acquired on Amersham Imager 600 (GE).  322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 
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3. Result and Discussion  331 

3. 1 Feature Derivation 332 

The predictability of any supervised machine learning method is dependent on the nature of 333 

features used for training. Random forest classifier is a tree-structure based algorithm where 334 

the classification rules are learned based on the feature values and their target class provided 335 

while training. Various features generated for training the random forest classifier were 336 

divided into three categories viz conservational, structure-based and contact potential-based 337 

features. For the conservation-based feature, a new co-evolution algorithm was derived as 338 

explained in 2.3.1 and figure 2. The new method as described in section 2.3.1 provided better 339 

scores for the interface residues as opposed to other co-evolution methods (table S2). Another 340 

important difference was generation of only a single non-symmetric M*N matrix from this 341 

method as opposed to LXL (where L= M+N) from other methods which result in higher 342 

signal to noise ratios. Thus, the conditional mutual information (CMI) based method was able 343 

to provide more confidence to the co-evolving pair of residues and decreasing the noise by 344 

generating the M*N matrices.  Moreover, the co-evolving pair of residues in the interacting 345 

proteins maintain the homeostasis of the interaction across species hence using them as a 346 

feature as opposed to the standard PSSM based conservation methods(such as PAIRpred9, 347 

eFindSite18, Cons-PPISP12, PSIVER20 , BIPSPI19, etc.) provided better predictability.    348 

 The nature of physicochemical properties of the residue interaction in the protein interface is 349 

somewhere in between their properties when present in the core or on the surface of the 350 

protein. It has been reported that the interface environment is closer to that exhibited on the 351 

outside in contact with the solvent as opposed to that present in the core of the protein43. For 352 

example, relative solvent accessibility of a residue which defines its possible position in the 353 

protein i.e. whether it will be present in the core of the protein (relative solvent accessibility 354 

of 0) or is solvent-exposed (relative solvent accessibility >0). For the residues which lie in the 355 

PPI interface should have value as 0<RSA<1 if the value is scaled between 0 and 1. Due to 356 

lack of specific standard matrices for inter-protein residue contacts, those derived for intra-357 

protein contacts were used for feature generation in this method which includes charge, 358 

hydrophobe and size compatibilities, relative solvent accessibility and secondary structure 359 

predictions.  360 

The knowledge-based statistical potentials have also been used previously to mimic the 361 

interactions between the amino acids in a protein. One of such knowledge-based potential is 362 
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the contact potential derived by Miyazawa and Jernigan based on statistical analysis of the 363 

protein structures. These contact potentials are widely used in the computational prediction 364 

for protein folding.  The contact potentials for the residue lying in the PPI interface should 365 

ideally lie in between those of buried and exposed residues. To assess their applicability in 366 

identifying interface residues of the interacting proteins three approximations of these contact 367 

potentials were used as features.  368 

The contacts between two residues of the interacting proteins also depend on its neighboring 369 

residues by creating a favorable niche for the interaction to take place. Hence the properties 370 

governing the interaction (as described above) of the neighboring residues will also have an 371 

impact on the overall predictability of the random forest classifier. To address this, the 372 

random forest classifier was trained in two different modes i.e. with and without environment 373 

features, the results of which are explained below. 374 

3.2 Evaluation of environment features in random forest classifier 375 

To validate the effect of the environment features on the random forest classifier, the 376 

classifier was trained both with and without the environment features. The evaluation metrics 377 

obtained for both the cases are listed in supplementary table S3. The overall accuracy 378 

obtained for the dataset trained with the environment features was 85.3% as opposed to that 379 

for without environment features was 80%. The Receiver-Operator Curve and confusion 380 

matrix for five-fold cross-validation for the dataset with environment features is shown in 381 

figure 4 and that without environment is depicted in supplementary figure S2. As observed 382 

through all the evaluation statistics, the classifier predicts with better precision and recall and 383 

hence F1 measure, especially for the class label 1, when the environment features are used for 384 

training. Thus, validating that these derived features (environment features) are important in 385 

predicting the contact forming residue pairs for the interacting proteins.  386 
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387 
 Figure 4: Statistics for the Random Forest Classifier Model for predicting contact 388 

forming residue pairs. (A) Receiver-operator curve (ROC) depicting Area under the curve 389 

(AUC) as 0.76 when the model is tested on the 75:25 data split. (B) Confusion matrix for the 390 

tested model on 75:25 data split with a final accuracy of 85.33% 391 

 3.3 Feature importance evaluation 392 

One of the marked features of random forest classifier is that it is able to decipher the 393 

importance of every feature used for training which can be used to determine the over-fitting 394 

of a model as well as to gain insights about the physical relevance of the features in 395 

predicting the PPI interface. The feature importance plot for the dataset without the 396 

environment features (supplementary figure S3) depicts that the three most important features 397 

are relative solvent accessibility (RSA), co-evolution scores (CMI) and the contact potentials 398 

(CP). However, the feature importance plot for the dataset with environment features (18 399 

features in all) (figure 5), depicts the importance of these derived features. Of the 18 features, 400 

used for training, top 12 positions have all 9 derived/environment features along with RSA, 401 

CMI, and CP. Thus, it is evident that all these features play a crucial role in the prediction of 402 

protein interaction interfaces. 403 
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 404 

Figure 5: Feature Importance obtained from Random Forest Classifier. 405 

Relative Solvent Accessibility (RSA/ERSA) and Co-evolution Scores (ECMI/CMI) as two of 406 

the most important features in training the model. RSA: Relative Solvent Accessibility. 407 

ERSA: Environment Relative Solvent Accessibility. ECMI: Environment Conditional 408 

Mutual Information. ECC: Environment Charge Compatibility. ESSP: Environment 409 

Secondary Structure Prediction. CMI: Conditional Mutual Information. ECP: Environment 410 

Contact Potential. ESCM: Environment Structure Compatibility Matrix. EHCM: 411 

Environment Hydropathy Compatibility Matrix. ECPE: Environment Contact Potential for 412 

Exposed residues. ECPB: Environment Contact Potential for Buried residues. CP: Contact 413 

Potential. CC: Charge Compatibility. SSP: Secondary Structure Prediction. SCM: Structure 414 

Compatibility Matrix. CPB: Contact Potential for Buried residues. CPE: Contact Potential 415 

for Exposed residues. HCM: Hydropathy Compatibility Matrix.  416 

3.4 Relationship between the size of feature kernel matrix and type of secondary 417 

structures in the interaction hotspots 418 

 419 

The interaction interfaces of the proteins can be classified into 6 possible categories based on 420 

the secondary structure compositions of the interface hotspot regions, such as α-α, α-β, α-l, β-421 

β, β-l and l-l (where α denotes helices, β denoted sheets, and l denoted loops). Since the 422 

residue environment features were identified as the most critical features in the training of 423 
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random forest classifier model, it is important to consider the role of the size of kernel matrix 424 

used for training the classifier. The residue environment for any protein can range from n-1 to 425 

n+1 position and up to n-3 to n+3 positions, thus all such variations were tested by training 426 

different classifiers. For every different size and weight of the feature kernel matrix, the 427 

derived features were generated and used to train different random forest models. For each of 428 

the test dataset, all these different models were tested to determine a relationship between the 429 

nature of interaction in terms of secondary structure pairs and the size and weight of feature 430 

kernel matrices. The optimized models were then utilized to test for pair of interacting 431 

proteins with known crystal structure which were not a part of the training dataset to validate 432 

the predictability of the method. As observed from table S4, for interface hotspots consisting 433 

of loop-loop or loop-sheet interactions were predicted better using 5*5 kernel matrix derived 434 

model and those consisting of helix-helix interfaces were predicted better using the 3*3 435 

kernel matrix derived model.  436 

3.5. Validation of prediction onto test datasets 437 

The pipeline CoRNeA was used to test its predictability on four eukaryotic protein complexes 438 

with known crystal structures. These protein complexes were not a part of the training 439 

dataset. The combined amino acid length of the two proteins in these hetero dimers ranged 440 

from 127 amino acids to 986 amino acids. Additionally, variability in terms of secondary 441 

structure combinations in the interface were also considered while selecting these test 442 

datasets. The features for each dataset were generated as for the training dataset and different 443 

kernel matrix derived environmental feature-based models were used for predicting the 444 

interface residues for each test case. The model which predicted with the best evaluation 445 

statistics was considered for the downstream network analysis and final prediction matrix 446 

processing. Moreover, CoRNeA was used to predict the interaction interface of a known 447 

interacting pair of protein from the inner ring of the nuclear pore complex to access the 448 

applicability of the pipeline to filter high scoring pairs in absence of structural information. 449 

3.5.1 Vav and Grb2 Sh3 domain heterodimer (PDB ID: 1GCQ) 450 

One of them was the crystal structure of Vav and Grb2 Sh3 domain (PDB ID: 1GCQ)44 451 

which consists of three chains. One of Vav proto-oncogene (Chain C) and the other two of 452 

growth factor receptor-bound protein 2 (Chain A and Chain B). The dataset was compiled for 453 

this protein pair using Chain A and Chain C of 1GCQ as query. The features were calculated 454 

as described above and used as test dataset for evaluating the trained random forest models 455 
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with environment features. The total size of the dataset created by these two chains amounted 456 

to 4002 pairs of residues. The random forest classifier predicted 25 pairs correctly as true 457 

positives and 967 pairs were predicted as false positives. 458 

To further reduce the number of false-positive pairs, network analysis was performed. The 459 

intra protein contact forming residue pairs for Chain A (Protein A) and Chain C (Protein B) 460 

of 1GCQ were obtained from co-evolution analysis where only top 5% pairwise values were 461 

considered to be true cases. The length of Chain A is 56 amino acids which would lead to 462 

3,136 intra pairs. The highest scoring 157 pairs were considered while constructing the intra 463 

protein contact forming residue network of Chain A of 1GCQ as depicted in supplementary 464 

figure S4 (A). The length of Chain C is 69 amino acids which would lead to 4,761 intra 465 

protein pairs. The highest scoring 238 pairs were considered while constructing the intra 466 

protein contact forming network of Chain C of 1GCQ as depicted in figure S4(B). The inter 467 

protein contact forming residue pair network of Chain A and Chain C as obtained from 468 

random forest classifier is shown in figure S4(C) which consisted to 992 predicted pairs of 469 

which 967 were false positives. A residual network was calculated from the three networks 470 

mentioned above (as shown in Figure S4(D)) and the final pairs were plotted as a matrix of 471 

Protein A versus Protein B. Since a 5*5 matrix was used to derive the environmental features, 472 

a unitary matrix of 5*5 was convolved onto the resultant interface prediction matrix. Pairs 473 

having convolved value more than 6 were selected which reduced the total pairs to 359 of 474 

which 42 were true positives and 317 were false positives.  The results obtained from the 475 

pipeline are shown onto the structure of Vav and Grb2 Sh3 domains (PDB ID 1GCQ) (Figure 476 

6A(i-ii)). Interestingly, the data labels provided while testing was only for Chain A and Chain 477 

C but the labels obtained after prediction were for both the pairs i.e. Chain A and Chain C 478 

(Figure 6A(i-ii)) as well as Chain B and Chain C (Figure 6A(i-ii)) (table S5) within 10Å 479 

distance. In comparison to the interface predicted by PISA using the structural information, 480 

CoRNeA was able to predict at least 50% of true pairs as depicted in figure 6A(iii). Thus, the 481 

overall pipeline to predict the PPI interface is fair in predicting the probable pairs of 482 

interacting residues as well as separate out the residue which might reside on the surface of 483 

the protein from those present in the core of the individual proteins only from amino acid 484 

sequence information. The confusion matrix before and after the network analysis is provided 485 

in supplementary table S6. 486 

 487 
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3.5.2 Alpha gamma heterodimer of human Isocitrate dehydrogenase (IDH3) (PDB ID: 488 

5YVT) 489 

To test the applicability of the pipeline on larger protein complexes, the structure of the alpha 490 

gamma heterodimer of human IDH3 (PDB ID: 5YVT)45 (Figure 6B) was used as a test 491 

dataset.  This protein complex is from mitochondrial origin and its length (M+N) is larger 492 

(693 amino acids) as compared to the previous example (PDB ID: 1GCQ, 127 amino acids). 493 

Network analysis was performed for this dataset by calculating the intra contacts of both 494 

chains A and B. The residual network resulted in 992 edges which were then mapped back in 495 

the form of the matrix of Protein A versus Protein B. A unitary matrix of 5*5 was convolved 496 

onto the predicted matrix and 537 pairs having value more than 6 were selected for analysis. 497 

Of these, 30 pairs formed the actual contacts when mapped onto the structure having distance 498 

within 10Å as shown in figure 6B (i-ii). Hence this new pipeline can be used for proteins 499 

from eukaryotic origin as well as the length of the pair of proteins in consideration is not a 500 

limiting factor.  501 

3.5.3 Ubiquitin like activating enzyme E1A and E1B (PDB ID: 1Y8R) 502 

The crystal structure of ubiquitin-like activating enzyme E1A and E1B (PDB ID: 1Y8R46) 503 

having a combined length of 986 amino acids (Protein A: 346 amino acids and Protein B: 640 504 

amino acids) was used as another test dataset. Network analysis was performed for this 505 

dataset by calculating the intra contacts of both chains A and B. The residual network 506 

resulted in 1166 edges which were then mapped back in the form of the matrix of Protein A 507 

versus Protein B. A unitary matrix of 3*3 was convolved onto the predicted matrix owing to 508 

the occurrence of α helical structure of the pair of proteins under consideration resulting in 509 

total number of 898 positives pairs of which 18 were true positives and remaining 880 were 510 

false positives (Figure 6C).  511 

3.5.4 Nup107-Nup133 heterodimer of the outer ring of the Nuclear Pore Complex (PDB 512 

ID: 3CQC) 513 

The crystal structure of Nup107-Nup133 complex (Nup107: 270 amino acids, Nup133: 227 514 

amino acids, combined length of 497 amino acids) consists of the C-terminal region of both 515 

the proteins was used as another test dataset. The residual network consisting of 540 pairs 516 

was generated after removing the nodes which are a part of the intra network in either of the 517 

proteins. The total number of points were further reduced to 240 after performing convolution 518 

on the final prediction matrix using a unitary 3*3 matrix and keeping a cut off of more than 2. 519 
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Of the 240 pairs, 6 pairs were identified as true positives within the distance of 10Å (Figure 520 

6D).  521 

 522 

Figure 6: Prediction of interface hotspots on test datasets using CoRNeA.  523 

Predictions of the interface residues for 4 test datasets were mapped onto their crystal 524 

structures, A. PDB ID: 1GCQ B. PDB ID: 5YVT, C. PDB ID: 1Y8R, D. PDB ID: 3CQC. 525 

The first column (i) for all four datasets depict ribbon representation where Protein A is 526 

colored in pink and Protein B in light green; interface residues predicted using CoRNeA for 527 

Protein A (red) and Protein B (yellow) are depicted as spheres. The second column (ii) 528 

depicts surface representation of the same. The third column (iii) depicts open book 529 

representation of the interface residues where the interface hotspots predicted by PISA and 530 

not by CoRNeA are colored as purple for Protein A and forest green for Protein B.  531 

 532 

 533 
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3.5.5 Nup93-Nup205 complex of the adapter ring of the Nuclear Pore Complex (NPC) 534 

To test the applicability of the pipeline on the dataset without known structural information, 535 

hNup93-hNup205 interaction interface was explored. Nup93 is a linker protein of the Nup93-536 

subcomplex of the NPC. It is known to connect the adaptor/ inner ring of the spoke region 537 

with the central channel pore of the NPC47. The adaptor region consists of the four proteins 538 

viz., Nup188, Nup205, Nup35, and Nup155. In terms of the known interactions of the 539 

specific domains of the Nup93, its R1 region which spans the first 82 amino acids is known 540 

to interact with the Nup62 of the central channel48. Nup93 is specifically known to form 541 

mutually exclusive complexes with either Nup188 or Nup205 of the adapter ring49,50. The 542 

interaction interface information for these pair of proteins is not known specifically from 543 

mammalian origin owing to difficuties in biochemical reconstitution of these complexes. 544 

However, for hNup93-hNup205, proximity information for this pair of proteins is known 545 

through crosslinking based mass spectrometry analysis51. The cross-linking data suggests 546 

three different regions of Nup93 to be in proximity of Nup205 (i.e. N-terminal, middle and C-547 

terminal) but the most prominent hits are seen between the R2 (96-150) region at the N-548 

terminal of Nup93 with the C-terminal of Nup205 (Figure 7A).   549 

CoRNeA was employed to identify the interaction interface of Nup93-Nup205 complex by 550 

utilizing full length sequence information of both the proteins (Nup93: 819 amino acids and 551 

Nup205: 2012 amino acids). Since, the secondary structure prediction of both these proteins 552 

depicts α- helices, hence the 3*3 kernel matrix derived random forest model was utilized to 553 

predict the interface pairs. The resultant high scoring pairs, which pertained to specifically 554 

the R2 region of Nup93 (96-150) with the C-terminal region of Nup205 obtained from 555 

CoRNeA (Figure 7B), are in consensus with cross-linking mass spectrometry analysis (table 556 

S7). However various low scoring pairs were also identified for Nup93 middle and C-557 

terminal region but they did not span more than three continuous pairs (such as 89-91 of 558 

Nup93 with 1201-1205 of Nup205) between the two proteins. 559 

Further, validation of the interacting interface between Nup93 and Nup205 predicted with 560 

CoRNeA analysis was done by in-vitro pull-down experiment using Nup93 deletion 561 

constructs (Figure 7C).  Upon pull down with GST tagged anti-GFP nanobody, N-terminal 562 

region of Nup93(1-150) was able to pull endogenous Nup205 efficiently. Further mapping 563 

the minimal interaction region, R2 fragment of Nup93 (96-150) was found to interact with 564 

endogenous Nup205 thus validating the in-silico prediction by CoRNeA. A diminished 565 
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interaction of the Nup93 region (176-819) was also observed through this pull-down 566 

experiment which is also consistent with the identification of low scoring regions identified 567 

by CoRNeA. This experimental validation depicts that CoRNeA is able to predict the short 568 

stretches of interaction hotspots between known pair of interacting proteins from only their 569 

sequence information and hence can be used to decipher the minimal interacting regions of 570 

pair of large proteins. Thus, aiding in their biochemical reconstitution followed by structural 571 

elucidation.  572 

 573 

Figure 7: Prediction and validation of interface regions for Nup93-Nup205 574 

A. Cross-linking based mass spectrometry defined proximity regions between Nup93-575 

Nup205 (adapted from Jan Kosinski, et.al, Science, 2016). B. Top 10% regions predicted by 576 

CoRNeA. Edges in bold depict three most significant regions (N-terminal of Nup93 with C-577 

terminal of Nup205) (details in table S7). C. GFP-fused deletion constructs for Nup93 for 578 

validating the predictions. D. Immunoprecipitation results depicting N-terminal region (1-579 

150) and R2 regions (96-150) of Nup93 specifically interact with endogenous Nup205. 580 

GFPNB: GST-anti-GFP-nanobody.  581 

3.6. Comparison with other methods/BIPSPI 582 

To assess the predictability of CoRNeA, the results obtained from it for the two test cases 583 

described above were compared to the predictions of recently published method BIPSPI19 584 
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which is closest to our implementation and the only available method to predict the interface 585 

residues using only amino acid sequence information. BIPSPI also utilizes similar 586 

physiochemical properties as well as residue environment information through hot encodings.  587 

Although the major point of difference between BIPSPI and CoRNeA lies choice of 588 

conservation-based feature (PSSM in BIPSPI versus co-evolution in CoRNeA) and derivation 589 

of the environmental features (hot encoding in BIPSPI versus convolution averaging in 590 

CoRNeA). Moreover, the network analysis post processing of the results to remove the intra 591 

contacts is one of the unique attributes of the pipeline CoRNeA which is not present with 592 

other machine learning based methods known for predicting the interaction interfaces. Since 593 

CoRNeA utilizes only the amino acid sequence information, the sequence mode of prediction 594 

on BIPSPI server was employed for predicting the interface residues of the four test datasets 595 

(PDB ID: 1GCQ, 5YVT, 1Y8R and 3CQC). The Nup93-Nup205 dataset could not be 596 

processed using BIPSPI owing to its limitation to consider proteins larger than 1500 amino 597 

acids in length. The results obtained for these datasets depicted that the final predictions from 598 

CoRNeA yielded in fewer false positives than BIPSPI hence validating the overall 599 

improvement in the accuracy of the prediction of PPI interface residues (Table 1).  600 

Table 1: Comparison of predictions from CoRNeA with BIPSPI 601 

 Test Dataset   

Method 

  

Expected no of 

residues within 

10Å 

Number of True 

positives with 

probability more 

than 0.5 

Number of 

False Positives 

with 

probability 

more than 0.5 

PDB ID: 1GCQ BIPSPI 108 0 N/A 

CoRNeA 42 317 

PDB ID: 5YVT BIPSPI 164 24 1210 

CoRNeA 30 537 

PDB ID: 1Y8R 

 

BIPSPI 157 1 57 

CoRNeA 18 880 

PDB ID: 3CQC BIPSPI 48 0 1 

CoRNeA 6 240 

The numbers depicted for CoRNeA are post convolution of prediction matrix. For 1GCQ the total 602 
number of expected contacts and true positives are for both chain combinations i.e. Chain A and C; 603 
Chain B and C 604 
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CoRNeA can, however, be further optimized to reduce the false-positive rates as well as 605 

improve the true positive predictions by increasing the training dataset. As it is evident that 606 

the environmental features play a very important role in training the classifier and there is a 607 

correlation between the type of secondary structures and kernel matrices used to derive these 608 

environmental features, different training sub-datasets can be used to train specifically on 609 

various combinations of secondary structures to decrease the false positive prediction by 610 

random forest classifiers and hence increase the specificity of the overall pipeline. 611 

Conclusions 612 

Predicting the pairwise interacting residues for any two-given pair of proteins from only the 613 

amino acid sequence still remains a challenging problem. In this study, the newly designed 614 

pipeline CoRNeA addresses some of the challenges for predicting the PPI interfaces such as 615 

applicability to eukaryotic PPI and high false-positive rates, by incorporating co-evolution 616 

information and intra contacts for improving the precision and recall of the pipeline. This 617 

pipeline can be utilized to predict the interface residues as a pairwise entity and also to 618 

understand folding of the individual proteins though intra contact predictions. Obtaining the 619 

structural information of proteins individually as well as in complex with their interacting 620 

partners is a tremendously challenging problem especially for large multimeric complexes. 621 

CoRNeA can be utilized to identify the minimal interacting regions in the heterodimers for its 622 

biochemical reconstitution, which can then be utilized in structure elucidation studies. The 623 

information obtained from CoRNeA can also be used as a starting point for protein docking 624 

studies in cases where 3D structure models (experimental or homology-based) are available. 625 

The web server is currently under development and the R codes along with the trained 626 

models are available on github.  627 
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 834 

Figure S1: Flowchart depicting the feature generation for predicting pair of protein-835 
protein interaction interface residues 836 

Table S1: Numeric Coding for amino acids used for co-evolution score calculations 837 

Amino Acid Numeric Coding 

V (Valine) 1 

I (Isoleucine) 2 

L (Leucine) 3 

M (Methionine) 4 

F (Phenylalanine) 5 

W (Tryptophan) 6 

Y (Tyrosine) 7 

S (Serine) 8 

T (Threonine) 9 

N (Asparagine) 10 

Q (Glutamine) 11 

H (Histidine) 12 

K (Lysine) 13 

R (Arginine) 14 

D (Aspartic Acid) 15 

E (Glutamic acid) 16 

A (Alanine) 17 

G (Glycine) 18 

P (Proline) 19 

C (Cysteine) 20 

- (Gap) 21 

X (Non-Standard Amino 

Acid) 

22 
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Table S2: Comparison of known methods for PPI interface prediction with the new 839 
hybrid method 840 

Interface residues (PISA) Various algorithms for finding contacts 

Nup107 Nup133 Distance(Å) MI 

(2.03) 

DCA 

(0.158) 

Evfold 

(0.155) 

SCA 

(3.86) 

New Method (CMI) 

(1.00) 

D 879 T 696 3.37 0.4285 0.0022 0.0052 0.618 0.804 

S 822 K 975 2.78 0.2379 0.0009 0.0023 0.1607 0.591 

E 884 K 975 2.69 0.2379 0.0001 0.0021 0.339 0.524 

D 917 K 966 2.53 0.0104 0.0005 0.0013 0.192 0.642 

Y 921 K 966 3.37 0.225 0.0008 0.003 0.616 0.364 

E 922 R 962 3.18 0.7898 0.0015 0.002 0.742 0.342 

K 894 D 982 3.82 0.354 0.005 0.0005 0.223 0.371 

R 898 A 980 3.28 0.179 0.001 0.0025 0.039 0.233 

Q 902 Q 944 3.35 0.8474 0.002 0.001 1.46 0.159 

The interface residues for a test case as predicted by PISA. The value under the name of the method 841 

represents the highest score calculated by the algorithm. MI: Mutual information, DCA: Direct 842 

Coupling Analysis, SCA: Statistical Coupling Analysis. 843 

 844 

 845 
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 847 

Figure S2: Statistics for the Random Forest Classifier Model for predicting contact 848 
forming residue pairs without environmental features. (A) Receiver-operator curve 849 
(ROC) depicting Area under the curve (AUC) as 0.66 when the model is tested on the 75:25 850 
data split. (B) Confusion matrix for the tested model on 75:25 data split with a final accuracy 851 

of 80% 852 

 853 

 854 

Table S3: Comparison of evaluation statistics, with and without environmental features. 855 

 Class Precision Recall F1-score 

Without 

Environmental 

Features 

0 0.89 0.88 0.88 

1 0.43 0.44 0.43 

Weighted 

Avg 

0.81 0.81 0.81 

With 

Environmental 

Features 

0 0.92 0.91 0.91 

1 0.56 0.59 0.58 

Weighted 

Avg 

0.86 0.85 0.86 

 856 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/741280doi: bioRxiv preprint 

https://doi.org/10.1101/741280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 857 

 858 

Figure S3: Feature Importance obtained from Random Forest Classifier without 859 

environmental features. 860 

Relative Solvent Accessibility (RSA) and Co-evolution Scores (CMI) as two of the most 861 

important features in training the model. RSA: Relative Solvent Accessibility. CMI: 862 

Conditional Mutual Information. CP: Contact Potential. SCM: Structure Compatibility 863 

Matrix. CPB: Contact Potential for Buried residues. CPE: Contact Potential for Exposed 864 

residues. CC: Charge Compatibility.  HCM: Hydropathy Compatibility Matrix. SSP: 865 

Secondary Structure Prediction. 866 

Table S4: Evaluation of different kernel matrix derived random forest classifier on 867 

different test datasets 868 

PDB ID Type of secondary 

structure 

Best Kernel 

Matrix 

Number of true 

positive labelled 

Actual true positives 

predicted with best 

kernel matrix 

1GCQ Loop:Loop 

Loop:Sheet 

5*5 81 25 

1Y8R Helix:Helix 

Loop:Loop 

3*3 157 23 

4YDU Helix:Helix 3*3 86 23 

5YVT Helix:Helix 

Sheet:Sheet 

Loop:Loop 

5*5 164 64 

3CQC Helix:Helix 3*3 48 13 
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 870 

Figure S4: Network analysis for PDB ID 1GCQ. (A) Intra-protein network for Chain A/B 871 

of 1GCQ obtained from top 5% co-evolving intra residue pairs. (B) Intra-protein network for 872 

Chain C of 1GCQ obtained from top 5% co-evolving intra residue pairs. (C) Inter-protein 873 

network for 1GCQ obtained from random forest classifier. (D) Inter-protein network for 874 

1GCQ after removing intra-protein network nodes and all nodes having relative solvent 875 

accessibility as 0.  876 

 877 

 878 

 879 

 880 

 881 

 882 
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Table S5: Pairwise true contacts predicted for PDB ID 1GCQ Chain A with Chain C 884 

and Chain B with Chain C within a distance cutoff of 10 Å. 885 

Residue 

number 

Residue 

number 

Convolution 

Value 

Distance 

(Å) 

Residue 

number 

Residue 

number 

Convolution 

Value 

Distance 

(Å) 

(Chain 

A) 

(Chain 

C) 

(Chain B) (Chain 

C) 

208 612 7 3.53 179 652 7 3.3 

192 611 7 3.6 165 655 8 4.66 

208 611 8 3.62 179 655 9 6.7 

194 608 7 3.7 164 657 7 7.2 

209 607 8 3.7 179 653 7 7.5 

209 610 11 3.9 179 654 8 8.9 

193 610 9 4 179 629 8 9.8 

193 611 7 4.17 
    

208 610 9 4.39 
    

209 609 11 4.78 
    

165 608 7 4.8 
    

209 611 9 4.9 
    

209 608 9 5.13 
    

207 611 8 5.2 
    

209 651 7 6.8 
    

164 607 9 7.15 
    

193 609 9 7.3 
    

207 610 9 7.47 
    

164 608 11 7.49 
    

179 606 9 7.6 
    

192 609 9 7.7 
    

209 612 7 7.8 
    

179 607 12 8.5 
    

165 609 8 8.7 
    

193 608 7 8.8 
    

165 610 7 8.9 
    

209 653 7 9.3 
    

192 608 7 9.6 
    

179 608 12 9.8 
    

 886 
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Table S6: Confusion Matrix statistics for PDB ID 1GCQ before and after network 892 

analysis 893 

 

Before 

Network 

Analysis 

                         0 

True Class       1 

True Negatives= 2954 False Positives = 967 

False Negatives= 56 True Positives= 25 

                       0              Predicted Class       1 

 

After 

Network 

Analysis 

                         0 

True Class       1 

True Negatives= 3575 False Positives = 317 

False Negatives= 56 True Positives= 42 

                       0              Predicted Class       1 

 894 

Table S7: Top 10% pairs predicted for Nup93-Nup205 895 

Nup205 Nup93 Convolution 

Score 

No of pairs in the predicted 

regions 

1932-1936 86-99 272 57 

1932-1936 101-117 234 54 

1013-1014 86-109 100 30 

1945-1948 44-48 82 16 

1801-1805 44-48 71 15 

749-751 86-97 66 18 

1935-1939 448-452 65 16 

1928-1930 87-94 65 17 

682-684 109-115 63 21 

1937-1940 44-48 63 14 

1696-1700 44-48 59 15 

1250-1252 87-93 55 17 

1250-1252 109-113 45 15 
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