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Abstract 

Background: Microbial contamination impedes successful biological and biomedical research. 

Computational approaches utilizing next-generation sequencing (NGS) data offer promising diagnostics 

to assess the presence of contaminants. However, as host cells are often contaminated by multiple 

microorganisms, these approaches require careful attention to intra- and interspecies sequence 

similarities, which have not yet been fully addressed.  

Results: We present a computational approach that rigorously investigates the genomic origins of 

sequenced reads, including those mapped to multiple species that have been discarded in previous 

studies. Through the analysis of large-scale synthetic and public NGS samples, we approximated that 

1,000−100,000 microbial reads prevail when one million host reads are sequenced by RNA-seq. The 

microbe catalog we established included Cutibacterium as a prevalent contaminant, suggesting that 

contamination mostly originates from the laboratory environment. Importantly, by applying a 

systematic method to infer the functional impact of contamination, we revealed that host-contaminant 

interactions cause profound changes in the host molecular landscapes, as exemplified by changes in 

inflammatory and apoptotic pathways during Mycoplasma infection. 

Conclusions: These findings reinforce the concept that precise determination of the origins and 

functional impacts of contamination is imperative for quality research and illustrate the usefulness of 

the proposed approach to comprehensively characterize contamination landscapes. 

 

Keywords: Contamination, Mycoplasma, Host-microbe interaction, Next-generation sequencing, 

Non-negative matrix factorization 
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Background 

In contemporary biology, cell resources are routinely manipulated via various techniques under a range 

of conditions. During the course of such manipulations, eukaryotic cells are potentially exposed to 

microorganisms that cause prominent morphological and physiological changes in their host cells, and 

such changes often result in erroneous experimental conclusions [1-3]. In medical and clinical settings, 

it is imperative to detect infectious agents in donated cells to avoid donor-patient disease transmission 

[4-6]. Despite a community-wide effort to introduce precautions to prevent contamination, the 

pervasiveness of unexpected microbial contaminants in publications has recently been reported [7-9]. 

This diminished quality is due, in part, to intrinsic difficulties in assaying for contamination, e.g., 

window periods, primer dependency, and drug resistance. As an alternative solution to these problems, 

next-generation sequencing (NGS) has been shown to be an effective approach [6, 10, 11]. 

 

Recently, NGS-based studies have intensively addressed the presence of specific microorganisms (e.g., 

Mycoplasma) [7-9] and the influence of cross-contamination caused by exogenous sources (e.g., 

laboratory reagents and sequencer carryover) [12-15]. While computational methods employing 

efficient bioinformatics strategies have greatly contributed to such studies [16-19], fundamental 

challenges still remain [20, 21]. One difficulty in particular is how to deal with sequenced reads that can 

be mapped to multiple microbial genomes simultaneously, which leads to detection uncertainty [17, 21, 

22]. In fact, biological resources contaminated by multiple microorganisms are not uncommon, and the 

nature of higher intra- and interspecies sequence similarities in microbial communities is well known; 

that is, distinct species belonging to the same genus have >97% sequence identity [23]. There are also 

species in different genera that are difficult to distinguish genomically [21]; for instance, the genome 

sequence of Enterobacteria phage phiX174, a routinely used spike-in species in Illumina sequencing, 

shares >95% identity with the sequences of the G4 and Alpha3 Microvirus genera [24]. 

 

In this study, to improve the certainty of NGS-based contaminant detection, we developed a 

computational approach that rigorously investigates the genomic origin of sequenced reads. Unlike 

existing rapid and quasi-alignment approaches, our method repeatedly performs read mapping coupled 

with a scoring scheme that weights the reads unmapped to the host genome but mapped to multiple 

contaminant genomes. This approach allows estimation of the probability of chance occurrence of the 

detected contaminants. By setting human as a host and bacteria/viruses/fungi as contaminants, we 

demonstrate the robust performance of the proposed method by analyzing synthetic data. Next, we 

analyzed over 400 NGS samples to profile the contamination landscape, which yielded a catalog of the 

microbes prevalent in the molecular experiments. Furthermore, we applied a matrix factorization 

algorithm using our profiles to infer the functional impacts of contamination, thus providing a novel 

window into the complexities of host-microbe interactions. 
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Results 

Identification and quantification of host-unmapped microbial reads 

Our first goal was to extract exogenous reads from the input NGS reads by performing greedy 

alignments. Similar to the initial screening step in published methods [18, 25, 26], our method 

thoroughly discards host-related reads (Step I to IV in Fig. 1A). Unlike the sequential subtracting 

approach used in other published methods [13, 18, 25], our method independently maps the screened 

reads to individual microbial genomes (Step V in Fig. 1A), which enables us to define the mapping 

status of each read (Step VI in Fig. 1A), i.e., a read is categorized as either a ‘uniq-species-hit’ (or 

‘uniq-genus-hit’), which is uniquely mapped to a specific species (or genus), or as a ‘multi-species-hit’ 

(or ‘multi-genera-hit’), which is repeatedly mapped to multiple species (or genera). 

 

Prior to quantifying microbe abundance, our method tests the statistical significance of the unique 

microbe hits by preparing an ensemble of unique hits with random read sets (Step VIII in Fig. 1A). If the 

observed value of the unique hits is significantly greater than its random ensemble mean value, the 

pipeline reports the microbe as a potential contaminant. Microbes that were detected with no unique 

hits are considered not of interest. Next, to calculate an RPMH (read per million host-mapped reads) 

value for each species (or genus), our method weights the reads repeatedly mapped to the multiple 

microbes reported (Step VII in Fig. 1A). The RPMH at a sample level is based on the sum of the raw 

counts of microbe-mapped reads. In summary, the proposed method explores uniquely mapped reads, 

as a primary key, and exploits the weighted contributions of reads mapped to multiple microbial 

genomes (see the “Methods” section). 

 

Parameter tuning with simulated reads 

To assess the performance of our mapping approach (Step V and VI in Fig. 1A), we first conducted a 

reversion test with random microbial read sets, which measures the ratio of reads that correctly 

mapped to their origin genomes. We prepared 10,000 reads (1,000 ×10 species) per run and repeated 

the test 1,000 times with different read sets. We also tested different parameters for Bowtie2 [27]. 

Since the reversion test uses intact DNA fragments randomly selected, if the pipeline works perfectly, 

all the species will be detected with the 1,000 reads. 

 

With the default parameters (Fig. 1B), when counting false positives at the species level (i.e., 

multi-species-hits), 17% of the tested species had over 5% multi-species-hits. When allowing reversion 

errors within the same genus (i.e., counting uniq-genus-hits), only 0.7% of the genera (11 out of 1504) 

showed over 5% multi-genera-hits. The other parameters of Bowtie2 had no effect on these results 

(Additional file 1: Fig. S1A-C). This observation implies the presence of high sequence similarity at the 

species level. We calculated the ratios by running PathSeq [18], FastQ Screen [28], and DecontaMiner 

[29] (Additional file 2). Of note, comparing existing pipelines is not straightforward because different 

aligners are employed and databases are inaccessible in some cases. With this in mind, the results 

indicated that the pipelines exhibit inferior performance for a portion of the reads, similar to our 
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pipeline (Additional file 1: Fig. S2A). These results suggest that the FDRs likely depend on the degree of 

microbial intra-species sequence homology causing ambiguous multi-species-hits, rather than on 

intrinsic algorithmic differences in the pipelines. 

 

We next investigated the influence of interspecies sequence homology. Overall, although the reversion 

test ensures 1,000 microbial reads as the intensity of a species, counting only the uniq-genus-hits 

showed lower intensity (i.e. loss of accuracy due in part to the occurrence of multi-genera-hits), while 

taking the sum of all of the hits showed higher intensity (i.e. gain of ambiguity due to the involvement 

of multi-genera-hits) (Additional file 1: Fig. S1D). The existing pipelines we tested exhibited the same 

propensity in detection accuracy (Additional file 1: Fig. S2B). These results point out the inadequacy in 

the consideration of uniquely mapped reads only and the need for careful handling of multi-genera-hits 

that causes ambiguity in the contamination source. 

 

To overcome this issue, we designed a scoring scheme for multi-genera-hits (Step VII in Fig. 1A). Based 

on the overall mapping status of the input reads, multi-genera-hit reads are rigorously penalized when 

a larger number of uniq-genus-hits are found; however, the penalty is relaxed when uniq-genus-hits are 

less frequent (Additional file 1: Fig. S3). Overall, our pipeline incorporating this scoring scheme 

quantifies robust intensities compared to the simple sum of all of the hits (Additional file 1: Fig. S1D). 

To clarify further, we performed a comparative analysis with the genera detected with over 5% FDR 

levels in Fig. 1B. The result demonstrated that the loss of accuracy can successfully recover when the 

weighted multi-genera-hits are considered (Fig. 1C and Additional file 3: Table S1). In addition, our 

detections of uniq-genus-hits and multi-genera-hits were highly comparable to FastQ screen with 

Bowtie2, which supports the validity of our mapping strategy tuned with Bowtie2. Interestingly, 

whereas the local alignment strategies (i.e. PathSeq and FastQ screen) increased the gain of ambiguity, 

our pipeline reduced it by the scoring scheme. 

 

In this analysis, we observed nine unexpected genera with uniq-genus-hit reads resulting from 

misalignments for complex reasons (Additional file 3: Table S2). For example, a few reads of Escherichia 

coli were uniquely mapped to Lambdavirus in 3 out of 1,000 runs. To test whether these 

uniq-genus-hits are rare events, we prepared random reads from our microbe genome database that 

discarded Lambdavirus genomes and then mapped them to the genera detected in each of the three 

runs to collect random uniq-genus-hits. After 1,000 runs, in the case of Lambdavirus, the observation of 

ten unique hits showed almost zero deviation above the mean of the uniq-genus-hits from the mapping 

of random read sets (p=0.475 with z-score 0.063), implying a chance occurrence of the observed 

uniq-genus-hits (Additional file 3: Table S2). 

 

Considering these results, we adjusted the proposed method to quantify the microbe abundance at 

genus-level resolution, and additionally reported species-level quantifications. Evaluation of the 

significance of the uniq-genus-hits of a genus prior to quantification is critical to avoid false results. For 
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this purpose, instead of adopting the arbitrary criteria used in other methods [9, 14, 16], the proposed 

pipeline conducts the abovementioned mapping with random read sets to estimate the probability of 

the occurrence of uniquely mapped reads (Step VIII in Fig. 1A). The genus having significant unique hits 

is finally quantified by the scoring scheme (Step IX in Fig. 1A). 

 

Analysis of spike-in contaminants with mesenchymal stem cells 

To validate the performance with real-world data, we prepared human periodontal ligament-derived 

mesenchymal stem cells (hPDL-MSCs) by culturing with and without antibiotic treatments and by 

adding viable spike-in microbes. We performed DNA-seq, RNA-seq, and ATAC-seq assays with these 

samples (Table 1). hPDL-MSCs are a promising clinical resource for periodontal regeneration, as studied 

by our group [30]. 

 

[Table 1 should appear here] 

As shown in Table 1, the spike-in microbes can be quantified with uniq-genus-hits only, decreasing the 

contribution of weighted multi-genera-hits. In the case of the DNA-seq assay with six spike-in species, 

we quantified the sample-level RPMHs that were well correlated with the spike-in concentrations (Fig. 

1D). At the genus level, we could detect four species at 60 CFU and five species at 1,100 CFU (p<0.001), 

but failed to detect 60 CFU of Candida albicans (p=0.2), as did BWA-align [31] and Taxonomer [17, 32]. 

By contrast, BWA-mem and NovoAlign found <76 C. albicans reads with local alignments to 

low-complexity sequence loci. Of note, the C. albicans genome includes a particularly high content of 

repetitive sequences [33]. These results suggest that the microbial genomic context is one of the 

factors to determine the detection accuracy particularly in the case of lower contamination degree. In 

fact, the pipelines increased the detection variability at 60 CFU spike-ins as shown in Fig. 1D; PathSeq 

with BWA-mem reported a relatively higher concentration and the k-mer matching of Taxonomer 

broadly reduced the concentrations along with filtering a number of potential host-relevant reads (i.e. 

165,777 in Sample1, 85,530 in Sample2, and 84,590 in Sample3). 

 

With regard to antibiotic effects, the DNA-seq assay with 3-day-cultured cells clearly demonstrated that 

antibiotic supplementation causes a ~1,000-fold decrease in the sample-level RPMH compared with 

that of cells cultured without antibiotics. In particular, Acholeplasma was markedly sensitive to 

sterilization compared with Mycoplasma (Table 1 and Fig. 1E), suggesting the presence of varying drug 

sensitivities among microbes. 

 

In summary, we concluded that the concentration of spike-in cells can be recovered via our approach. 

Based on the results of the DNA-seq assays at ~0.1x coverage depth of the host genome with 60 CFU of 

microbes, we estimated 0.01 RPMH as an approximation of the limit of detection (LOD). That is, one 

microbial read will exist when 100 million host reads are sequenced. However, LOD verification 

depends on multiple factors, including microbial genomic context, antibiotic susceptibility, sequencing 

depth, and sequencing protocol. In this regard, the results of spike-in tests suggest that the ATAC-seq 
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assay offers a remarkable ability to detect contaminants (Fig. 1E) with very few input reads shown in 

Table 1. 

 

Detection of prevalent contaminants in public RNA-seq data 

To profile the contamination landscape in public data, we downloaded 389 human RNA-seq datasets 

from ENCODE and Illumina Human BodyMap 2.0 (hereinafter called “IHBM2”), and extracted the 

potential host-unmapped microbial reads with scattered percentages in the input reads (Additional file 

1: Fig. S4A), which amounted to 0.15−18.7% in ENCODE and 0.54−3.0% in IHBM2. Interestingly, the 

relative level of microbe-mapped reads increased in a sample when the relative level of host-mapped 

reads decreased (Fig. 2A). Overall, 98% of samples fell within the range of 103−105 RPMHs, forming a 

reference range for RNA-seq sample-level RPMHs (Fig. 2B). 

 

At the genus level, we detected 240 genera across the samples (p<0.001). These genera appeared 

4,040 times, including widespread multi-genera-hits (Fig. 2C). Using the weighted read counts, we 

quantified the genus-level RPMHs of the 4,040 occurrences, 91% of which were located within 10 to 

104 RPMHs (Fig. 2D). Among the 240 genera, 56 were known contaminants in NGS experiments [12], 

such as Bacillus, Pseudomonas, and Escherichia (Additional file 1: Fig. S4B). The remainder included 28 

genera commonly found in ENCODE and IHBM2 samples (Fig. 2E). In particular, Cutibacterium, 

including the species C. acnes (formerly Propionibacterium acnes), which is readily detected on human 

skin, was the most prevalent, supporting the findings in a previous study [34]. 

 

Since the IHBM2 samples exhibited unique patterns, as shown in Fig. 2B and 2D, we next investigated 

their contamination characteristics by performing cluster analyses. The analysis clearly separated the 

sequencing libraries and revealed an increased magnitude of contamination in the 16 tissue-mixture 

samples, likely because producing such samples involved more cell-processing steps (Fig. 3A); this 

separation led to the bimodal distribution shown in Fig. 2B. To confirm the influence of cell-processing 

complexity, we further analyzed 22 samples of embryonic stem cells (ESCs) that were sequenced at five 

time points during culturing on various differentiation media [35]. This analysis revealed three clusters 

strongly associated with the cell types and time points, and found elevated levels of contamination in 

the differentiated ESCs (Fig. 3B), suggesting that intricate cell manipulation poses a higher risk of 

contamination. 

 

Finally, we analyzed host-microbe chimeric reads with paired-end (PE) ENCODE and IHBM2 samples. 

That is, one end of a PE read was mapped to the host and its counterpart to one or more microbes, and 

vice versa. The total number of chimeric reads was very low among all of the microbe-mapped reads, 

implying no considerable influence on the quantification of host gene expression: only 972,812 out of 

750,736,667 microbe-mapped PE reads in the ENCODE samples and 93,723 out of 28,622,763 

microbe-mapped PE reads in the IHBM2 samples. On the other hand, most of the chimerism existed in 

host gene bodies that encode ribosome components, transporters, and signaling molecules (Additional 
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file 3: Table S3). The genes were also upregulated in Mycoplasma-infected samples as described below. 

This finding should be further studied to understand the association between NGS read chimerism and 

microbial hijacking mechanisms. 

 

Identifying genes responding to Mycoplasma infection in MSCs 

Mycoplasma is notorious for infecting cultured cells and has been frequently detected in public NGS 

data [8, 9, 36]. Hence, we profiled the genus-level RPMHs of Mycoplasma from the 389 ENCODE and 

IHBM2 samples as well as from 43 heavily infected samples consisting of seven BL DG-75 samples 

already known to be infected [9] and 36 lung cancer and stem cell samples. As a result, 110 out of the 

432 samples (25.5%) contained at least one Mycoplasma uniq-genus-hit, but only 22 samples (5%) 

included significant uniq-genus-hits (Fig. 4A). This large discrepancy again suggests the importance of 

the careful handling of homologous and erroneous NGS reads, which is imperative to infer contaminant 

prevalence with certainty. 

 

To investigate host gene expression changes during Mycoplasma infection, we identified DEGs between 

Mycoplasma-positive Myco(+) hPDL-MSCs and uninfected Myco(-) hPDL-MSCs. We performed the same 

analysis by incorporating the Myco(+) human bone marrow MSCs (hBM-MSCs) used in Fig. 4A and 

Myco(-) hBM-MSCs (GSE90273). We also sequenced and identified DEGs from Myco(-) hBM-MSCs as a 

control. Of note, although decreases in gene expression should also be studied, we focused on the 

differentially upregulated genes (DUGs) in the Myco(+) samples to enable clear interpretations. We 

identified 86 and 2,185 DUGs in Myco(+) hPDL-MSCs and in Myco(+) hBM-MSCs, respectively (Fig. 4B), 

31 of which existed in both classes of MSCs. Although the DUGs are broadly involved in RNA processing, 

the genes are significantly enriched in cotranslational protein transport processes and with pathways 

involved in infection responses (Fig. 4C). None of these enrichments were observed among the 3,538 

DEGs in Myco(-) hBM-MSCs (Additional file 1: Fig. S5). Among the 967 DUGs identified in Myco(+) MSCs, 

we ultimately retrieved 13 genes that are specifically upregulated in Myco(+) hPDL-MSCs and 

hBM-MSCs (Fig. 4D). 

 

These results imply that the Mycoplasma in the MSCs addressed here utilizes host protein biosynthesis 

machinery related to the ER-associated degradation (ERAD) pathway, a well-known microbial entry 

point [37, 38]. Moreover, one can infer that the abnormal increase in the expression levels of the 13 

DUG RNAs is a candidate diagnostic marker for infection. Indeed, the DUGs were also upregulated 

either in Myco(+) ESCs or other Myco(+) MSCs (Fig. 4E). 

 

Inference of the functional impact of multiple contaminants 

As shown in Fig. 5A, a few genes among the 967 DUGs in the Myco(+) MSCs were upregulated in 

Myco(+) DG-75 samples, which suggests a different type of response in lymphoma. We investigated the 

correspondence between gene expression levels and Mycoplasma concentrations in the samples and 

identified genes potentially associated with the infection (Additional file 1: Fig. S6A); however, 
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significant GO terms were not detected, which is consistent with the findings of a previous report [9]. 

Remarkably, the DG-75 samples were heavily contaminated with multiple microbes (Fig 5B), and the 

gene expression levels exhibited diverse correlation patterns with the concentrations of other microbes 

(Additional file 1: Fig. S6B), implying a profound influence of co-contaminants on phenotypes. 

 

To facilitate the inference of the impact of multiple contaminants, we employed a joint non-negative 

matrix factorization (jNMF) algorithm [39, 40] that modulates multiple genes and contaminants 

associated in a set of samples (Fig. 5C). We first prepared seven input datasets, each of which 

contained five Myco(-) BL cell lines and one of the seven Myco(+) DG-75 samples. After preparing 

contamination and transcriptome profiles for each dataset, we repeatedly ran the jNMF algorithm by 

setting a series of parameters for testing the clustering stability (Additional file 1: Fig. S7). In the case of 

DG75_1 (GSM1197380), the jNMF algorithm retrieved the module that specifically includes elements 

co-elevated in the dataset, i.e., 550 genes and 34 contaminants, including Mycoplasma (Fig. 5D). By 

gathering this type of module from all of the results of the seven input datasets, we could build a 

network modeling the connectivity between the upregulated genes and microbe concentrations in the 

DG-75 samples (Fig. 5E). 

 

The network consisted of 4,322 edges connecting 2,289 genes, 68 microbes, and seven samples. Of 

these genes, 259 genes were common to least four DG-75 samples, and the biological process 

“regulation of cell death” (GO:0010941) was significantly enriched in a subset of them (p=3.76e-3). This 

subset (33 genes) included tumor necrosis factor receptors, which paradoxically play pro-tumorigenic 

or pro-apoptotic functions [41], and humanin-like proteins, which potentially produce 

mitochondria-derived peptides that inhibit apoptosis [42]. Some of the genes were also highly 

expressed in normal B cells, where they are likely involved in activating immune responses. The Myco(-) 

BL cell lines exhibited repression of these apoptosis-related genes (Fig. 5F), which implies that the 

effect is not specific to cancerous cell types. 

 

These results suggest that the severely contaminated DG-75 samples resisted contamination by 

multiple microbes via inflammation pathways and survived by inhibiting apoptotic pathways via 

mitochondria-related mechanisms or via the inhibitory effect of Mycoplasma on apoptosis [36]. 

Collectively, we concluded that jNMF facilitates the inference of how phenotypes (i.e., gene expression 

in this case) have been affected by the complex activities of co-contaminants. 
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Discussion 

We sought to assess the feasibility of NGS-based contaminant detection and to improve its certainty by 

conducting microbe-spike-in experiments and by analyzing public data. For profiling microbial 

contamination, the use of metagenomics approaches that depend on phylogenetic markers or de novo 

assembly seem to offer little benefit, because the sterilization of microbes and sequencing library 

preparation from host cell DNA lead to dilution and degradation of microbe-derived nucleic acids [13, 

14]. Furthermore, since microbial communities can contaminate host cells, a comprehensive catalog of 

microbial genomes must be considered to avoid false inferences. Preliminarily, we detected phiX174 in 

77 out of 341 ENCODE samples with the numbers of mapped reads ranging from 177 (ENCSR000AEG) 

to 7,031,626 (ENCSR000AAL). Surprisingly, fewer than six reads in a sample were the uniq-genus-hits of 

phiX174, and the remainder were multi-genera-hits for phylogenetic neighbor bacteriophages [24, 43, 

44]. This situation, which makes it difficult to identify the true species, may occur frequently, as the 

uniquely mapped and multi-mapped reads in the public datasets exhibited a broad range of intensities 

(Fig. 2C). 

 

We here developed a straightforward approach that uses a large-scale genome database and exploits 

multi-mapped reads that were discarded in previous studies. Although our method successfully 

detected the origins of microbes from the simulated reads of random mixtures, the detection certainty 

was still imperfect, particularly at species level resolution. To overcome this issue, we attempted to 

estimate whether unique microbe-mapped reads are likely observed by chance. We found that 80% of 

the 110 public RNA-seq samples in which uniq-genus-hits of Mycoplasma were detected resulted from 

random occurrences, and 5% of 432 RNA-seq samples were most likely infected with Mycoplasma. 

Moreover, we estimated 103−105 sample-level RPMHs consisting of 10−104 genus-level RPMHs, 

consistent with previous reports; however, these results illustrated more dispersion than expected. Of 

note, it is possible that these RPMH estimations are limited to the samples used here, as microbes are 

highly sensitive to environmental conditions due to distinct genomic context, growth rate, antibiotic 

susceptibility, and invasion mechanism, and RPMH distributions depend greatly on the sample sets 

analyzed. 

 

As shown by the results of the spike-in analyses, even though the experimental conditions were 

identical, the profiles differed between the DNA-seq, RNA-seq, and ATAC-seq assays. Remarkably, 

RNA-seq profiling tended to include more diverse microbes. This tendency may be attributed to the 

relatively complex sample handling required, which leads to a higher risk of contamination. Indeed, 

elaborate cell manipulations, such as tissue mixture and induction of cell differentiation, result in 

increased contamination diversity and intensity. On the other hand, because most prokaryotes have 

histone-free supercoiled nucleoids [45], ATAC-seq is superior for microbe detection with very low 

numbers of input reads. This suggests that the ratio of microbe-to-human DNA accessibility is useful to 

the NGS-based microbial contaminant detection more than the ratios of the genome and transcriptome 

sizes. This aspect of our work should be explored in more detail in future studies. 
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By analyzing public NGS samples, we found that microbes from the genus Cutibacterium are 

widespread contaminants, which is thought to arise naturally [12]. In addition to known contaminants, 

our microbe catalog suggests that the major sources of contamination are laboratory reagents and 

experimental environments. Importantly, any microbial contamination can trigger phenotypic changes 

in the host cells; however, the response pathways are diverse and unclear. For example, the genes 

aberrantly expressed during Mycoplasma infection differed greatly between MSCs and cancer cells. 

Therefore, as an approach to systematically infer the effects of contamination, we used network 

analysis with jNMF. This approach revealed that host-contaminant interactions alter the molecular 

landscape, and such alterations could result in erroneous experimental conclusions.  

 

Conclusions 

The findings in this study reinforce our appreciation of the extreme importance of precisely 

determining the origins and functional impacts of contamination to ensure quality research. In 

conclusion, NGS-based contaminant detection supported by efficient informatics approaches offers a 

promising opportunity to comprehensively profile contamination landscapes. 
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Methods 

Step-by-step procedure of the proposed pipeline 

The proposed pipeline shown in Fig. 1A consists of step-by-step operations detailed below. 

 

Step I (Quality control): Trimmomatic [46], with the option “ILLUMINACLIP:adapter_file:2:30:10 

LEADING:20 TRAILING:20 MINLEN:36”, assesses the quality of the input NGS reads by removing 

adapters and trimming reads. 

 

Step II (Mapping to host-reference genome): HISAT2 [47] coupled with Bowtie2 [27] with the option “-k 

1” aligns the quality-controlled reads to a host reference genome. 

 

Step III (Removing host-relevant reads): To remove any potential host reads, Bowtie2 with “--sensitive” 

and via BLASTn with the options “-evalue 0.001 -perc_identity 80 -max_target_seqs 1” sequentially 

align the unmapped reads again to alternative host genomic and transcriptomic sequences. 

 

Step IV (Making low-complexity sequences): The host-unmapped reads that still remain are candidate 

contaminant-origin reads. To reduce false discovery, TANTAN [48] masks the low-complexity sequences 

in the host-unmapped reads. 

 

Step V (Mapping to a microbe genome): Bowtie2, with the option “--sensitive”, aligns the masked 

sequences to one set of bacterial, viral, or fungal genomes of species belonging to the same genus. This 

step is independently repeated with each of the 2,289 genera. 

 

Step VI (Categorizing read-mapping status): A mapped read is categorized as either a ’uniq-genus-hit’ 

(i.e. uniquely mapped to a specific genus) or a ‘multi-genera-hit’ (i.e. repeatedly mapped to multiple 

genera). The statistics is gathered from the mapping results, which includes the total number of 

microbe-mapped reads (i.e. sum of ‘uniq-genus-hit’ and ‘multi-genera-hit’) and the total number of 

host-mapped reads. 

 

Step VII (Defining a shape of scoring function): The total number of microbe-mapped reads (n) and the 

number of genera of each ‘multi-genera-hit’ read (Ti) define an exponential function for weighting the 

‘multi-genera-hit’ reads. That is, a score Si for the read i that was mapped to Ti different genera (or a 

single genus) is given by 

�� � �
��������
∑ �	

�
	
� . 

Thus, a read uniquely mapped to a genus is counted as 1.0, whereas a read mapped to multiple genera 

is penalized by the exponential function. 

 

Step VIII (Testing statistical significance of unique hits): To test the chance occurrence of the 
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‘uniq-genus-hit’ reads that were mapped to specific microbes, the pipeline first randomly samples n 

reads (i.e. the total number of microbe-mapped reads) from the microbe genomes that discard the 

observed microbial genomes. Next, the pipeline aligns the random reads to the observed microbial 

genomes and counts the uniquely mapped reads. This procedure is repeated ten times to prepare an 

ensemble of random numbers of unique reads for each observed genus. The numbers for a genus are 

converted into z-scores, and the null hypothesis that no difference exists between the observation and 

the mean of its ensemble is tested, resulting in a p-value. 

 

Step IX (Calculating RPMHs): For sample-level quantification, a normalized RPMH score (read per 

million host-mapped reads) is calculated as RPMH � � 	⁄ � 10�, where n and m are the total number 

of microbe-mapped reads and the total number of host-mapped reads in a given input dataset, 

respectively. For genus-level quantification, the RPMH of a genus G is calculated by 

RPMH�G� � ∑ ��
�̀
���

	  , 
where �̀ is the total number of reads uniquely or repeatedly mapped to G. 

 

Preparation of random microbial reads for reversion 

Ten species belonging to distinct genera were randomly selected and prepared 1,000 100-base pair (bp) 

DNA fragments from the genome of a selected species were prepared. A run of the reversion test uses 

the 10,000 reads (1,000 reads × 10 species) and calculates the false discovery rate (FDR) for each 

species; that is, TN / (TN+TP), where TP (true positive) is the number of reads mapped to their origin 

and TN (true negative) is the number of reads mapped to others. If the method works perfectly, the 

species tested will be detected with 1,000 uniquely mapped reads (see Additional file 2). 

 

Cell collection and culture  

Human bone marrow-derived MSCs (hBM-MSCs) were purchased from Lonza (Lonza, Walkersville, MD, 

USA), and periodontal ligament-derived MSCs (hPDL-MSCs) were prepared as previously described [49]. 

Briefly, periodontal ligament (PDL) tissue samples separated from the middle third of a patient’s 

wisdom tooth were digested with collagenase (Collagenase NB 6 GMP Grade from Clostridium 

histolyticum; Serva, Heidelberg, Germany)/dispase (Godo Shusei Co., Tokyo, Japan), and single-cell 

suspensions were passed through a 70 μm cell strainer (Falcon, Franklin Lakes, N.J., USA). The collected 

cells were incubated in a culture plate (Falcon T-25 flask, Primaria; BD Biosciences, San Jose, CA, USA) 

in complete medium: α-MEM (Sigma-Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum 

(Gibco; Thermo Fisher Scientific, Waltham, MA, USA), 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO, 

USA), and 82.1 μg/ml L-ascorbic acid phosphate magnesium salt n-hydrate (Wako Junyaku, Tokyo, 

Japan) with the antibiotics gentamicin (40 μg/ml, GENTCIN; Schering-Plough, Osaka, Japan) and 

amphotericin B (0.25 μg/m, FUNGIZONE; Bristol-Myers Squibb, Tokyo, Japan). After three passages for 

expansion in T-225 flasks, the cells were preserved in freezing media (STEM-CELLBANKER GMP grade; 

Nihon Zenyaku Kogyo, Fukushima, Japan) and stored in liquid nitrogen. 
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Spike-in test of microbes with human PDL-MSCs 

The frozen cells were rapidly thawed with gentle shaking in a water bath at 37 °C. Next, the cells were 

spiked and cultured in complete medium with and without antibiotics (40 μg/ml gentamicin and 0.25 

μg/m amphotericin B). Then, 2 × 105 cells were spiked with either Bioball® (BioMérieux, France) or 

seven species of Mycoplasma (Additional file 3: Table S4), 60 or 1,100 colony forming units (CFU) of 

each Bioball, or 2,000 CFU of each Mycoplasma species. Genomic DNA was isolated 0 or 3 days after 

the spike-in using a NucleoSpin Blood Kit (Macherery-Nagel Inc., Easton, PA, USA), and total RNA was 

isolated using a NucleoSpin RNA kit (Macherery-Nagel Inc., Easton). 

 

Sequencing of DNA and RNA libraries 

DNA-seq libraries were prepared using 100 ng DNA and the Illumina TruSeq Nano Kit, following the 

manufacturer’s instructions. RNA-seq libraries were prepared using 200 ng total RNA and the 

SureSelect Strand-Specific RNA Reagent Kit (Agilent Technologies, Santa Clara, CA, USA), following the 

manufacturer’s instructions. ATAC-seq libraries were prepared using 50,000 cells, according to a 

published protocol [50]. Sequencing of 36 bp single ends of the RNA libraries from mycoplasma-free 

hPDL-MSCs (three biological replicates) and hBM-MSCs (three biological replicates) was performed with 

an Illumina HiSeq2500 system. Sequencing of the 100 bp paired ends of the libraries of hPDL-MSCs with 

microbe spike-in was conducted with an Illumina HiSeq3000 system. 

 

Implementation of joint non-negative matrix factorization 

Joint non-negative matrix factorization (jNMF) has been successfully applied for the detection of 

so-called “modules” in multiple genomic data [40, 51, 52]. Briefly, given � multiple non-negative data 

matrices ��	�� 
���,…,��, jNMF decomposes the input matrices into a common basis matrix ��	� and 

a set of coefficient matrices ��	��  by minimizing a squared Euclidean error function formulated as 

min ���� � �����
�  �s.t. � " 0, �� " 0�,

�

���

 

where # is the factorization rank and $ is the Frobenius norm. To optimize this objective function, a 

multiplicative update procedure was performed by starting with randomized values for � and ��, 

which is well described in many publications [40, 51, 53]. In single trial, the update procedure was 

repeated % times, and the trial was restarted & times. During the trials, consensus matrices '�	�  

and '��	�� 
���,…,�� were built to calculate the co-clustering probabilities of all of the input elements, 

i.e., the cophenetic correlation coefficient values [39]. For example, if the maximal value of the jth 

factorization rank coincides with the ith element in ��	� , all of the elements in 	 having >0.8 with 

the ith element in '�	� were modulated. In this study, � � 2 (i.e., contamination profile and 

expression profile) and 	 � 6 (i.e., five Myco(-) samples and one Myco(+) sample) were used. Thus, m, 

n1, and n2 represent cells, contaminants, and genes, respectively. The parameters & � 100, % �
5000, and # � 3 were set after testing the clustering stabilities with the combinations of & �
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�10,50,100�, % � �1000,2000,5000�, and # � �2,3,4,5� by calculating the cophenetic correlation 

coefficient values [39]. The input profiles retaining elements with >3 TPM and >1 RPMH were 

converted to the log10 scale by adding one. 

 

Preparation of public datasets 

The human reference genome (hg38) was downloaded from the UCSC genome browser [54] and 

alternative sequences of the reference genome were downloaded from the NCBI BLAST DB [55]. To 

build the microbial genome database, the complete genomes of bacteria, viruses, and fungi were 

obtained from the NCBI RefSeq [56], consisting of 11,360 species from 2,289 genera. Raw RNA-seq 

datasets (341) were downloaded from the ENCODE project [57] and additional raw RNA-seq datasets 

were downloaded from NCBI’s GEO and SRA, including 48 Illumina Human BodyMap 2.0 (GSE30611), 22 

ESCs (SRP067036), seven Burkitt’s lymphoma (BL) DG-75 cell lines (GSE49321), 26 lung cancer cell lines 

(DRA001846), and ten stem cells (PRJNA277616). The RNA-seq data for the EBV-negative BL cell lines 

(BL-41, BL-70, CA46, GA-10, and ST486) were obtained from the CCLE [58]. 

 

Bioinformatics analysis 

To analyze the RNA-seq data, the HISAT2-Bowtie2 pipeline and the Cufflinks package [47, 59] were used 

with hg38 and RefSeq gene annotation. After retrieving genes with >3 FPKMs in at least one sample, 

Cuffmerge and Cuffdiff were performed to detect differentially expressed genes (DEGs) satisfying a 

q-value cutoff <0.05 (Benjamini-Hochberg correction p-value) and a >2.0 fold-change (fc) cutoff. To 

analyze the RPMH clusters, R language function hclust was used. The Euclidean distances among the 

RPMHs were adjusted by quantile normalization and mean centering, and the hierarchical average 

linkage method was used to group genera. To analyze the enrichment of Gene Ontology (GO) terms and 

pathways, the GOC web tool [60] was used with the “GO biological process complete” and “Reactome 

pathways” datasets by selecting the option “Bonferroni correction for multiple testing”.  

 

NovoAlign (V.3.08) was downloaded from the Novocraft [61] and Taxonomer was performed on the 

Taxonomer website [32]. The network data were visualized by using software Cytoscape (V.3.5.1). 

PathSeq [18], FastQ Screen [28], and DecontaMiner [29] were installed with their reference databases. 

Because FastQ Screen accepts limited number of genomes, the input reads were mapped to 10 specific 

genomes only. Detailed information on the existing pipelines can be found from Additional file 2. To 

calculate the sample-level RPMHs in Fig. 1D, the existing pipelines were used to analyze the 

host-unmapped reads of our pipeline, and the total number of microbe-mapped reads was divided by 

the total number of host-mapped reads from our pipeline. As the total number of microbe-mapped 

reads, for Taxonomer, the numbers of ambiguous, bacterial, fungal, phage, phix, and viral bins in the 

output file were summed up. For DecontaMiner, the total counts of ‘TOTAL_READS’ in the output file 

were collected. For PathSeq, the read count of the column ‘read’ when the column ‘type’ is ‘root’ in the 

output file was collected. 
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Availability of data and materials 

All data generated or analyzed during this study are included in this published article and its 

supplementary information files. The DNA-seq, RNA-seq, and ATAC-seq data have been deposited in the 

NCBI Sequence Read Archive (SRP161443) [62]. The source code of jNMF and the dataset for Fig. 1B 

have been deposited in GitHub [63]. The online version of the proposed pipeline is available at our web 

site [64]. The scripts and materials are available from the corresponding author on request. 
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Figure legends 

Figure 1 

Overall structure of the proposed pipeline and results of the performance assessment. (A) Schematic 

representation of the proposed pipeline that executes rigorous read alignment with a large-scale 

genome database. (B) FDR distribution in the reversion tests considering falsely mapped reads to other 

species or to other genera. Particular genera, including Raoultella, Shigella, and Kluyvera, are difficult 

to distinguish genomically. (C) Comparative analysis for the effects of uniq-genus-hits and weighted 

multi-genera-hits in quantification. “Total mapped” represents the sum of uniq-genus-hits (Unique and 

Unambiguous) and multi-genera-hits (Multiple and Ambiguous). “Weighted” represents the adjusted 

“Total mapped” by our scoring scheme. (D) Correlations between the detection quantification and 

spike-in concentration assayed by DNA-seq (0-day cultured hPDL-MSCs with antibiotics). (E) RPMH 

differences among three NGS protocols in Mycoplasma spike-in detections (3-day cultured hPDL-MSCs). 

 

Figure 2 

Investigation of 389 public RNA-seq datasets to profile potential contaminants. (A) Distribution of the 

microbe-mapped reads inversely correlated with that of the host-mapped reads. (B) Distribution of 

sample-level RPMHs. Of the samples, 98% are within 1,000 to 100,000 RPMHs. (C) Genus-level read 

counts of 4,040 occurrences of 240 genera across the 389 samples. (D) RPMHs of the 4,040 

occurrences, 91% of which are within 10 to 10,000 RPMHs. (E) Twenty-eight genera detected in both 

ENCODE and Illumina Human BodyMap2.0 (IHBM2) samples; the x-axis labels are colored black for 

bacteria, blue for fungi, and red for viruses. 

 

Figure 3 

Results of the hierarchical clustering analysis with contamination profiles. (A) Contamination profile of 

the Illumina Human BodyMap2.0 (IHBM2) samples showing the increased RPMHs in 16 tissue-mixture 

RNA-seq datasets. (B) Contamination profile of ESCs (SRP067036) showing three clusters associated 

with differentiation and time points. 

 

Figure 4 

Results of the Mycoplasma prevalence analysis and the functional impacts on host cells. (A) 

Twenty-two out of 432 public RNA-seq datasets contained significant Mycoplasma-mapped reads 

(red-colored bar) that were normalized to RPMHs (blue-colored line); the x-axis labels are colored black 

for DRA001846, gray for IHBM2, blue for ENCODE, and red for Mycoplasma-positive samples. (B) Gene 

expression correlation plots between Mycoplasma-positive (Myco+) and Mycoplasma-negative (Myco-) 

MSCs; Myco(+) hPDL-MSCs are Mycoplasma spike-in cells (2000 CFU × 7 species, 3 day cultured without 

antibiotics), FPKMs were transformed onto the log10 scale by adding one, and the black-labeled genes 

are the 13 genes listed in (D). (C) Highly enriched Gene Ontology terms and Reactome pathways 

(q-value after Bonferroni correction <0.001). (D) Venn diagram showing unique or shared differentially 

upregulated genes (DUGs) in MSCs, including 13 out of 967 DUGs unique to Myco(+) MSCs. (E) 
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Expression levels of the 13 genes in Myco(+) ESCs and MSCs; the values are expressed as relative TPM 

(transcripts per million). 

 

Figure 5 

Inference of DUGs associated with multiple contaminants in Myco(+) DG75 samples. (A) Expression 

profile of 967 DUGs unique to Myco(+) MSCs. (B) Contamination profile with MSC, ESC, and DG-75 

samples; the x-axis labels are colored black for Myco(-) and red for Myco(+). (C) Schematic 

representation of module identification from two input profiles by the jNMF algorithm. (D) An example 

showing the module that captured genes and contaminants co-elevated in a DG-75 sample. (E) 

Network representation of the association between genes and contaminants co-elevated in the seven 

DG-75 samples; GO:0010941 is the enriched GO term in the genes found in at least four DG-75 samples 

(p=3.76e-3). (F) Expression profiles of the 33 genes involved in the biological process “regulation of cell 

death”; DG75_1 (GSM1197380), DG75_2 (GSM1197385), DG75_3 (GSM1197386), DG75_4 

(GSM1197381), DG75_5 (GSM1197382), DG75_6 (GSM1197383), DG75_7 (GSM1197384), NB_1 

(GSM2225743), and NB_2 (GSM2225744). 
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Table 1 Profiling of spike-in microbes with host-unmapped NGS reads 

        Reads RPMHs   

Assay 
(culture) 

Antibiotics Spike-ins CFU Input 
(host-mapped) 

Sample-level Genus-level Uniq-genus-hit Multi-genera-hit Weighted P-value 

DNA-seq 
(0 day) 

Yes 60 × 6 species 360 356,831,325 
(354,374,295) 

2.85 
  

Aspergillus 60 
   

0.023 8 1 8.00 7.93e-46 

Candida 60   
 

0.003 1 0 1.00 0.2 

Bacillus 60   
 

0.014 5 13 5.02 1.21e-10 

Clostridium 60   
 

0.006 1 26 2.07 0.439 

Pseudomonas 60   
 

0.144 50 8 50.98 0.0 

Staphylococcus 60 
    0.015 4 13 5.32 2.57e-19 

DNA-seq 

(0 day) 

Yes 1100 × 6 species 6,600 364,040,378 

(353,592,879) 

7.31 
  

Aspergillus 1,100 
   0.274 96 4 96.83 0.0 

Candida 1,100 
   0.249 88 0 88.00 0.0 

Bacillus 1,100   
 3.600 1,272 16 1,272.90 0.0 

Clostridium 1,100   
 0.019 6 14 6.59 0.108 

Pseudomonas 1,100   
 1.379 484 22 487.74 0.0 

Staphylococcus 1,100 
    0.257 90 16 90.90 0.0 

DNA-seq 

(0 day) 

Yes 2000 × 7 species 14,000 337,322,388 

(326,833,300) 

167.27 
  

Acholeplasma 2,000 
   70.632 23,075 52 23,084.88 0.0 

Mycoplasma 12,000    94.750 30,957 49 30,967.52 0.0 

DNA-seq 
(3 days)  

  

No 2000 × 7 species 14,000 330,472,068 
(322,510,723) 

4,002.63   

Acholeplasma 2,000 
   3,493.819 1,126,497 2,123 1,126,793.98 0.0 

Mycoplasma 12,000    500.993 161,484 956 161,575.60 0.0 

Yes 2000 × 7 species 14,000 366,225,114 
(355,493,668) 

4.15   

Acholeplasma 2,000    1.872 665 1 665.40 0.0 

Mycoplasma 12,000    1.336 475 0 475.00 0.0 
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RNA-seq 

(3 days) 

No 

  
  

2000 × 7 species 14,000 293,731,220 

(273,924,497) 

700.00   

Acholeplasma 2,000 
   24.696 5,949 3,379 6,764.96 0.0  

Mycoplasma 12,000    20.636 3,846 13,753 5,652.74 0.0  

Yes 
  

  

2000 × 7 species 14,000 373,580,135 
(343,111,904) 

64.75   

Acholeplasma 2,000    n/a 0 0 n/a n/a 

Mycoplasma 12,000    0.153 11 346 52.66 0.387 

ATAC-seq 
(3 days) 

No 
  

  

2000 × 7 species 14,000 155,464,170 
(44,754,687) 

436,529.79   

Acholeplasma 2,000 
   415,647.522 18,596,370 42,587 18,602,174.73 0.0  

Mycoplasma 12,000    19,628.123 877,487 13,815 878,450.49 0.0  

Yes 

  

  

2000 × 7 species 14,000 115,413,203 

(45,447,065) 

212.14   

Acholeplasma 2,000 
   121.798 5,533 14 5,535.38 0.0  

Mycoplasma 12,000 
    27.192 1,234 7 1,235.80 0.0  
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Additional files 

Additional file 1: 

Figure S1. Results of the reversion test employing different parameters for Bowtie2. Using the simulated 

read sets created in Fig. 1B, Bowtie2 was performed with the parameters “--very-sensitive” (A), “--fast” 

(B), and “--very-fast” (C). (D) Distribution of the reverted reads of 5,709 species at genus-level resolution 

(“--sensitive” parameter).  

 

Figure S2. Results of the reversion test in the three existing pipelines. (A) FDR distributions at genus-level 

resolution. (B) Distribution of the reverted reads of 5,709 species at genus-level resolution. Additional 

file2 details how these values were calculated. 

 

Figure S3. Examples of the scoring function used to weight multi-genera-hit reads. The slope of the 

exponential function is defined by the overall mapping status of the input reads incorporated into M (the 

total number of microbe-mapped reads) and N (the total number of unique or multiple hits of all 

microbe-mapped reads). For instance, a read of ENCSR000AAR that mapped to ten distinct genera 

(T=10) is counted as 0.4. 

 

Figure S4. Profiling contamination prevalence in public RNA-seq datasets. (A) Distributions of the 

fractions of microbe-mapped reads in the total input reads of ENCODE and IHBM2 (Illumina Human 

BodyMap 2.0). (B) Frequencies of 240 microbial genera detected as significant contaminants in the 

samples. The gray-colored bars represent known contaminants reported in Salter, et al., 2014 [12]. 

Microbes labeled in black-, blue-, and red correspond to bacterium, fungus, and virus, respectively. 

 

Figure S5. Results of the enrichment analysis of GO biological process terms with DEGs found in Myco(-) 

hBM-MSC BM1 and BM2. In BM1 and BM2, 2237 DUGs (differentially upregulated genes) and 1301 

DUGs were identified, respectively. The heatmap showed over-enriched GO terms in both BM1 and BM2. 

The enrichment analysis of the reactome showed no significant enrichments (q-value <0.001). 

DUG_BM1: differentially-upregulated genes in Myco(-) hBM-MSCs that were sequenced in this study, 

DUG_BM2: differentially-upregulated genes in Myco(-) hBM-MSCs that are publicly available (GSE90273). 

The q-value is the Bonferroni-corrected p-value for multiple testing. 

 

Figure S6. Correlation analysis of gene expression with Mycoplasma concentration in Myco(+) DG-75 

samples (GSE49321). (A) Genes that exhibited positively (94) or negatively (195) correlated expression 

patterns with Mycoplasma RPMHs among the seven samples (>0.8 or < −0.8 in Pearson’s correlation 

coefficient); gene expression levels are relative TPM values. (B) Distribution of correlation coefficient 

values of TPM values with multiple contaminant RPMHs. 

 

Figure S7. jNMF example with 5 Myco(-) BL cell lines and Myco(+) DG-75_3 (GSM1197386). (A) 

Contamination and gene expression profiles addressed by jNMF. (B) Distributions of Cophenetic 

correlation coefficient (Cophenetic CC) values and RSSs (residual sum of squares) in different k-ranks 

(=2,3,4,5). Cophenetic CC values show the clustering stability and RSS represents the difference between 

the matrices (A) and reconstructed matrices by jNMF; each box at a k -rank includes the results from 9 

jNMF runs with different parameters; (1) results with the matrices (A); (2) results with randomized 

matrices of (A). At rank k>3, (1) and (2) became indistinguishable via the Cophenetic CC, suggesting that 

the choice of k=3 was reasonable. Other parameter sets were not influenced in (1). (C) The common 
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basis matrix W and consensus matrices estimated by jNMF with the parameters k=3, T=100 and R=5000. 

(D) jNMF modules found in (C); K2 in (C) corresponds to Module 1. 

(PDF 4,426 kb) 

 

Additional file 2: 

Concept of the reversion test and its procedure for existing pipelines (PDF 117kb). 

 

Additional file 3: 

Table S1. List of 11 genera of 291 reversion-test runs showing over 5% FDR level. 

 

Table S2. List of genera accidentally found in the reversion tests with different Bowtie2 parameters. 

 

Table S3. Host-microbe chimeric reads overlapped with intergenic or host gene body regions. 

 

Table S4. List of spike-in microbes. 

(XLSX 135kb) 
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Alternative host genomic sequences
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Microbe genomes
 Bacteria: 7,534 species of 1,562 genera
 Viruses: 3,589 species of 577 genera
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