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ABSTRACT 25 

Plant spectral diversity — how plants differentially interact with solar radiation — is an integrator 26 

of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose 27 

to measure spectral diversity as spectral variance, which allows the partitioning of the spectral 28 

diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within 29 

communities) and beta (β; among communities) components. Our method calculates the 30 

contributions of individual bands or spectral features to spectral γ-, β-, and α-diversity, as well 31 

as the contributions of individual plant communities to spectral diversity. We present two case 32 

studies illustrating how our approach can identify “hotspots” of spectral α-diversity within a 33 

region, and discover spectrally unique areas that contribute strongly to β-diversity. Partitioning 34 

spectral diversity and mapping its spatial components has many applications for conservation 35 

since high local diversity and distinctiveness in composition are two key criteria used to 36 

determine the ecological value of ecosystems.  37 
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INTRODUCTION 38 

Major environmental changes, including land-use change, climate change, and invasive species 39 

are altering the Earth’s biodiversity. The rapid rate and broad extent of those changes far 40 

exceed our capacity to monitor them via field-based sampling alone. This calls for the 41 

development of new remote sensing approaches that can provide rapid estimates of biodiversity 42 

over broad regions (Pereira et al. 2013; Turner 2014; Bush et al. 2017). For terrestrial plants, 43 

imaging spectroscopy is emerging as the most promising remote sensing method for estimating 44 

biodiversity (Féret & Asner 2014; Wang & Gamon 2019). This is because its high spectral 45 

resolution allows plant species to be discriminated from one another, while also enabling the 46 

determination of ecologically important foliar functional traits (Asner & Martin 2009; Ustin et al. 47 

2009). 48 

For every pixel of an aerial image, imaging spectroscopy measures reflected solar radiation in 49 

tens to hundreds of contiguous, narrow (~10 nm wide) wavelength bands, usually covering all or 50 

part of the visible to shortwave infrared range (400–2500 nm) of the electromagnetic spectrum. 51 

Leaf “spectral signatures” of plants provide unique expressions among species of how solar 52 

radiation interacts with photosynthetic pigments, water, proteins, as well as structural and 53 

chemical defense compounds, and thus represent the evolution of plant adaptations to different 54 

environmental conditions (Cavender-Bares et al. 2016; McManus et al. 2016). At the crown 55 

scale, these spectral signatures are further influenced by architectural traits due to scattering of 56 

photons within canopies (Asner 1998; Ollinger 2010). Therefore, plant spectral diversity is 57 

emerging as an integrator of plant chemical, structural and taxonomic diversity that can be 58 

remotely sensed (Cavender-Bares et al. 2017; Schweiger et al. 2018; see also Appendix S1 in 59 

Supporting Information). 60 
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One of the most influential conceptual developments in community ecology has been 61 

Whittaker’s (1960, 1972) suggestion to partition biodiversity across space into α, β, and γ 62 

components. Originally, α diversity was defined as the species diversity within communities, and 63 

β as the variation in species composition among communities; together, α- and β-diversities 64 

jointly determined γ-diversity, which is the species diversity across an entire region of interest. In 65 

this paper, we transpose this foundational ecological concept from species diversity to spectral 66 

diversity (Fig. 1). This requires that the spatial resolution of the imagery matches the size of the 67 

object of interest (Woodcock & Strahler 1987), meaning that pixels should be approximately 68 

equal or smaller than the size of an average canopy plant. At such fine spatial resolutions, the 69 

relationship between spectral and taxonomic diversity is strongest (Wang et al. 2018a) and 70 

imaging spectroscopy can provide direct, spatially explicit estimates of plant alpha (α; within 71 

community) diversity (Féret & Asner 2014; Wang et al. 2018b), and can detect changes in plant 72 

community composition across landscapes (Draper et al. 2019). The ability to generate wall-to-73 

wall, high-resolution maps of canopy plant diversity across entire regions brings tremendous 74 

benefits for biodiversity science and conservation (e.g., Asner et al. 2017); however, conceptual 75 

and methodological challenges remain, especially with regard to β-diversity estimation (Rocchini 76 

et al. 2010, 2018). 77 

Spectral diversity is sometimes called spectral heterogeneity or spectral variability (Rocchini et 78 

al. 2010), and has been defined as spatial variation in spectral reflectance (Rocchini et al. 2010; 79 

Ustin & Gamon 2010; Gholizadeh et al. 2018; Wang & Gamon 2019). Intuitively, spectral 80 

diversity can be conceptualized as multivariate dispersion, for which there are various statistical 81 

measures highlighting different aspects of spectral diversity. For example, Wang et al. (2018a) 82 

used the average coefficient of variation (CV) of each band for a set of pixels, whereas Rocchini 83 

et al. (2010) used the mean distance from the spectral centroid; we note that the latter has also 84 

been proposed as a measure of functional diversity in multivariate trait space (Laliberté & 85 
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Legendre 2010). However, none of the currently used metrics allow the partitioning of spectral 86 

diversity into its α (within communities) and β (among communities) components (Fig. 1). 87 

Here we propose to use the spectral variance among image pixels as a measure of spectral 88 

diversity. Our approach builds on that of Legendre and De Cáceres (2013) for species inventory 89 

data, adapts it to spectral data, and extends it to jointly consider α-, β-, and γ-diversity. Casting 90 

spectral diversity as spectral variance has a number of benefits: 91 

1. the classical partitioning of sums of squares allows us to partition spectral γ-diversity into 92 

additive spectral α- and β-diversity components (Fig. 1), from which the relative 93 

importance of local and regional processes regulating spectral diversity across a region 94 

of interest can be inferred; 95 

2. it allows us to estimate the contributions of individual plots or communities to spectral β-96 

diversity, highlighting areas that are spectrally distinct within the broader region; 97 

3. it allows us to calculate the contributions of individual bands or spectral features to 98 

spectral γ-, β- or α-diversity (Fig. 2), providing information about the underlying biological 99 

traits driving spectral diversity; 100 

4. it is easily implemented in software packages in a computationally efficient way, which is 101 

important when dealing with high-volume image data; 102 

5. it provides a direct link to other statistical procedures based on least squares (e.g., 103 

MANOVA, multiple linear regression, canonical redundancy analysis, K-means 104 

partitioning). 105 

After describing the theory behind our spectral diversity partitioning approach, we illustrate it 106 

using a simulation. We then apply our method to imaging spectroscopy data collected over the 107 

Bartlett Experimental Forest by the National Ecological Observatory Network (NEON) Airborne 108 
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Observation Platform (AOP; Kampe et al. 2010). The R code and data for our analyses are 109 

available online (https://github.com/elaliberte/specdiv). 110 

PARTITIONING SPECTRAL DIVERSITY 111 

Size and shape of spatial units 112 

Partitioning spectral γ-diversity into its α and β components first requires defining the extent of 113 

the region of interest (Fig. 1). Delineating the region of interest is relatively straightforward since 114 

it corresponds to the region over which imagery is acquired or a subset thereof. Delineating the 115 

size and shape of communities across the region of interest, however, is more difficult. What 116 

constitutes an ecological community has been the subject of considerable debate (see review 117 

by Ricklefs 2008). Generally, a community is defined as “a group of organisms representing 118 

multiple species living in a specified place and time” (Vellend 2010). This definition implies that 119 

a community must be larger than the size of an individual organism, but how much larger will 120 

depend on the objectives of the study. For the purpose of this work, we focus on communities of 121 

canopy plants, because these are the organisms that can be seen in aerial images. We use 122 

“community” in the sense of “sampling unit” in vegetation surveys, which can be defined as the 123 

area in which the species composition of the vegetation type of interest is adequately 124 

represented (Mueller-Dombois & Ellenberg 1974). 125 

Setting the size of a community to the size of typical inventory plot for a given ecosystem type 126 

facilitates interpretation as this is the sampling unit that field ecologists are familiar with. For 127 

example, forest inventory plots often measure 20 m × 20 m (Fig. 1), which is large enough to 128 

include several canopy trees. However, we recognize that setting fixed and regularly shaped 129 

boundaries to delineate communities is artificial (Ricklefs 2008), and point out that community 130 

size and shape can be changed in the analysis. 131 
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Spectral gamma (γ) diversity 132 

Let Y = [yij] be a matrix containing the positions, along the p axes defining the spectral space 133 

(column vectors y1, y2, … yp of Y), of n pixels (row vectors x1, x2, … xn of Y) in a region of 134 

interest (Fig. 2). We use indices i and j to denote rows (pixels) and columns (axes) of matrix Y, 135 

respectively. The p axes could be all or a subset of the original spectral bands, a set of 136 

vegetation indices calculated from selected spectral bands (Bannari et al. 1995), or a set of p 137 

uncorrelated spectral features extracted using dimensionality reduction methods such as 138 

principal component analysis (PCA). We use PCA in this section and in our case studies and 139 

point out the mathematical relationships between the principal components (PCs) and spectral 140 

variation below. We use the general term variation for sums of squares (SS, an abbreviation for 141 

“sum of the squared deviations from the mean”), and reserve the term variance when talking 142 

about spectral diversity (SD). 143 

We refer to the total spectral diversity of the entire region as spectral γ-diversity (SDγ). SDγ is 144 

measured by the total variance of Y, or Var(Y). This is done by first computing for every pixel 145 

and spectral feature yij the squared deviations sij from the average pixel (across the whole 146 

region) in terms of spectral reflectance, i.e. the column means of Y: 147 

 𝑠"# = %𝑦"# − 𝑦#(
)
. (1) 

The total sum of squares (SS) of matrix Y is calculated by summing all sij: 148 

 SS+ = ∑ ∑ 𝑠"#
-
#./

0
"./ . (2) 

Contrary to SSγ, SDγ is scaled by the number of pixels in the region, such that SDγ of regions 149 

containing different numbers of pixels can be compared with one another: 150 

 SD+ = Var(𝐘) = SS+ (𝑛 − 1)⁄ . (3) 
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We note that for calculating the joint SDγ of adjacent regions, their SSγ statistics can be added 151 

and divided by the total number of pixels minus one, but their region-level SDγ statistics cannot 152 

be added directly. 153 

One might be interested in determining the individual contribution of the jth spectral feature to 154 

SSγ. We call this the feature contribution to spectral γ-diversity or FCSDγ,j (Fig. 2), which can be 155 

calculated from the sum of squares of the jth feature: 156 

 SS+,# = ∑ 𝑠"#0
"./ . (4) 

Dividing SSγ,j by (n – 1) gives the variance of the jth feature, or Var(yj). FCSDγ,j can then be 157 

calculated as: 158 

 FCSD+,# = Var(𝐲#) Var(𝐘)⁄ = SS+,# SS+⁄ . (5) 

If the p features are principal components from PCA scaling type 1, then the FCSDγ,j  values 159 

correspond to their relative eigenvalues. We note that FCSDγ,j cannot be mapped because the 160 

contribution of each spectral feature applies to the region as a whole.  161 

Likewise, one might wish to estimate the individual contribution of the ith pixel within the region 162 

to SDγ. We refer to this as the local contribution to spectral γ-diversity, or LCSDγ,i, which is 163 

calculated as: 164 

 LCSD+," = SS+," SS+⁄  (6) 

where 165 

 SS+," = ∑ 𝑠"#
-
#./ . (7) 

We note that LCSDγ,i indices are important visual elements in PCA ordination: each LCSDγ,i 166 

value corresponds to the squared distance from one pixel to the centroid in the p-dimensional 167 

PCA ordination plot. In addition, the LCSDγ,i can be plotted on maps since one value is 168 

associated with every pixel in the image. Doing so indicates which pixels are most spectrally 169 
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dissimilar from the mean pixel of the region in spectral feature space. We note that the SSγ,i and 170 

LCSDγ,i indices are additive. The indices from adjacent pixels within an area of interest, for 171 

example an individual tree, can be added up, such that their sums represent the local 172 

contributions of the area of interest to SSγ and SDγ. LCSD indices are also useful when 173 

computed at the community scale (i.e. LCSDβ), because they then correspond to the ecological 174 

concept of β-diversity; see “Spectral beta (β) diversity” below. 175 

Partitioning the total sum of squares 176 

Partitioning the sum of squares forms the basis of a series of classic statistical approaches 177 

based on least squares, such as the analysis of variance (ANOVA). From these methods, it is 178 

well known that the total sum of squares of a matrix Y (SStotal) can be partitioned into additive 179 

among-group (SSamong) and within-group (SSwithin) components: 180 

 SS@A@BC = SSBDAEF + SSHI@JIE.	 (8) 

In linear regression analysis, we talk about the SS explained by the regression equation and the 181 

residual variation. These two components sum to the total sum of squares. 182 

Using the same indices as in the previous section, the ANOVA relationship can be expressed 183 

as: 184 

 M M N𝑦"# − 𝑦O#P
)-

#./
=

0

"./
M M 𝑚

-

#./

R

S./
N𝑦TS# − 𝑦O#P

)
+M M M N𝑦"# − 𝑦TS#P

)-

#./

R

S./

U

"./
 (9) 

where q is the number of groups, 𝑦TS# is the arithmetic mean of the jth variable (column) for the 185 

kth group: 186 

 𝑦TS# = VM 𝑦"#S
U

"./
W 𝑚X  (10) 
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and where m is the number of samples (rows) in each group k; an important assumption here is 187 

that m is equal in each group. The proof of this theorem can be found in standard statistics 188 

textbooks and is therefore not shown here. 189 

In the next two sections, we apply Equation 9 to partition the total sum of squares of a region 190 

SSγ into additive among- (β) and within-group (α) components from which spectral β- and α-191 

diversity can be calculated directly. 192 

Spectral beta (β) diversity 193 

Let us divide Y into q groups of m spatially contiguous pixels, where each group corresponds to 194 

a local community (e.g., a vegetation survey plot); n = q m. Here, we assume that each of these 195 

communities corresponds to a square of equal area, which is √𝑚 pixels wide; with this setup, 196 

each community is represented by the same number of pixels. We will present later our 197 

suggestion to use a rarefaction procedure to handle situations where m differs among groups. 198 

Spectral β-diversity, or SDβ, represents the degree to which the q communities within a region 199 

differ from each other in terms of spectral composition. We note that SDβ is a non-directional 200 

measure of β-diversity sensu Anderson et al. (2011). To calculate SDβ, we first compute the 201 

squared deviations skj of the kth community from the average pixel of the region in terms of 202 

spectral reflectance, i.e. the column means of Y across all variables j: 203 

 sS# = N𝑦TS# − 𝑦O#P
) (11) 

where 𝑦TS# is the arithmetic mean of the kth community (i.e. the community centroid) for the jth 204 

spectral feature (Equation 10).  205 

The sum of squares associated with each community k (SSβ,k) is: 206 
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 SS[,S = ∑ 𝑚	𝑠S#
-
#./ . (12) 

The total sum of squares of the β component (SSβ) is: 207 

 SS[ =M SS[,S
R

S./
 (13) 

from which SDβ is calculated as: 208 

 SD[ = SS[ (𝑛 − 1)⁄ . (14) 

The contribution of each community k to SDβ, which we call the local contribution to spectral β-209 

diversity (LCSDβ,k), can be computed by the following ratio of sum of squares: 210 

 LCSD[,S = SS[,S SS[⁄ .	 (15) 

Finally, one can compute the feature contribution to spectral β-diversity or FCSDβ,j of the jth 211 

spectral feature as: 212 

 FCSD[,# = SS[,# SS[⁄  (16) 

where 213 

 SS[,# = ∑ 𝑚	𝑠S#
R
S./ . (17) 

We note here that LCSDβ,k can be mapped because each community k has its own LCSDβ 214 

value. On the other hand, FCSDβ,j or SDβ cannot be mapped because they refer to the region as 215 

a whole. 216 

Spectral alpha (α) diversity 217 

Spectral α-diversity, or SDα, is the degree to which neighbouring pixels within a local community 218 

differ spectrally from each other. Contrary to SDβ and SDγ, which apply to the entire region, SDα 219 

is defined at the community level. Therefore, we denote SDα by the index k, SDα,k, since it is 220 

measured for each community k. To calculate SDα,k, we first compute for every pixel and 221 
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spectral feature per community yijk the squared deviations sijk from the mean pixel spectrum of 222 

the kth community for each spectral feature or column of Y: 223 

 s"#S = N𝑦"#S − 	𝑦TS#P
). (18) 

The sum of squares associated with the jth spectral feature of community k is: 224 

 SS\,#S = ∑ 𝑠"#SU
"./ , (19) 

and the total sum of squares for community k is: 225 

 SS\,S = ∑ ∑ 𝑠"#SU
"./

-
#./ . (20) 

SDα,k is obtained by dividing SSα,k by (m – 1), where m is the number of pixels within one 226 

community, to make it comparable with other communities differing in their numbers of pixels: 227 

 SD\,S = SS\,S (𝑚 − 1)⁄ . (21) 

The total sum of squares of the α-component for all q communities within the entire region is: 228 

 SS\ = ∑ SS\,S
R
S./ . (22) 

Importantly, following Equations 8 and 9, SSα and SSβ are linked to SSγ by the relationship: 229 

 SS+ = SS[ + SS\.	 (23) 

Therefore, SSα and SSβ can be used directly to determine the relative importance of the α and β 230 

components to spectral γ-diversity. 231 

Finally, the contribution of the jth feature to the spectral α-diversity of the kth community, which 232 

we call FCSDα,jk, can be computed as: 233 

 FCSD\,#S = SS\,#S SS\,S⁄ . (24) 

These FCSDα,jk values can be mapped and give us useful information about the origin of 234 

spectral α-diversity across different communities. 235 
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CASE STUDY 1: SIMULATED REGIONS 236 

To illustrate our approach, we first use leaf spectra data to simulate imagery (Appendix S2). 237 

This removes much of the complexity associated with real imagery, where one has to deal with 238 

much higher numbers of pixels, varying illumination and sensor viewing geometry, and 239 

presence of shaded and non-vegetated pixels. We simulated two regions with equal spectral γ-240 

diversity, but contrasting spectral β- and α-diversities (Fig. 3). Each region is composed of 25 × 241 

25 pixels, populated with leaf-level spectra of three temperate tree species (i.e. Populus 242 

deltoides W. Bartram ex Marshall subsp. deltoides Marsh, P. tremuloides Michaux, and Betula 243 

alleghaniensis Britton) measured in the field on 15 individual plants (Fig. S1). These 25 × 25 244 

pixels regions are equally split into 25 communities, each composed of 5 × 5 pixels. 245 

For both scenarios, we calculated the SS across the entire region (SSγ), partitioned SSγ into its 246 

β and α components, and calculated spectral γ- β-, and α-diversity (Fig. 4a). As spectral 247 

features (columns of Y) we used the first three PCs (using type-I scaling in PCA), which 248 

together explained >97% of the total variation in spectral reflectance. As expected, spectral γ-249 

diversity was equal for both scenarios (Table 1), whether expressed as the total sum of squares 250 

(SSγ = 1.66), or standardized by n – 1 pixels (SDγ = 0.0027). In addition, in the high β-diversity 251 

scenario, spectral variation among communities (SSβ, ~84%) largely exceeded spectral 252 

variation within communities (SSα, ~16%), whereas in the low β-diversity scenario SSβ was 253 

much lower (~5%) than SSα (~95%) (Table 1). 254 

Next, we determined the local contributions of individual communities to spectral β-diversity 255 

(LCSDβ). In the high β-diversity scenario (Fig. 4b, left panel), communities 12 and 21 (numbered 256 

as in Fig. 3) contributed the most to spectral β-diversity. These were the only two plots (out of 257 

25) containing spectra of Populus tremuloides. In other words, these two plots had the most 258 

distinctive spectral composition compared to other communities. By contrast, in the low β-259 
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diversity scenario, community 16 was the most spectrally distinct community, something that 260 

could not be easily detected by examining this scenario visually (Fig. 3, right panel). As 261 

illustrated here, it is important to note that a region with low SDβ can still have individual 262 

communities showing high LCSDβ values, because LCSDβ values are proportions of SDβ. 263 

We then estimated the contributions of individual spectral features to spectral diversity (FCSD) 264 

for each scenario. For spectral γ-diversity (total variance of the region), FCSDγ declined 265 

progressively from the first to the third PC (Table 1). As mentioned previously, FCSDγ values are 266 

equal to the relative PCA eigenvalues of the spectral feature. Likewise, for spectral β-diversity, 267 

the contribution from the first to subsequent PCs decreased in both scenarios (Table 1). The 268 

relative contributions of individual spectral features to β-diversity were fairly similar in both 269 

regions, even though they differed considerably in spectral β-diversity. For spectral α-diversity, 270 

however, FCSDα values differed noticeably among the two scenarios (Fig. 4c–d). In the low α-271 

diversity scenario (Fig. 4c-d, left column), PC 2 contributed more strongly to the spectral α-272 

diversity of most communities than PC 1, whereas the opposite was true for the high α-diversity 273 

scenario (Fig. 4c–d, right column). The FCSDα values were not expected to decrease in a 274 

monotonic way since α-diversity is orthogonal to γ-diversity and the PCs are those of γ-, not of 275 

α-diversity. 276 

We note that SS, SD and LCSD indices are exactly the same whether using the original spectral 277 

bands or all PCs, because PCA type-I scaling preserves the Euclidean distance among objects 278 

(e.g., image pixels in spectral space). Conversely, the equations developed in this paper hold 279 

and can be used directly with the original band data. However, FCSD values would change 280 

when using the original spectral bands instead of PCs, since this would then indicate the relative 281 

contributions of individual spectral bands (instead of PCs) to spectral diversity. 282 
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CASE STUDY 2: NEON IMAGERY 283 

Next, we applied our method for partitioning spectral diversity to imaging spectroscopy data 284 

collected by NEON’s Airborne Observation Platform (AOP; Kampe et al. 2010) over the Bartlett 285 

Experimental Forest (https://www.neonscience.org/field-sites/field-sites-map/BART). In this case 286 

study, we used a scene measuring 280 m (east-west) x 1000 m (north-south), acquired in 287 

August 2017. Spectral data were processed to surface reflectance and subsampled to 1-m pixel 288 

size by NEON. Our workflow is illustrated in Figure 2.  289 

For spectral diversity calculations we selected a community (i.e. plot) size of 40 m × 40 m, which 290 

is the base plot size used by NEON. We used rarefaction to standardize the number of pixels 291 

per community used for analysis. We used a normalized difference vegetation index (NDVI) 292 

threshold of ≥0.8 to identify the minimum number of vegetated pixels across all plots in the 293 

image (termed mmin), which was 1474 (= 92% of the 1600 pixels per community). We randomly 294 

selected mmin pixels per plot, and applied our spectral diversity partitioning approach to all 295 

selected pixels. The rarefaction was repeated 30 times and results were averaged across all 30 296 

repeats (Fig. 2). Alternatively, one could take the median value instead of the mean if 297 

distributions are skewed. 298 

Our analyses revealed that spectral α-diversity in this forested landscape accounted for 77% of 299 

the spectral γ-diversity, whereas β-diversity accounted for the remaining 23% (Table 1). In other 300 

words, there is considerably more spectral diversity within individual 40 m × 40 m communities 301 

than among communities in this forest. Figure 5 illustrates how spectral diversity is spatially 302 

structured. Two areas contribute strongly to spectral β-diversity (LCSDβ, darker colours in Fig. 303 

5). The tree communities in these areas are more spectrally dissimilar from the average 304 

community than communities with lower LCSDβ (lighter colours in Fig. 5). 305 
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For completeness, we evaluated the effects of shadows and community size on spectral 306 

diversity calculations (Appendix S3). We found that removing shadows had little influence on 307 

spectral diversity (Figs. S4–S6) and that results remained remarkably stable for plots ranging 308 

from 20 m × 20 m (400 m2) to 140 m x 140 m (almost 2 ha) in size (Figs. S7–S9). 309 

DISCUSSION 310 

In this paper, we proposed a new method for partitioning plant spectral γ-diversity (i.e. the 311 

spectral diversity of a region) into additive α- (within community) and β-diversity (among 312 

community) components. Our approach builds on a method for partitioning β-diversity initially 313 

designed for community data (Legendre & Cáceres 2013), adapts it to spectral data and, 314 

importantly, extends it to include α, β and γ components. Partitioning spectral diversity can bring 315 

new insights and generate new hypotheses about the origins and maintenance of plant spectral 316 

diversity across regions. For instance, high spectral β-diversity could result from turnover in 317 

plant species and/or functional trait composition across environmental gradients (e.g., soil 318 

properties, hydrology), whereas high spectral α-diversity might result from local biotic 319 

interactions among co-occurring plants (e.g., resource partitioning, conspecific negative density 320 

dependence). Mapping spectral indices such as LCSDβ and SDα could be used as a biodiversity 321 

“discovery tool” to design targeted field sampling campaigns to test such hypotheses, e.g., by 322 

comparing community composition and diversity in areas with high and low LCSDβ and SDα 323 

values, respectively (Fig. 5). 324 

Partitioning spectral diversity allows the determination of the spectral features contributing most 325 

strongly to spectral α-, β- or γ-diversity (FCSD), which helps in understanding the underlying 326 

biological traits driving spectral diversity at different spatial scales. In our case studies, the 327 

spectral features were principal components (PCs), which are linear combinations of the original 328 

wavelength bands. As such, the individual contributions of all wavelength bands to each 329 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/742080doi: bioRxiv preprint 

https://doi.org/10.1101/742080
http://creativecommons.org/licenses/by/4.0/


 

17 

spectral feature can be retrieved. The bands, in turn, can be linked to specific plant properties, 330 

since the biophysical and biological causes of spectral variation across spectral regions and for 331 

specific absorption features of molecules are reasonably well understood (Gates et al. 1965; 332 

Curran 1989; Asner 1998; Kokaly et al. 2009; Ustin et al. 2009). Identifying the traits contributing 333 

most strongly to spectral α-diversity might inform us about how co-occurring species are 334 

partitioning resources at the local scale, whereas identifying the traits contributing most strongly 335 

to spectral β-diversity might reveal important mechanisms driving changes in community 336 

composition across environmental gradients. 337 

Partitioning plant spectral diversity and mapping its spatial components has applications in 338 

biodiversity management. Indeed, managers often need to estimate the ecological value of 339 

different ecosystems over large regions, for example to prioritize conservation or restoration 340 

efforts. However, access to field data might be limited. Using imaging spectroscopy data, our 341 

approach of partitioning spectral diversity allows the identification of areas with high spectral α-342 

diversity, which likely coincide with local “hotspots” of taxonomic and/or functional trait diversity. 343 

Further, high LCSDβ values indicates areas with rare spectral composition, i.e., containing 344 

communities that are most spectrally dissimilar from the average community within the region of 345 

interest. Given that species spectral dissimilarity is linked to their functional and phylogenetic 346 

dissimilarity (Schweiger et al. 2018), spectrally rare communities can be expected to have rare 347 

taxonomic and/or functional composition, either because they harbor uncommon species, or 348 

rare combinations of common species. 349 

Our approach measures spectral variance directly (Fig. 2), which is in contrast to other studies 350 

that have prior to deriving biodiversity metrics first translated remotely-sensed spectra into plant 351 

species (e.g., Féret & Asner 2013), “spectral species” (Féret & Asner 2014), or plant functional 352 

traits (e.g., Dahlin et al. 2013; Schneider et al. 2017). While spectral diversity does not isolate 353 

any particular facet of plant biodiversity (e.g., taxonomic, chemical, structural), it integrates all of 354 
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these facets (Schweiger et al. 2018; Appendix S1). From a practical perspective, casting 355 

spectral diversity as spectral variance depends on fewer user decisions compared to other 356 

approaches (e.g., selecting the number of clusters for classifying spectral species, selecting the 357 

plant traits and modelling approach to predict traits from spectra). This makes spectral diversity 358 

easily comparable across different regions. Therefore, maps of SDα and LCSDβ could be ideal 359 

candidates for biodiversity products from remotely sensed spectral imagery. 360 

Comparison with other approaches 361 

Much of the interest in measuring spectral diversity from remote sensing data stems from the 362 

spectral variation hypothesis (Palmer et al. 2002), stating that the spatial variation in spectral 363 

reflectance expresses overall variation of the environment. As areas of high environmental 364 

variation often harbour more species than areas with low environmental variation, spectral 365 

variation across space can potentially uncover botanically interesting areas (Palmer et al. 2002). 366 

However, spectral diversity has been predominantly used to investigate relationships between 367 

plant spectra and taxonomic units at the α- and γ-diversity scale, whereas the β component has 368 

received less attention (Rocchini et al. 2018). 369 

Historically, Landsat satellites were instrumental for spurring large-scale biodiversity studies. 370 

Early sensors contained few spectral bands; thus, a large body of literature deals with using 371 

NDVI for predicting and mapping taxonomic diversity (Gould 2000; see review by Pettorelli et al. 372 

2005). Recent advances in sensor technology, particularly increased spectral resolution, have 373 

led to a variety of approaches to calculate spectral α-diversity (Rocchini et al. 2010). This 374 

includes metrics such as the standard deviation or coefficient of variation of spectral indices 375 

(Oindo & Skidmore 2002), or spectral bands among pixels (Hall et al. 2010; Gholizadeh et al. 376 

2018; Wang et al. 2018a), the convex hull volume of pixels in spectral feature space (Dahlin 377 

2016), the mean distance of pixels from the spectral centroid (Rocchini et al. 2010), the number 378 
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of spectrally distinct clusters or spectral species in ordination space (Féret & Asner 2014), and 379 

diversity metrics based on dissimilarity matrices among species spectra or image pixels 380 

(Schweiger et al. 2018). Of these, our method is most similar to the mean distance to the 381 

spectral centroid (Rocchini et al. 2010). The difference is that we square the individual distances 382 

to the spectral centroid; doing so allows us to partition sums of squares into additive 383 

components (Equation 9). 384 

Fewer studies have considered spectral β-diversity (Rocchini et al. 2018). One approach for 385 

studying β-diversity using spectra has been to combine ordination scores of species inventories 386 

with spectral data in multivariate models to predict the positions of pixels with unknown species 387 

composition in species-ordination-space (Schmidtlein et al. 2007). This method and some of its 388 

variants (Rocchini et al. 2018) do not measure spectral β-diversity per se, but instead use 389 

spectra to estimate changes in community composition across the landscape. Rao’s quadratic 390 

entropy has been suggested as a measure of spectral β-diversity, based on the dissimilarity 391 

among image pixels within a moving window (Rocchini et al. 2018). However, a moving window 392 

approach expresses spectral β-diversity for many small sub-regions independently from one 393 

another and does not estimate the spectral β-diversity of the region as a whole. Another 394 

approach for studying spectral β-diversity has been to measure the pairwise dissimilarity in the 395 

composition of spectral species among mapping units, and to re-project those pairwise 396 

dissimilarities onto an RGB colour space (Féret & Asner 2014). This method yields a useful map 397 

showing changes in spectral composition across the region, similar to our mapping of the first 398 

three PCs in Figure 5, but it does not calculate spectral diversity. 399 

Methodological considerations 400 

A number of methodological aspects should be considered before applying our approach to 401 

imaging spectroscopy data. These include: (1) the choice of a brightness normalization 402 
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procedure, (2) whether all or a subset of the wavelength bands, or spectral features, should be 403 

used, (3) masking non-vegetated pixels, or not, (4) determining community size, and (5) 404 

deciding on the scaling type (i.e. type I or II; Legendre & Legendre 2012) if using PCA as a 405 

spectral feature extraction method. We discuss these methodological points in detail in 406 

Appendix S4. 407 

CONCLUSION 408 

Plant spectral diversity is emerging as an integrator of chemical, structural, and taxonomic 409 

aspects of plant biodiversity, which can be remotely sensed (Cavender-Bares et al. 2017). 410 

Partitioning plant spectral diversity using our approach can help us to better understand and 411 

generate new hypotheses about the origins of, and the processes that drive, biodiversity 412 

variation across regions. Given the rapid and broad extent of current environmental changes, 413 

remote sensing of plant biodiversity over large regions is more important than ever (Turner 414 

2014; Wang & Gamon 2019). Our approach can identify local α-diversity hotspots as well as 415 

unique areas contributing strongly to β-diversity – two central facets of biodiversity. 416 

Our approach is timely since current technological developments in high-resolution UAV 417 

imaging spectroscopy will make this technology more accessible to ecologists in the coming 418 

years (Aasen et al. 2018; Arroyo-Mora et al. 2019). For example, the Canadian Airborne 419 

Biodiversity Observatory (www.caboscience.org) is developing UAV spectroscopy to understand 420 

how plant biodiversity is responding to major environmental changes across Canada. We 421 

anticipate that a growing number of ecologists will embrace this transformative technology for 422 

mapping plant biodiversity. In fact, a wealth of moderate-resolution imaging spectroscopy data 423 

are already freely available for a wide range of ecosystems across the United States as part of 424 

the NEON program (www.neonscience.org). Partitioning spectral diversity could become a 425 

useful tool for remotely sensing plant biodiversity from these new data sources. 426 
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TABLES 556 

Table 1 Partitioning spectral diversity into additive components for the two simulated regions 557 

(Figs. 3–4) and for the NEON imagery (Fig. 5). 558 

  High β, low α 

 

Low β, high α 

 

NEON imagery 

 

Sums of squares 
(SS) 

    

SSγ  1.66 1.66 740.24 

SSβ (% of SSγ)  1.40 (84.4%) 0.08 (4.8%) 168.85 (22.8%) 

SSα (% of SSγ)  0.26 (15.6%) 1.58 (95.2%) 571.39 (77.2%) 

Spectral diversity 
(SD) 

    

SDγ  0.0027 0.0027 0.0029 

SDβ  0.0022 0.00013 0.00065 

SD\  0.00043 0.0026 0.0022 

Feature 
contribution to SD 
(FCSD) 

    

FCSDγ PC 1 0.800 0.800 0.690 
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 PC 2 0.157 0.157 0.154 

 PC 3 0.023 0.023 0.090 

FCSDβ PC 1 0.906 0.859 0.520 

 PC 2 0.079 0.108 0.329 

 PC 3 0.013 0.019 0.092 

FCSD\ PC 1 0.259 0.798 0.733 

 PC 2 0.513 0.158 0.108 

 PC 3 0.050 0.022 0.092 

  559 
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FIGURE LEGENDS 560 

Figure 1 Partitioning plant spectral γ-diversity into additive β and α components. A region of 561 

interest is split into a number of communities of a specific size and shape (here, 20 m × 20 m 562 

squares, representing standard forest inventory plots). Spectral γ-diversity refers to the total 563 

spectral diversity in the entire region calculated from pixel-level reflectance. The β component 564 

corresponds to spectral diversity among communities, with similar colours sharing more similar 565 

spectral composition. The α component refers to spectral diversity within individual 566 

communities. The left-most panel is a true colour (red-green-blue, RGB) image of an area of 567 

Bartlett Experimental Forest; colours for the other panels were obtained using the reflectance of 568 

different wavelength bands (R = 779 nm, G = 639 nm, B = 2301 nm), followed by linear 569 

stretching. 570 

Figure 2 Overview of our proposed workflow for partitioning plant spectral diversity. In our 571 

NEON case study, spectral data pre-processing included removing atmospheric water 572 

absorption bands (wavelengths between 1340–1455 nm and 1790–1955 nm) and noisy regions 573 

of the spectrum (wavelengths <400 nm and >2400 nm), and applying a Savitzky-Golay filter 574 

(order = 3, size = 7) to every pixel in the image to remove high-frequency noise. We masked all 575 

pixels with normalized difference vegetation index (NDVI) values <0.8, and brightness-576 

normalized all spectra (Feilhauer et al. 2010). Then, we performed a PCA with type I-scaling, 577 

and visually inspected the first 17 PCs which together accounted for >99% of the total spectral 578 

variation among all pixels (Fig. S3). Only the first five PCs showed meaningful biological spatial 579 

patterns and were retained for spectral diversity measurements; PCs 6–17 were excluded 580 

based on visual inspection as they expressed artefacts from image acquisition and processing 581 

(Fig. S3). For illustration purposes, in the diversity partitioning analysis (bottom panel) we show 582 

communities composed of only three pixels, whereas in fact we used a community size of 40 × 583 
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40 pixels in our NEON case study. For abbreviations see text. *The shade mask is for illustrative 584 

purposes and is not applied to the PCs shown in the middle panel.  585 

Figure 3 Two simulated landscapes of equal spectral γ-diversity, but with contrasting spectral β-586 

diversity and α-diversity. Left: high spectral β-diversity but low α-diversity. Right: low spectral β-587 

diversity but high α-diversity. Each landscape is composed of 25 communities (numbered black 588 

squares), each composed of 5 × 5 pixels (smaller coloured squares). The size of each pixel is 589 

equivalent to the size of an individual plant and their colour corresponds to one of the 15 leaf 590 

spectra (= 3 species × 5 individuals) shown in Figure S1. These colours were set by mapping 591 

the scores of the first three principal components (PC) for each spectrum to a red-green-blue 592 

(RGB) scale (PC 1 = green, PC 2 = red, PC 3 = blue). We generated the high spectral β-593 

diversity but low spectral α-diversity scenario (left panel) by randomly assigning (with 594 

replacement) pixels within each community with individual spectra from single species (Fig. S1, 595 

bottom row). We selected species identity per community at random using the following 596 

probabilities: 0.60 (Betula alleghaniensis, green hues), 0.35 (Populus deltoides, blue hues) and 597 

0.05 (Populus tremuloides, red hues). In this scenario, spectral β-diversity was high and spectral 598 

α-diversity low because interspecific spectral variation (particularly between Betula and the two 599 

Populus species) was higher than intraspecific spectral variation (Fig. S2). Next, to reduce 600 

spectral β-diversity and increase α-diversity while holding γ-diversity constant, we moved the 601 

pixels of the left panel to randomly selected positions in the right panel. 602 

Figure 4 (a) Spectral α-diversity (SDα), (b) local contribution to spectral β-diversity (LCSDβ), and 603 

(c-d) feature contribution to spectral α-diversity (FCSDα) for the first two spectral features (i.e. 604 

first two principal components of the brightness-normalized reflectance data) of each community 605 

in the two simulated regions. PC = principal component. 606 
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Figure 5 Partitioning spectral diversity using imaging spectroscopy data acquired by the 607 

National Ecological Observatory Network (NEON) over the Bartlett Experimental Forest site. 608 

From left to right: (1) true colour (red-green-blue, RGB) image with 0.1 m ground resolution, (2) 609 

false colour image with 1 m resolution based on the first three principal components (PCs) of 610 

the spectral image cube (PC1 = red, PC2 = green, PC3 = blue), (3) local contribution to spectral 611 

β-diversity (LCSDβ), and (4) spectral α-diversity (SDα) of forest communities, each measuring 40 612 

m × 40 m. For panels 3 and 4, light hues correspond to low, dark hues to high values of LCSDβ 613 

coefficients and SDα values, respectively. 614 

  615 
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FIGURES 616 

Figure 1 617 

 618 
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Figure 2 620 
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Figure 3 622 

 623 

  624 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/742080doi: bioRxiv preprint 

https://doi.org/10.1101/742080
http://creativecommons.org/licenses/by/4.0/


 

36 

Figure 4 625 
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Figure 5 627 

 628 
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