
Page 1

A curated database reveals trends in 
single-cell transcriptomics
Valentine Svensson1,*, Eduardo da Veiga Beltrame1 , & Lior Pachter1

1Division of Biology and Biological Engineering, California Institute of Technology
*Address correspondence to Valentine Svensson (vale@caltech.edu)

The more than 500 single-cell transcriptomics studies that have been published to date constitute a valuable and vast resource 
for biological discovery. While various “atlas” projects have collated some of the associated datasets, most questions related 
to specific tissue types, species, or other attributes of studies require identifying papers through manual and challenging 
literature search. To facilitate discovery with published single-cell transcriptomics data, we have assembled a near exhaustive, 
manually curated database of single-cell transcriptomics studies with key information: descriptions of the type of data and 
technologies used, along with descriptors of the  biological systems studied. Additionally, the database contains summarized 
information about analysis in the papers, allowing for analysis of trends in the field. As an example, we show that the number 
of cell types identified in scRNA-seq studies is proportional to the number of cells analysed. The database is available at 
www.nxn.se/single-cell-studies/gui.

Introduction
The availability of large numbers of comprehensive single-cell tran-

scriptomics studies (Svensson, Vento-Tormo, and Teichmann 2018) 
is making possible the study of biological variation in unprecedented 
detail (Klein and Treutlein 2019). One interesting aspect of this “big 
data” biology consisting of a large set of measurements from many 
cells is that it can yield insights even after initial published analysis of 
individual datasets. Moreover, hundreds of datasets available, integra-
tion becomes a powerful tool for exploration. However, integration 
of diverse datasets requires standardization in how data is collected, 
shared, and curated (Stuart et al. 2019).

A number of “atlas” projects have been launched to address this 
problem and to assist researchers in focused domains. For example, 
The Human Cell Atlas portal aims to provide uniformly processed 
single-cell genomics data from all of the human body (Regev et al. 
2017). JingleBells provides single-cell data, with a focus on immune 
cells (Ner-Gaon et al. 2017). The conquer database provides uniform-
ly processed single-cell expression data to facilitate benchmarking of 
computational tools (Soneson and Robinson 2018). The PanglaoDB 
database provides single-cell RNA-seq count matrices from public 
sequencing data in the National Center for Biotechnology Informa-
tion Sequence Read Archive (Franzén, Gan, and Björkegren 2019). 
The EMBL-EBI Single Cell Expression Atlas provides uniformly pro-
cessed data from submissions to ArrayExpress. The Broad Institute 
offers a Single Cell Portal which can be used to share custom scRNA-
seq data. A database called scRNASeqDB provides links to a number 
of datasets from human scRNA-seq experiments (Cao et al. 2017). 
These efforts all aim to tackle different aspects of the considerable 

Figure 1) Studies over time.
(upper) The number of single cell transcriptomics studies published per month. 
(lower) The number of scRNA-seq studies published per month stratified by 
method.

challenge of data management resulting from the extraordinary rapid 
adoption of single-cell genomics technologies.

We focus on a missing resource, namely a database of single cell 
transcriptomics studies rather than primary data. The compilation 
of such a database required us to read and manually curate large 
numbers of publications, which we indexed according to publication 
and study authors. Our database will allow researchers interested in 
specific tissues to rapidly identify relevant studies. Furthermore, by 
virtue of providing a comprehensive overview of the field, our data-
base can highlight understudied tissues. Furthermore, the database 
will facilitate appropriate citation of previous work when performing 
follow-up experiments. The database tracks metadata applicable to 
most studies, such as the number of cell types identified, and proto-
cols used. We show that these annotations enable analysis of trends 
in the field.
Database structure

This database aims to provide a link between datasets from differ-
ent tissues, pointers to data location, and relevant references. Togeth-
er, these attributes make published data and results readily discover-
able. A secondary goal is to annotate useful metadata associated with 
the primary studies.

The “Single-cell studies database” considers the analysis of many 
genes at once in single cells as a “single-cell transcriptomics” study. 
To allow for comprehensive coverage within a meaningful domain, 
the scope of the database was restricted in certain ways. For example, 
multicolor fluorescence flow cytometry and mass cytometry experi-
ments were not included, even though both technologies can measure 
dozens of analytes per cell. The focus was  restricted to datasets with 
the expression of more than a hundred genes measured in individual 
cells. Some targeted technologies measuring fewer genes such as osm-
FISH were also included when they could be directly related to high-
er throughput counterparts (Codeluppi et al. 2018; Shah et al. 2016; 
Wang et al. 2018).

The primary identifier of each entry in the database is the canoni-
cal digital object identifier (DOI) of a publication. Based on the DOI 
four entries are included using the CrossRef API: Authors, Journal, 
Title and Date. Additional fields are based on the contents of the pub-
lication and are manually annotated by investigating the text and sup-
plementary material of the publication. If the study was deposited to 
the bioRxiv the bioRxiv DOI field indicates this. Attributes include:

Reported cells total: is the number of cells investigated in 
the study. 

Technique: the technology or protocol used.
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Panel size: the number of genes investigated when targeted 
technologies such as multiplexed smFISH were applied.

Measurement: the type of quantitative measurements 
performed (e.g. RNA-seq, In Situ or Microarray).

Data location: the public repository accession ID for the 
raw data.

Organism: the species of origin of cells examined in the 
study.

Tissue: the tissue type from which single cells were collected.

Cell Source: notes about the cells in the study. 

Contrasts: the different experimental conditions studied, if 
any. 

Isolation: the method used to produce the single cell 
suspension.

Developmental stage: the developmental stages or ages of 
the organisms cells were collected from.

Additionally, some fields are binary corresponding to a “Yes” or 
“No” entry. This is used for the following attributes: 

Cell clustering: Did the study performed unsupervised 
clustering of cells (Islam et al. 2011)?

Pseudotime: were cellular trajectories inferred with 
pseudotime methods (Magwene, Lizardi, and Kim 2003)?

RNA velocity: was a vector field inferred from spliced and 
unspliced reads (La Manno et al. 2018)?

PCA: was a principal component analysis performed?

tSNE: was the t-Distributed Stochastic Neighbor Embedding 
algorithm used for visualization (Van der Maaten and 
Hinton 2008)?

Finally, the number of cell types or clusters identified in each study 
is recorded under Number of reported cell types or clusters. This is 
most commonly based on de novo clustering, but in some cases it is 

based on the number of distinct pre-sorted cell types.
While the manual curation of the data made possible description 

of numerous details from the papers in the database, some entries are 
missing due to difficulty in finding information. However, we believe 
the overall content of the database is substantial enough to serve as 
a good starting point for the community to contribute and fill in the 
gaps. We show that even with some missing annotation, the database 
in its current form makes possible analysis of trends in the field.

The database can be accessed via a graphical interface using Goo-
gle Sheets at www.nxn.se/single-cell-studies/gui. This view allows 
searching on keywords and for browsing studies. Importantly, it also 
allows for the contribution of information to the database through 
comments on individual entries.

A version of the database in TSV (tab separated values) format can 
be downloaded from www.nxn.se/single-cell-studies/data.tsv. This 
enables researchers perform analyses using the data.

New studies can be submitted through a form located at 
www.nxn.se/single-cell-studies/submit. Submissions require a DOI. 
The form also allows for entry of additional metadata through  op-
tional fields. Claims in the submissions are spot checked to ensure 
they refer to the original text in the publication.

Every day a snapshot of the database is saved (in TSV format) us-
ing Google Cloud Functions, and all these snapshots are available in 
a public Google Storage bucket at gs://single-cell-studies. An ex-
ample snapshot is provided as Supplementary Table 1, which has data 
on 550 studies published between 2003 and August 17 2019.
Results

The earliest single cell transcriptomics study recorded in the data-
base was published in 2004. Since 2013, almost every month at least 
one study has been published. The rate of study publication has in-
creased steadily, and in May, June, and July of 2019 there were over 30 
single cell transcriptomics studies published per month (Figure 1). In 
2019 the median scRNA-seq study investigated approximately 14,000 
cells (Table 1).

Individual studies have increased in scale over time, and every 
few months a new study is released that breaks the previous record 
in terms of number of cells assayed. During the first half of 2019 ap-
proximately 200,000 cells were added to the pool of public data every 
month (Figure 2).

Many tissues have been investigated by single cell transcriptomics 
methods, but the brain is the most popular with 65 associated cita-

Figure 3) Pre-print usage over time.
The number of studies published in a given month stratified by whether they 
at some point were deposited to bioRxiv. (Including studies currently only 
available on bioRxiv).

Figure 2) Scale of experiments and data over time.
(Upper): The number of cells measured in a study, stratified by the measure-
ment method. (Middle): The number of cells measured in scRNA-seq exper-
iments, stratified by scRNA-seq protocol. (Lower): The aggregate number of 
cells measured per month.

Month Studies Median cells

Jan 2019 9 3,368

Feb 2019 21 11,175

Mar 2019 16 11,452

Apr 2019 21 17,725

May 2019 39 14,585

Jun 2019 39 15,000

Jul 2019 36 13,966

Table 1) Single cell study trends.
(left) Number and size of single cell transcriptomics studies in 2019. (middle) 
Most common tissue investigated with single cell transcriptomics. (‘Culture’ re-
fers to in vitro studies of cell lines). (right) Journals which have published most 
single cell transcriptomics studies. (‘bioRxiv’ means the study is so far only avail-
able on bioRxiv).

Tissue Studies

Brain 64

Culture 47

Blood 16

Heart 16

Pancreas 16

Embryo 14

Lung 12

Journal Studies

bioRxiv 63

Nature 50

Cell 49

Cell Reports 35

Science 34

Nature 
Communications

29

Genome Biology 19
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tions out of 550 (Table 1). Another trend observed from this database 
is that authors of single cell transcriptomics papers are increasingly 
making use of the bioRxiv preprint server. In total 145 of 555 studies 
were deposited to bioRxiv (26%). The fraction is now about 41% in 
a given month (Figure 3). Single cell studies are published in many 
different journals, with Nature and Cell having published the most 
(Table 1). The increasing popularity of these kinds of studies means 
the field, as measured by number of active authors, has grown. There 
have been 5,823 distinct authors of single cell transcriptomics studies.

By tracking what forms of analyses are performed with single cell 
transcriptomics data, it is possible to learn something about what the 
community as a whole is aiming to learn from the assays. The most 
common application is to survey molecular “cell types” by clustering 
cells based on gene expression. Almost every study performs cluster-
ing (87%). The t-SNE visualization method became nearly universally 
applied after its first use for single-cell analysis in 2015, although the 
fraction of studies per month using it has decreased slightly in the last 
year, possibly due to the introduction of UMAP (McInnes and Healy 
2018). “Pseudotime” is less frequently examined but is still very pop-
ular with about half of published studies investigating pseudotime 
trajectories (Figure 4).

Since de novo clustering and cell type discovery is almost always 
performed, we annotated the number of clusters of cells identified in 
the studies. This revealed a high correlation between cell type num-
bers and the number of cells investigated. For small to medium sized 
studies on average one cell type is identified per 100 cells assayed. For 

Figure 4) Popularity of forms of analysis over time.
(Top) The number of studies doing clustering per month. (Middle) The number 
of studies using tSNE per month. (Bottom) The number of studies doing pseudo-
time analysis per month.

large studies with hundreds of thousands of cells, the rate is closer to 
one cell cell type per 1,000 cells assayed (Figure 5).
Discussion

The curated database described here is hosted at 
www.nxn.se/single-cell-studies. It has been designed for easy access 
to the underlying data and for in depth analysis in Python or R. The 
database was designed to facilitate access to published single-cell re-
search, so that for example a researcher can find all single cell stud-
ies of the pancreas to explore the results and analyze public data. We 
found that analysis of other aspects of the studies described in the 
papers, namely attributes such as type of protocol, number of cells, or 
the number of clusters identified, revealed interesting trends in the 
field. We believe that our finding that the number of clusters iden-
tified is directly proportional to the number of cells analysed merits 
some scrutiny in light of the biological significance that is frequently 
associated with the number of clusters detected.

The database is also designed to enable contributions 
by the community via a mechanism for suggesting addi-
tions, adding data, and for commenting. Forms for these func-
tions are hosted at www.nxn.se/single-cell-studies/gui and 
www.nxn.se/single-cell-studies/submit. 
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Figure 5) Cluster and cell numbers.
The number of cells studied vs the number of clusters or cell types reported in 
a study.
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