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Abstract

An important step in metagenomics studies is to identify which species are present in a
sample as well as to compare samples from different environments. Here we introduce
MicroWineBar, a graphical tool for analyzing and comparing metagenomics samples.
MicroWineBar can visualize the abundances of metagenomics samples in line and bar
graphs, as well as analyse the richness and diversity. For a PCA as well as a differential
abundance analysis, the abundance data is treated as compositional data and center
log-ratio transformed. We use MicroWineBar to analyse two different years of wine
fermentation as well as data from a human microbiome study of colorectal cancer.
Importantly, MicroWineBar does not require any programming skills, is intuitive and
user friendly. MicroWineBar is available at https://github.com/klincke/MicroWineBar
and as a python package from the Python Package Index.

Introduction 1

Metagenomics is the application of sequencing techniques to study the communities of 2

microbial organisms in an environment [1]. Some examples of environments which have 3

been studied include sea water from the Sargasso Sea [2], acid mine drainage [3] and the 4

human gut [4]. One basic question in metagenomics studies is which species are present 5

in a sample from a specific environment and whether there are differences in species 6

composition between environments. However, analysis of metagenomic data is not 7

straightforward due to large numbers of reads that must be processed and that the 8

microbial composition of the samples are often largely unknown. To investigate these 9

questions it is important to explore the relative abundances of species or higher 10

taxonomic ranks. Determining statistically differential abundant species between two 11

environments can be achieved using either nonparametric methods such as the Wilcoxon 12

rank sum test or taking into account that count data from metagenomic studies is 13

compositional. This can be done by the center log-ratio transformation (CLR) which is 14

applied before using for instance ANCOM [5] for differential abundance testing. 15

Additionally, visualization and dimensionality reduction is needed to get an overview of 16

metagenomic samples. 17
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Many bioinformatic tools exist for visualising metagenomic data and Sudarikov et al. 18

provide a comprehensive overview [6]. One of the first tools which was developed was 19

MEGAN [7–9]. MEGAN displays the taxonomic hierarchy by node-link diagrams where 20

each node has a small, log-scaled quantitative chart. The advantage of this approach is 21

that each node is represented in the hierarchy. Another tool for visualising relative 22

abundances is Krona [10] where subdivided pie charts display an embedded hierarchy. 23

This is an easy way to display several taxonomic ranks at the same time. However, it is 24

difficult to compare relative abundances of two species since the abundances are 25

represented by angle. Cleveland et al. demonstrated that it is easier to compare values 26

which are represented by length (as in a bar graph) than by angle (as in a pie 27

chart) [11]. Further, Keanu is another visualization tool to explore biodiversity in 28

metagenomes that is able to display the hierarchical taxonomy but is only suited for 29

analysing one sample at a time [12]. The above mentioned tools are mainly for 30

visualising metagenomics data with the exception of MEGAN which also offers to 31

compare several samples. Nonetheless, it does not offer log-ratio transformations which 32

are recommended for compositional data such as metagenomics data. 33

We have developed a new tool for statistical analysis, dimensionality reduction and 34

visualization of metagenomics datasets. The tool is called MicroWineBar and is able to 35

display relative abundances in bar graphs interactively. MicroWineBar not only includes 36

features to compare metagenomic samples but also enables the user to compare two 37

groups of compositional metagenomic samples, e.g. from two environments. It supports 38

common data exploration techniques including Principal Component Analysis (PCA) 39

scatter plots and Shannon diversity index plots to interpret variability in a metagenomic 40

dataset. In addition, it provides both scatter and box plots for analysing the species 41

richness. These plot can be saved as high-resolution figures. We have implemented two 42

methods to determine differentially abundant species between two groups of samples: 43

the nonparametric Wilcoxon rank sum test and a differential abundance test using 44

ANCOM (Analysis of composition of microbiomes) [5]. The latter calculates the 45

pairwise log-ratios between all species and performs a significance test on it to reduce 46

the False Discovery Rate (FDR), from which many differential abundance analysis 47

methods (e.g. the commonly used DESeq2 [13]) suffer. ANCOM treats the count data 48

from metagenomic samples as compositional data because the relative abundances 49

within a sample have to sum to one [14]. Additionally, MicroWineBar can provide 50

information about specific species through both Wikipedia and PubMed in the tool. We 51

exemplify the use of MicroWineBar using metagenomics samples from wine 52

fermentations of Bobal grapes and by re-analysing a published human microbiome 53

dataset [15]. In both examples we point out the differences between two sample groups. 54

In the wine data we compare samples from two years and show that there are 55

differences between the vintages, especially regarding richness and diversity. For the 56

human microbiome dataset we can partly replicate the findings of Zeller et al. between 57

the two sample groups. MicroWineBar is available at 58

https://github.com/klincke/MicroWineBar. 59

Results 60

Overview of MicroWineBar 61

MicroWineBar is designed to read simple text input files containing estimates for 62

abundances in metagenomics samples. In order to be more flexible, the input of 63

MicroWineBar is not tied to any specific abundance measurement tool. Instead we 64

provide custom scripts to generate abundance tables for the following programs: 65

MGmapper [16], Bracken [17] which is run on top of Kraken [18] and MetaPhlAn [19]. 66
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These abundance tables contain relative (and absolute) abundances with taxonomic 67

annotations determined from mapping to whole genome databases, k-mer based 68

databases or marker gene databases, respectively. The design of MicroWineBar follows 69

the visual information-seeking mantra: overview first, zoom, filter and details on 70

demand [20]. These key tasks are recommended for designing advanced graphical user 71

interfaces and will be addressed in the following. The main window of MicroWineBar 72

will display relative abundances in bar graphs. By default, it starts with displaying a 73

bar graph of the relative abundances of the species present in the first sample which was 74

loaded. Each species is represented by one bar and its height corresponds to the relative 75

abundance of the species in that sample (Fig 1). One can change the taxonomic rank, 76

filter out individual species or taxonomic groups or filter for a minimum (relative) 77

abundance. Additionally, information about the species can be retrieved in the form of 78

a Wikipedia summary or PubMed publications. One can create line and stacked bar 79

graphs for several samples on all taxonomic ranks. In addition, one can also compare 80

two groups of samples, e.g. to identify differentially abundant species. We demonstrate 81

this in the following paragraphs using two example datasets. 82

Fig 1. Main window of MicroWineBar. An example of the main window of
MicroWineBar where one metagenomic wine sample is displayed. All hansenia* species
are highlighted in red and a popup window with information for the species
Hanseniaspora vineae is displayed. One can see a summary from Wikipedia, the
taxonomy as well as links to PubMed and Wikipedia.

Differences in the wine fermentation of two vintages 83

We tested MicroWineBar using a dataset of 21 metagenomics samples from two different 84

years of wine fermentations from a winery in the La Mancha region in Spain. The aim 85

was to identify differential abundant species between the fermentations of Bobal grapes 86

from 2012 (6 samples from one fermentation tank with a mean of 17,285,292 reads per 87

sample) and from 2013 (15 samples from two fermentation tanks with a mean of 88

13,514,142 reads per sample). In the PCA analysis the samples from the two years were 89

well separated into two groups (Fig 2A) with the variance explained by the first two 90

principal components as 28.72% and 16.05%, respectively. When analysing the species 91

richness we found that samples from 2012 had a significantly lower richness compared to 92

the samples from 2013 (p-value: 8e-10) with a median of 87 compared to 334 (Fig 2B). 93

Additionally, we found the Shannon diversity index to be significantly higher (p-value: 94

6e-2) for the 2013 samples (median of 2.15) compared to the 2012 samples (median of 95

0.57) (Fig 2C). 96

Fig 2. Diversity of metagenomic wine samples from Bobal fermentations.
Wine samples from 2012 are compared to wine samples from 2013. A: The Principal
Component Analysis (PCA) scatter plot shows a clear separation of the two vintages on
the first Principal Component (PC). B: Boxplot of the species richness where the 2012
samples show a significantly lower richness. C: Boxplot of the Shannon diversity
showing that the 2013 samples are more diverse. For the boxplots the lower and upper
hinges correspond to the first and third quartiles and the median is indicated with an
orange line. The upper and lower whiskers extend up to 1.5 * interquartile range (IQR).
Outliers are represented by circles.

Using the conservative ANCOM method we obtain ten species to be differentially 97

abundant. Of these Aspergillus niger, Bradyrhizobium sp. BTAi1, Penicillium 98

expansum, Pseudoalteromonas prydzensis, Pseudomonas cerasi, Pseudomonas syringae, 99
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Rhodanobacter glycinis and Starmerella bacillaris are more abundant in 2013 whereas 100

Hanseniaspora vineae and Candida sp. LDI48194 are more abundant in 2012 (Table 1). 101

The presence of H. vineae is in good concordance with previous findings that at the 102

beginning of wine fermentation microorganisms originating from the grapes such as 103

Candida, Pichia, Brettanomyces, Aureobasidium or Hanseniaspora [21] are present. 104

Some of these are considered spoilage microorganisms such as Brettanomyces [20], 105

however later during the alcoholic fermentation the principal wine yeast Saccharomyces 106

cerevisiae dominates the community. 107

Table 1. Differential abundance analysis of the wine samples. ANCOM was used to obtain the
results. Only the significantly differential abundant species are displayed. ANCOM calculates the
pairwise log ratios between all species and performs a one-way ANOVA (Analysis of Variance) test to
determine if there is a significant difference in the log ratios with respect to the species of interest. “W”
is then the W-statistic which is the number of pairwise log ratios where the species is significantly
different between the two years. Also, the median and maximum abundance are reported for both years.

Species W Median abundance Maximum abundance
2012 2013 2012 2013

Aspergillusniger 844 1.03e-06 4.22e-03 1.38e-04 3.33e-02
Bradyrhizobiumsp.BTAi1 875 1.03e-06 2.75e-02 1.30e-06 2.41e-01
Candidasp.LDI48194 875 2.13e-04 1.30e-06 6.09e-03 1.30e-06
Hanseniasporavineae 799 8.26e-04 6.10e-05 5.78e-02 5.08e-04
Penicilliumexpansum 845 1.30e-06 9.43e-04 1.30e-06 1.07e-02
Pseudoalteromonasprydzensis 840 1.30e-06 1.43e-03 1.30e-06 6.57e-03
Pseudomonascerasi 852 1.30e-06 2.17e-03 1.30e-06 1.18e-02
Pseudomonassyringae 875 1.30e-06 2.29e-02 1.30e-06 1.06e-01
Rhodanobacterglycinis 825 1.30e-06 7.30e-06 1.30e-06 1.90e-02
Starmerellabacillaris 830 1.30e-06 6.75e-04 1.30e-06 2.08e-03

Replicating a human microbiome study 108

In addition to investigating metagenomic samples from wine fermentations we used 109

MicroWineBar to re-analyse previously published data. Here we investigated 141 110

human gut microbiome samples of colorectal carcinoma (CRC) patients and tumor-free 111

controls [15]. In the original study the authors created a classifier based on 22 species to 112

distinguish CRC patients from controls based on the microbiome profiles and taxonomic 113

markers. We wanted to replicate their findings of taxonomic markers, namely two 114

Fusobacterium species, Porphyromonas asaccharolytica and Peptostreptococcus stomatis 115

enriched in the CRC samples. To generate count data to be analyzed in MicroWineBar 116

we mapped the reads to reference genome databases and determined species abundance 117

using MGmapper [16]. Hereafter we loaded the count data into MicroWineBar for 118

analysis. Initially we performed a PCA analysis to identify differences between the two 119

groups (Fig 3A), however we were not able to identify any clear differences between the 120

phenotypes. We next investigated species richness and found it to be slightly higher in 121

the CRC samples compared to the control with a median of 199 and 193.5, respectively. 122

However this was not statistically significant (p-value: 6e-2) (Fig 3B). Compared to this 123

the Shannon diversity index was slightly higher (p value: 1e-1) in the control samples 124

(median of 5.43) compared to the CRC samples (median of 5.24) (Fig 3C). Both richness 125

and diversity were also not found to be significantly different in the study by Zeller et 126

al. [15]. We found Fusobacterium species to be present in some CRC and in none of the 127

control samples. Additionally, we found P. asaccharolytica to be present in 75% of the 128

CRC samples compared to only 60% of the control samples. Finally, many Bacteroides 129
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species were present in all CRC as well as most of the control samples. Bacteroides are 130

a major component of the human gut microbiota. To investigate differential abundance 131

between the two groups we applied the conservative ANCOM method. This resulted in 132

only two species being differentially abundant, namely P. stomatis and Parvimonas 133

micra that were both more abundant in the CRC samples (Table 2). 134

Fig 3. Re-analysing a human microbiome dataset with colorectal cancer
(CRC) and control samples. A: A Principal Component Analysis (PCA) scatter
plot displaying the CRC (green) and the control (blue) samples. B: Boxplot of the
species richness showing no significant difference between the CRC and the control
samples. C: Boxplot of Shannon diversity showing no significant difference between the
CRC and the control samples. For the boxplots the lower and upper hinges correspond
to the first and third quartiles and the median is indicated with an orange line. The
upper and lower whiskers extend up to 1.5 * interquartile range (IQR). Outliers are
represented by circles.

Table 2. Differential abundance analysis of human microbiome samples. ANCOM was used
to obtain the results. Only the significantly differential abundant species are displayed. ANCOM
calculates the pairwise log ratios between all species and performs a one-way ANOVA (Analysis of
Variance) test to determine if there is a significant difference in the log ratios with respect to the species
of interest. “W” is then the W-statistic which is the number of pairwise log ratios where the species is
significantly different between the two years. Also, the median and maximum abundance are reported for
the sample groups.

Species W Median abundance Maximum abundance
CRC control CRC control

Parvimonasmicra 373 3.08E-05 5.72E-06 7.81E-02 1.31E-03
Peptostreptococcusstomatis 410 5.72E-06 5.72E-06 1.36E-02 6.23E-05

Discussion 135

MicroWineBar is designed to be a generic visualisation tool for metagenomic samples. 136

This means that it is not tied to a specific analysis toolkit for preparing the input. 137

Among other features it displays relative abundances of species of one or several 138

samples in bar graphs without showing the hierarchy of the taxonomic classifications. 139

Additionally, one can compare groups of samples. For this the data is log-ratio 140

transformed. As expected there are more wine spoilage organisms in the wine 141

fermentation samples from 2013 compared to 2012 and with this an increased species 142

richness in general. This was likely due to differences in weather conditions, where 143

humid conditions favor spoilage organisms such as Hanseniaspora, Aspergillus, Botrytis 144

and Aureobasidium [21, 22]. The year of 2013 was generally a humid year in Europe and 145

therefore a challenging year for winemaking (Fig 4B). In the La Mancha region, the 146

average humidity was significantly (p-value 0.049) higher in 2013 compared to 2012, 147

especially in the growing season from April to October (p-value 0.001). This is also 148

reflected in that generally wines from the La Mancha region were graded much higher 149

(excellent) in 2012 compared to 2013 (good) [23]. 150

Non-Saccharomyces wine yeasts were in the past considered as spoilage yeasts but 151

have recently attracted more attention as they are believed to positively modify the 152

wine aroma [22,25,26]. The fact that the non-Saccharomyces yeast H. vineae is more 153

abundant in 2012 than in 2013 as well as that in 2012 it is more abundant than H. 154
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Fig 4. Comparing metagenomic wine samples from Bobal fermentations of
2012 with samples from 2013. A: Abundances of Hanseniaspora vineae in 2012
(left) and 2013 (right). The labels on the x-axis indicate the order in which the samples
were taken during the fermentation. The 2013 samples were taken from two
fermentation tanks. B: Average humidity in La Mancha, Spain, in 2012 (blue) and 2013
(green). The average humidity in La Mancha was significantly higher (p-value: 0.049) in
2013 compared to 2012. The range of the humidity for both years is indicated by broken
lines. Data from [24].

uvarum is interesting. This might have an influence on the wine aroma for the two years 155

even though the relative abundance of H. vineae was low. Candida sp. LDI48194 156

belongs to the family Debaryomycetaceae and is only lowly abundant in 2012 and absent 157

in 2013. Furthermore S. cerevisiae is clearly dominating the fermentations from both 158

years and was even more abundant in the 2013 samples compared to the 2012 samples. 159

For the human microbiome dataset, we identified with ANCOM only one of the two 160

species which contribute most to the classifier in the study by Zeller et al. to be 161

differentially abundant as well, namely P. stomatis. Additionally, we identified P. micra 162

as being differentially abundant which is in concordance with other studies [27]. This 163

means that we could only partially replicate the results. This might be due to the fact 164

that we used another program to align the reads to different databases to get the 165

taxonomic annotations. In other words we might have started with a different set of 166

species found in the samples which of course would influence the result of an analysis. 167

In addition, this might be due to the fact that we used ANCOM which takes into 168

account that microbiome data is compositional. This also points out a problem with 169

metagenomics in general, namely the reproducibility of results from metagenomic 170

studies [28]. MicroWineBar enables researchers without any programming skills to 171

perform analysis and visualization of complex metagenomics datasets. We hope that 172

MicroWineBar will contribute to making analysis of compositional metagenomics data 173

more accessible for non-bioinformaticians. 174

Materials and methods 175

Implementation of MicroWineBar 176

MicroWineBar is written in Python3 (v.3.6.8) and uses the GUI package Tkinter. It 177

needs to be installed locally as a Python package and runs on both Mac OS and Linux. 178

The pandas (v.0.23.4) [29] package is used to represent the data in data frames. The 179

scikit-bio (v.0.5.3) package is used to calculate the Shannon diversity index, the 180

Bray-Curtis dissimilarity, to create the PCoA and to perform the differential abundance 181

test using ANCOM [5]. The scipy (v.1.1.0) [30] package was used for the nonparametric 182

Wilcoxon rank sum test. In general, the Benjamini-Hochberg p-value correction was 183

used for multiple hypothesis testing and a corrected p-value of less than 0.05 was 184

considered statistically significant. The matplotlib (v.2.2.3) [31] package was used to 185

create figures. Welch’s unequal variances t-test from the scipy package was used to test 186

for statistical difference between two sample groups, i.e. for richness and Shannon 187

diversity. A p-value of less than 0.05 was considered statistically significant. The 188

module wikipedia (v.1.4.0) was used to retrieve the summary of a Wikipedia entry and 189

the module webbrowser was used to open a website in a browser. MicroWineBar takes 190

files with absolute (and relative) abundances and taxonomic annotations created by 191

Bracken [17], MetaPhlAn [19] and MGmapper [16] as input. For the latter output files 192

from several databases need to be merged with the mgmapper2microwinebar.py script. 193
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Scripts are provided to prepare the input. 194

Processing of wine samples 195

The 21 shotgun metagenomic Bobal wine samples were obtained from two studies. From 196

Melkonian et al. we only used the Bobal samples from the two control tanks [32]. The 197

sampling points for the six samples from 2012 were 0h, 16h, 24h, 32h, 48h and 96h after 198

fermentation. After 24h the tank was inoculated with S. cerevisiae to start the alcoholic 199

fermentation. The sequencing reads from both years were generated in the following 200

way. For DNA isolation, cells were pelleted from 50 ml of wine centrifuged at 4,500 g for 201

10 minutes and subsequently washed three times with 10 ml of 4°C phosphate buffered 202

saline. The pellet was mixed with G2-DNA enhancer (Ampliqon, Odense, Denmark) in 203

2 ml tubes and incubated at room temperature for 5 min. Then 1 ml of lysis buffer (20 204

mM Tris-HCl- pH 8.0, 2 mM EDTA and 40 mg/ml lysozyme) was added to the tube and 205

incubated at 37°C for one hour. An additional 1 ml of CTAB/PVP lysis buffer (50) was 206

added to the lysate and incubated at 65°C for one hour. DNA was purified from 1 ml of 207

lysate with an equal volume of phenol-chloroform-isoamyl alcohol mixture 49.5:49.5:1 208

and the upper aqueous layer was further purified with a MinElute PCR Purification kit 209

and the QIAvac 24 plus (Qiagen, Hilden, Germany), according to manufacturer’s 210

instructions, before it was eluted in 100 ul DNase-free water. Prior to library building, 211

genomic DNA was fragmented to an average length of 400 bp using the Bioruptor XL 212

(Diagenode, Inc.), with the profile of 20 cycles of 15 s of sonication and 90 s of rest. 213

Sheared DNA was converted to Illumina compatible libraries using NEBNext library kit 214

E6070L (New England Biolabs) and blunt-ended library adapters. The libraries were 215

amplified in 25-ml reactions, with each reaction containing 5 µl of template DNA, 2,5 U 216

AccuPrime Pfx Supermix (Invitrogen, Carlsbad, CA), 1X Accuprime Pfx Supermix, 0.2 217

uM IS4 forward primer and 0.2 uM reverse primer with sample specific 6 bp index. The 218

PCR conditions were 2 minutes at 95°C to denature DNA and activate the polymerase, 219

11 cycles of 95°C for 15 seconds, 60°C annealing for 30 seconds, and 68°C extension for 220

40 seconds, and a final extension of 68°C for 7 minutes. Sequence data for the 2012 has 221

been deposited at ENA with the accession number ERP111084 and the sequence data 222

for 2013 is available at ENA with the accession number ERP112039. The raw reads 223

were trimmed and quality-filtered with cutadapt (v. 1.16) [33]. The first 10 bp were 224

removed from the reads, the phred quality cutoff was set to 20 and the minimum length 225

to 30. To get the taxonomic annotation the remaining reads were then mapped with 226

MGmapper (v. 2.7) to the following databases: VitisVinifera, Plant, Human, Bacteria, 227

Bacteria draft, MetaHitAssembly, HumanMicrobiome, Fungi, FungiDB, Brettanomyces, 228

NewWine, Archaea, Virus, Protozoa, Plasmid, Invertebrates. The databases 229

VitisVinifera, FungiDB, Brettanomyces and NewWine were custom databases 230

containing the grape genome and genomes of species which are especially interesting 231

with respect to wine fermentation. MGmapper was run with the option to remove PCR 232

duplicates turned on, the maximum edit distance was set to 0.05 and the minimum 233

number of Matches+Mismatches for a valid read was set to 30. Then the python script 234

mgmapper2microwinebar.py was run for each sample to merge the output of MGmapper 235

so that each sample consists of only one file and can be imported in MicroWineBar. In 236

MicroWineBar the following phyla were filtered: Annelida, Arthropoda, Chordata, 237

Mollusca, Nematoda, Platyhelminthes and Streptophyta. The reason for this is that we 238

are only interested in the microorganisms but still wanted to know from which other 239

organisms DNA was found in the samples. 240
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Processing of colorectal cancer dataset 241

The shotgun metagenomic dataset analyzed here was downloaded from ENA 242

(ERP005534) [15] and all 88 control and 53 CRC shotgun metagenomic paired end 243

samples were processed. The reads were trimmed and quality-filtered with the same 244

settings as the wine samples. To get the taxonomic annotation the reads were then also 245

mapped with MGmapper [16] with the same settings as the wine samples (v. 2.7) to the 246

following databases: Human (Human reference sequence GRCh38.p12) and 247

HumanMicrobiome [4]. Hereafter the python script mgmapper2microwinebar.py was 248

run for each sample to merge the output of MGmapper. In MicroWineBar the reads 249

that mapped to human were filtered out since we are interested in the differentially 250

abundant microorganisms between the CRC and the control samples. 251
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