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 34 

Abstract 35 

Bats provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, 36 

and soil fertilization. Bats are also major hosts for biological agents responsible for zoonoses, 37 

such as coronaviruses (CoVs). The islands of the Western Indian Ocean are identified as a major 38 

biodiversity hotspot, with more than 50 bat species. In this study, we tested 1,013 bats belonging 39 

to 36 species from Mozambique, Madagascar, Mauritius, Mayotte, Reunion Island and Sey-40 

chelles, based on molecular screening and partial sequencing of the RNA-dependent RNA pol-41 

ymerase gene. In total, 88 bats (8.7%) tested positive for coronaviruses, with higher prevalence 42 

in Mozambican bats (20.5% ± 4.9%) as compared to those sampled on islands (4.5% ± 1.5%). 43 

Phylogenetic analyses revealed a large diversity of α- and β-CoVs and a strong signal of co-44 

evolution between CoVs and their bat host species, with limited evidence for host-switching, 45 

except for bat species sharing day roost sites.  46 

 47 

Importance 48 
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This is the first study to report the presence of coronaviruses (CoVs) in bats in Mayotte, 49 

Mozambique and Reunion Island, and in insectivorous bats in Madagascar. Eight percent of the 50 

tested bats were positive for CoVs, with higher prevalence in continental Africa than on islands. 51 

A high genetic diversity of α- and β-CoVs was found, with strong association between bat host 52 

and virus phylogenies, supporting a long history of co-evolution between bats and their associ-53 

ated CoVs in the Western Indian Ocean. These results highlight that strong variation between 54 

islands does exist and is associated with the composition of the bat species community on each 55 

island. Future studies should investigate whether CoVs detected in these bats have a potential 56 

for spillover in other hosts.  57 

 58 

 59 

 60 

Keywords: bat, coronavirus, islands, tropical, evolution, ecology  61 
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Text – 3158 words  62 

Introduction 63 

The burden of emerging infectious diseases has significantly increased over the last decades 64 

and is recognized as a major global health concern. In 2018, the World Health Organization 65 

(WHO) established the “Blueprint priority disease list”, identifying viruses such as Ebola, Lassa 66 

fever, Middle East Respiratory Syndrome (MERS), and Nipah fever as significant threats to 67 

international biosecurity 1. This list also highlights the potential pandemic risk from the emer-68 

gence of currently unknown zoonotic pathogens, collectively referring to these unknown threats 69 

as “disease X” 1. Investigation of the potential zoonotic pathogens in wild animals, particularly 70 

vertebrates, is thus critical for emerging infectious disease preparedness and responses.  71 

Bats represent nearly 1,400 species and live on all continents except Antarctica 2. They 72 

provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, and 73 

soil fertilization 3–10. Bats are also recognized as reservoirs of many zoonotic pathogens, includ-74 

ing coronaviruses (CoVs) 11–13. Indeed, several CoVs originating from bats have emerged in 75 

humans and livestock with sometimes major impacts to public health. For instance, in 2003, the 76 

Severe Acute Respiratory Syndrome (SARS) CoV emerged in humans, after spillover from bats 77 

to civets14–18, and led to the infection of 8,096 people and 774 deaths in less than a year 19. 78 

Our study area spans geographic locations across the islands of the Western Indian 79 

Ocean and southeastern continental Africa (SECA) (Figure 1). These islands have diverse ge-80 

ological origins that have influenced the process of bat colonization and species distributions 81 

20. The ecological settings and species diversity on these islands for bats are notably different. 82 

On Madagascar, more than 45 bat species are known to occur, of which more than 80 % are 83 

endemic to the island 21–23. The smaller studied islands of the Western Indian Ocean, Mauritius, 84 

Mayotte, Reunion Island, and Mahé (Seychelles), host reduced bat species diversity (e.g. three 85 
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species on Reunion Island), whereas SECA supports a wide range of bat species. To date, sev-86 

eral studies have identified bat-infecting CoVs in countries of continental Africa, including 87 

Zimbabwe 24, South Africa 25,26, Namibia 27, and Kenya 28,29. CoVs have also been reported in 88 

fruit bats (Pteropodidae) in Madagascar, where β-coronaviruses belonging to the D-subgroup 89 

were identified in Eidolon dupreanum and Pteropus rufus 30. 90 

In this study, we investigated the presence of CoVs in over 1,000 individual bats be-91 

longing to 36 species, sampled on five islands (Madagascar, Mauritius, Mayotte, Reunion Is-92 

land, and Mahé) and one continental area (Mozambique). Based on molecular screening and 93 

partial sequencing of the RNA-dependent RNA polymerase gene, we (i) estimated CoV preva-94 

lence in the regional bat populations, (ii) assessed CoV genetic diversity, and (iii) identified 95 

associations between bat families and CoVs, as well as potential evolutionary drivers leading 96 

to these associations.  97 

 98 

Results 99 

Prevalence of CoV 100 

A total of 1,013 bats were tested from Mozambique, Mayotte, Reunion Island, Sey-101 

chelles, Mauritius and Madagascar (Figure 1). In total, 88 of the 1,013 bat samples tested pos-102 

itive for CoV by Real-Time PCR (mean detection rate: 8.7%). The prevalence of positive bats 103 

was different according to the sampling locations (χ² = 77.0, df = 5; p<0.001), with a higher 104 

prevalence in Mozambique (± 95% confidence interval: 20.5% ± 4.9%) than on all Western 105 

Indian Ocean islands (4.5% ± 1.5%) (Figure 2). A significant difference in the prevalence of 106 

positive bats was also detected between families (χ² = 44.8, df = 8; p<0.001; Supplementary 107 

Figure S1). The highest prevalence were observed in the families Nycteridae (28.6 % ± 23.6%) 108 

and Rhinolophidae (26.2% ± 11.0%). Bat species had a significant effect on the probability of 109 
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CoVs detection (χ² = 147.9, df = 39; p<0.001; Supplementary Figure S2). Finally, the preva-110 

lence of CoV positive bats in Mozambique was significantly different (N = 264, χ²= 22.8, df = 111 

1; p<0.001; Supplementary Figure S3) between February (37.4% ± 9.9%) and May (11.6% ± 112 

4.8). 113 

 114 

RdRp sequence diversity 115 

Of the 88 positive samples, we obtained 77 partial RdRp sequences using the Real-Time 116 

PCR detection system (179 bp) and 51 longer partial RdRp sequences using a second PCR 117 

system (440 bp). Sequences generated with the second system were subsequently used for phy-118 

logenetic analyses. Details of the sequenced CoV-positive samples are provided in Supplemen-119 

tary Table S1. Pairwise comparison of these 51 sequences revealed 28 unique sequences, and 120 

sequences similarities ranging from 60.2% to 99.8%. The lowest sequence similarity was found 121 

in Mozambique (60.2% to 99.8%), then in Madagascar (64.0% to 99.8%). No genetic variation 122 

was observed for samples from Mayotte and Reunion Island.  123 

 124 

Phylogenetic structure of CoVs 125 

Sequence comparison indicated that Western Indian Ocean bats harbor a high diversity 126 

of both α and β-CoVs, with conserved groups clustering mostly by bat family (Figure 3). Spe-127 

cifically, 25 sequences were identified as α-CoVs, and three sequences were genetically related 128 

to the β-CoVs. For α-CoVs, all sequences detected in our tested Molossidae formed a highly 129 

supported monophyletic group, including CoV sequences from Molossidae bats previously de-130 

tected in continental Africa (Figure 4). CoVs detected in Mops condylurus (Mozambique), Mor-131 

mopterus francoismoutoui (Reunion Island), Chaerephon pusillus and Chaerephon sp. (Ma-132 

yotte), and Mormopterus jugularis (Madagascar) shared 90% - 98% nucleotide similarity with 133 
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a CoV detected in Chaerephon sp. in Kenya (Supplementary Table S2). All CoVs found in 134 

Miniopteridae clustered in a monophyletic group, including Miniopteridae CoVs sequences 135 

from Africa, Asia, and Oceania (Supplementary Table S2). The great majority of α-CoVs de-136 

tected in Rhinolophidae bats clustered in two monophyletic groups (Figure 3); one with African 137 

Rhinolophidae CoVs and one with Asian Rhinolophidae CoVs. We also detected one CoV from 138 

Rhinolophus rhodesiae, which was 100% similar to a Miniopteridae CoV from this study. Rhi-139 

nonycteridae CoVs formed a single monophyletic group with NL63 Human CoVs. The Rhi-140 

nonycteridae CoVs detected clustered with NL63-related bat sequences found in Triaenops afer 141 

in Kenya (Figure 5) and showed 85% similarity to NL63 Human CoVs (Supplementary Table 142 

S2). Hipposideridae α-CoVs mainly clustered into a single monophyletic group, including 229E 143 

Human CoV-related bat sequence found in Hipposideros vittatus from Kenya (Figure 6; Sup-144 

plementary Table S2).  145 

For β-CoVs, two sequences obtained from Nycteris thebaica clustered in the C-sub-146 

group together with other CoVs previously reported in African Nycteris sp. bats (Figure 7). The 147 

sequences showed 88% nucleotide identity to a β-C CoV found in Nycteris gambiensis in Ghana 148 

(Supplementary Table S2). Rousettus madagascariensis CoVs clustered with Pteropodidae 149 

CoVs belonging to the D-subgroup of β-CoVs (Figure 8). BLAST queries against the NCBI 150 

database showed 98% nucleotide identity between CoV sequences from Rousettus madagasca-151 

riensis and a β-D CoV sequence detected in Eidolon helvum from Kenya (Supplementary Table 152 

S2).  153 

 154 

Co-phylogeny between bats and CoVs 155 

Co-phylogeny tests were conducted using 11 Cyt b sequences obtained from the 11 156 

CoVs positive bat species and 27 partial CoV RdRp sequences (440 bp). Results supported co-157 
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evolution between the Western Indian Ocean bats and their CoVs (ParaFitGlobal = 0.04; p = 158 

0.001) and a high level of phylogenetic congruence (Figure 9). 159 

 160 

Discussion 161 

We provide evidence for a high diversity of CoVs in bats on Western Indian Ocean islands. 162 

The overall prevalence of CoV positive bats was consistent with studies from continental Africa 163 

25 and from islands in the Australasian region 31, although we detected significant variation in 164 

the prevalence of infected bats, according to their family, species, sampling location and season. 165 

Our study is nevertheless affected by the strong heterogeneity of bat communities in the island 166 

of the Western Indian Ocean, in particular in term of species richness. The high CoV genetic 167 

diversity detected in bats from Mozambique and Madagascar is likely to be associated with the 168 

higher bat species diversity in the African mainland and in Madagascar, has compared to small 169 

oceanic islands 20. In addition, CoV prevalence in bat populations may significantly vary across 170 

seasons, as found in Mozambique with higher prevalence during the wet season than in the dry 171 

season. Several studies on bat CoV have indeed shown significant variations in the temporal 172 

infection dynamic of CoV in bats, potentially associated with bat parturition 32–34. 173 

Host specificity is well known for some bat CoVs subgenera 35–37. For example, β-C CoVs 174 

are largely associated with Vespertilionidae, whereas β-D CoVs are found mostly in Pteropodi-175 

dae 36,38. In our study, we showed that Western Indian Ocean bats harbor phylogenetically struc-176 

tured CoVs, of both α-CoV and β-CoV subclades, clustering mostly by bat family. In the new 177 

CoV taxonomy based on full genomes proposed by the International Committee of Taxonomy 178 

of Viruses (ICTV), α-CoVs and β-CoVs are split in subgenera mostly based on host families 39, 179 

reflected in the subgenera names (e.g. Rhinacovirus for a Rhinolophidae α-CoV cluster, Min-180 
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uacovirus for a Miniopteridae α-CoV cluster, Hibecovirus for an Hipposideridae β-CoV clus-181 

ter). Although our classification was based on a partial sequence of the RdRp region, we iden-182 

tified sequences from samples belonging to four of these subgenera (Minuacovirus, Duvina-183 

covirus, Rhinacovirus, and Nobecovirus) and three that could not be classified according to this 184 

taxonomic scheme hence representing unclassified subgenera (we propose “Molacovirus”, 185 

“Nycbecovirus”, and “Rhinacovirus2”).  186 

A strong geographical influence on CoVs diversity, with independent evolution of CoVs on 187 

each island, was expected in our study, because of spatial isolation and endemism of the tested 188 

bat species. Anthony et al. 38 found that the dominant evolutionary mechanism for African CoVs 189 

was host switching. Congruence between host and viral phylogenies however suggests a strong 190 

signal for co-evolution between Western Indian Ocean bats and their associated CoVs. Geo-191 

graphical influence seems to occur within bat families, as for Molossidae. Endemism resulting 192 

from geographic isolation may thus have played a role in viral diversification within bat fami-193 

lies.  194 

Although co-evolution could be the dominant mechanism in the Western Indian Ocean, 195 

host-switching may take place in certain situations. For example, in Mozambique, we found a 196 

potential Miniopteridae α-CoV in a Rhinolophidae bat co-roosting with Miniopteridae in the 197 

same cave. These host-switching events could be favored when several bat species roost in 198 

syntopy 40. A similar scenario was described in Australia where Miniopteridae α-CoV was de-199 

tected in Rhinolophidae bats 31. These infrequent host-switching events show that spillovers 200 

can happen but suggest that viral transmission is not maintained in the receiver host species. 201 

The host-virus co-evolution might thus have resulted in strong adaptation of CoVs to each bat 202 

host species. In addition, viral factors (mutation rate, recombination propensity, replication abil-203 

ity in the cytoplasm, changes in the ability to bind host cells), environmental factors (climate 204 
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variation, habitat degradation, decrease of bat preys), and phylogenetic relatedness of host spe-205 

cies are also critical for the viral establishment in a novel host 41–44. Nevertheless, apparent 206 

evidence of host switching as a dominant mechanism of CoV evolution could be an artifact of 207 

a lack of data for some potential bat hosts, leading to incomplete phylogenetic reconstructions 208 

38.  209 

Several bat CoVs we identified in Rhinonycteridae and Hipposideridae from Mozambique 210 

had between 85% and 93% nucleotide sequence similarity with NL63 Human CoVs and 229E 211 

Human CoVs, respectively. These two human viruses are widely distributed in the world and 212 

associated with mild to moderate respiratory infection in humans 45. Tao et al. established that 213 

the NL63 Human CoVs and 229E Human CoVs have a zoonotic recombinant origin from their 214 

most recent common ancestor, estimated to be about 1,000 years ago 46. During the past decade, 215 

they were both detected in bats in Kenya, and in Ghana, Gabon, Kenya, and Zimbabwe, respec-216 

tively 24,28,47,48. Intermediate hosts are important in the spillover of CoVs, despite major 217 

knowledge gaps  on the transmission routes of bat infectious agents to secondary hosts 49. This 218 

hypothesis has been formulated for the 229E Human CoV, with an evolutionary origin in Hip-219 

posideridae bats and with camelids as intermediate hosts 48. The ancient spillover of NL63 from 220 

Rhinonycteridae bats to humans might have occurred through a currently unidentified interme-221 

diate host 28,50,51. Because receptor recognition by viruses is the first essential cellular step to 222 

infect host cells, CoVs may have spilt over into humans from bats through an intermediate host 223 

possibly due to mutations on spike genes 13,28. Further investigations of CoVs in Kenyan and 224 

Mozambican livestock and hunted animals could potentially provide information on the com-225 

plete evolutionary and emergence history of these two viruses before their establishment in 226 

humans.  227 
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MERS-like CoV, with high sequence similarity (>85%) to human and camel strains of 228 

MERS-CoV, have been detected in Neoromicia capensis in South Africa and Pipistrellus cf. 229 

hesperidus in Uganda, suggesting a possible origin of camel MERS-CoV in vespertilionid bats 230 

25,38,52. This family has been widely studied, with 30% of all reported bat CoVs sequences from 231 

the past 20 years coming from vespertilionids 53. No members of this family were positive for 232 

CoV in our study, which may be associated with the low number of individuals tested; addi-233 

tional material is needed to explore potential MERS-like CoV in the Western Indian Ocean, in 234 

particular on Madagascar.  235 

Knowledge on bat CoV ecology and epidemiology has significantly increased during the 236 

past decade. Anthony et al. estimated that there might be at least 3,204 bat CoVs worldwide 38; 237 

however, direct bat-to-human transmission has not been demonstrated so far. As for most 238 

emerging zoonoses, CoV spillover and emergence may be associated to human activities and 239 

ecosystem changes such as habitat fragmentation, agricultural intensification and bushmeat 240 

consumption. The role of bats as epidemiological reservoir of infectious agents needs to be 241 

balanced with such human driven modifications on ecosystem functioning, in order to properly 242 

assess bat-borne CoV emergence risks. 243 

 244 

Materials and methods 245 

Origin of the tested samples 246 

Samples obtained from vouchered bat specimens during previous studies in Mozam-247 

bique (February and May 2015), Mayotte (November to December 2014), Reunion Island (Feb-248 

ruary 2015), Seychelles (February to March 2014), Mauritius (November 2012) and Madagas-249 

car (October to November 2014) were tested 54–57 (Supplementary Information). We also col-250 
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lected additional swab samples from several synanthropic bat species on Madagascar, in Janu-251 

ary 2018 (Supplementary Information). Details on sample types, bat families, species, and lo-252 

cations are provided in Supplementary Table S3. 253 

 254 

Ethical statement 255 

The ethical terms of these research protocols were approved by the CYROI Institu-256 

tional Animal Care and Use Committee (Comité d’Ethique du CYROI no.114, IACUC certi-257 

fied by the French Ministry of Higher Education, of Research and Innovation). All protocols 258 

strictly followed the terms of research permits and regulations for the handling of wild mam-259 

mals and were approved by licencing authorities (Supplementary Information).  260 

 261 

Molecular detection  262 

RNA was extracted from 140 μL of each sample using the QIAamp Viral RNA mini kit 263 

(QIAGEN, Valencia, California, USA), and eluted in 60 μL of Qiagen AVE elution buffer. For 264 

bat organs, approximately 1 mm3 of tissue (either lungs or intestines) was placed in 750 µL of 265 

DMEM medium and homogenized in a TissueLyser II (Qiagen, Hilden, Germany) for 2 min at 266 

25 Hz using 3 mm tungsten beads, prior to the RNA extraction. Reverse transcription was per-267 

formed on 10 μL of RNA using the ProtoScript II Reverse Transcriptase and Random Primer 6 268 

(New England BioLabs, Ipswich, MA, USA) under the following thermal conditions: 70 °C for 269 

5 min, 25 °C for 10 min, 42 °C for 50 min, and 65 °C for 20 min 58. cDNAs were tested for the 270 

presence of the RNA-dependent RNA-polymerase (RdRp) gene using a multi-probe Real-Time 271 

PCR 59. The primer set with Locked Nucleic Acids (LNA; underlined position in probe se-272 

quences) was purchased from Eurogentec (Seraing, Belgium): 11-FW: 5’-TGA-TGA-TGS-273 

NGT-TGT-NTG-YTA-YAA-3’ and 13-RV: 5’-GCA-TWG-TRT-GYT-GNG-ARC-ARA-274 
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ATT-C-3’. Three probes were used: probe I (ROX): 5’-TTG-TAT-TAT-CAG-AAT-GGY-275 

GTS-TTY-AT-3’, probe II (FAM): 5’-TGT-GTT-CAT-GTC-WGA-RGC-WAA-ATG-TT-3’, 276 

and probe III (HEX): 5’-TCT-AAR-TGT-TGG-GTD-GA-3’. Real-Time PCR was performed 277 

with ABsolute Blue QPCR Mix low ROX 1X (Thermo Fisher Scientific, Waltham, MA, USA) 278 

and 2.5 µL of cDNA under the following thermal conditions: 95 °C for 15 min, 95 °C for 30 s, 279 

touchdowns from 56 °C to 50°C for 1 min and 50 cycles with 95 °C for 30 s and 50 °C for 1 280 

min in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). 281 

Because of the limited size of sequences generated from the Real-Time PCR, a second 282 

PCR targeting 440 bp of the RdRp gene was performed with 5 µL of cDNA of each positive 283 

sample, with the following primer set: IN-6: 5’-GGT-TGG-GAC-TAT-CCT-AAG-TGT-GA-284 

3’ and IN-7: 5’-CCA-TCA-TCA-GAT-AGA-ATC-ATC-ATA-3’ 60. PCRs were performed 285 

with the GoTaq G2 Hot Start Green Master Mix (Promega, Madison, WI, USA) in an Applied 286 

Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA), under the 287 

following thermal conditions: 95 °C for 2 min, 45 cycles with 95 °C for 1 min, 54 °C for 1 min, 288 

72°C for 1 min, and a final elongation step at 72°C for 10 min. After electrophoresis in a 1.5% 289 

agarose gel stained with 2% GelRed (Biotium, Hayward, CA, USA), amplicons of the expected 290 

size were sequenced on both strands by Genoscreen (Lille, France). All generated sequences 291 

were deposited in GenBank under the accession numbers MN183146 to MN183273. 292 

 293 

Statistical analysis 294 

We have performed Pearson χ² tests on all samples (1,013 bats) to explore the effect of 295 

(i) location, (ii) bat family, and (iii) bat species on the detection of coronavirus RNA. Two 296 

sampling campaigns, at two different season, in the same location, were available for Mozam-297 

bique. We thus investigated the effect of the sampling season, between the wet (February) and 298 
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dry (May) season, on CoV detection in Mozambique in 2015 (264 bats). Analyses were con-299 

ducted with R v3.5.1 software 61.  300 

 301 

Phylogenetic analyses 302 

Sequences obtained with the second PCR system 60 were edited with the Chromas Lite 303 

Software package version 2.6.4 62. We explored CoV diversity of the sequences with pairwise 304 

identity values obtained from seqidentity function in R bio3d package v2.3-4 63 and identified 305 

the most similar CoV RdRp sequences referenced in GenBank using BLASTN 2.2.29+. An 306 

alignment was then generated using the 51 nucleotide sequences obtained in this study and 151 307 

reference CoV sequences representing a large diversity of hosts and geographic origins (Eu-308 

rope, Asia, Oceania, America and Africa), with CLC Sequence viewer 8.0 Software (CLC Bio, 309 

Aarhus, Denmark). A phylogenetic tree was obtained by maximum likelihood using MEGA 310 

Software v10.0.4 64, with 1,000 bootstrap iterations, and with the best evolutionary model for 311 

our dataset as selected by modelgenerator v0.85 65. 312 

Host-virus associations were investigated using the phylogeny of Western Indian Ocean 313 

bats and their associated CoVs. Bat phylogeny was generated from an alignment of 1,030 bp of 314 

mitochondrial Cytochrome b (Cyt b) gene sequences (Supplementary Table S4), for each CoV 315 

positive bat species. Finally, bat and pruned CoV phylogenies based on each 393 bp RdRp 316 

unique sequence fragment were generated by Neighbor-Joining with 1,000 bootstrap iterations, 317 

using CLC Sequence viewer 8.0 Software (CLC Bio, Aarhus, Denmark)66. Phylogenetic con-318 

gruence was tested to assess the significance of the coevolutionary signal between bat host 319 

species and CoVs sequences, using ParaFit with 999 permutations in the ape package v5.0 in 320 

R 3.5.1 67,68. Tanglegram representations of the co-phylogeny were visualized using the Jane 321 

software v4.01 69. 322 
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Figures 516 

 517 

Figure 1. Geographic distribution of the tested samples. N: number of bats sampled for each 518 

location. The open-source GIS software, QGIS v.3.6.1, was used to generate the map. 519 

http://qgis.osgeo.org (2019). 520 

 521 

Figure 2. Mean CoV prevalence (± 95% confidence interval) in bats in the Western Indian 522 

Ocean. Pairwise test; ***: p<0.001; NS: p>0.05, not significant. 523 

524 
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Figure 3. Maximum Likelihood (ML) consensus tree derived from 202 coronavirus (CoV) 526 

RNA-dependent RNA-polymerase partial nucleotide sequences (393 bp). Colored circles at the 527 

end of branches indicate bat family origin. Sequences in bold refer to bat CoVs detected in this 528 

study. Bootstrap values >0.7 are indicated on the tree. Scale bar indicates mean number of nu-529 

cleotide substitutions per site. The tree was generated with the General Time Reversible evolu-530 

tionary model (GTR+I+Г, I = 0.18, α = 0.64) and 1,000 bootstrap replicates. 531 

 532 

Figure 4. Detail of the α-CoV clade. Molossidae CoVs generated in the study are indicated in 533 

bold. This sub-tree is a zoom on Molossidae CoV clade from the tree depicted in Figure 3. Boot-534 

strap values >0.7 are indicated on the tree. Scale bar indicates mean number of nucleotide sub-535 

stitutions per site. 536 

  537 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2020. ; https://doi.org/10.1101/742866doi: bioRxiv preprint 

https://doi.org/10.1101/742866
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Figure 5. Detail of the α-CoV clade. NL63-like CoVs generated in the study are indicated in 538 

bold. This sub-tree is a zoom on NL63 CoV clade from the tree depicted in Figure 3. Only 539 

bootstrap values >0.7 are indicated on the tree. Scale bar indicates mean number of nucleotide 540 

substitutions per site. 541 

Figure 6. Detail of the α-CoV clade. 229E-like CoVs generated in the study are indicated in 542 

bold. This sub-tree is a zoom on NL63 CoV clade from the tree depicted in Figure 3. Bootstrap 543 

values >0.7 are indicated on the tree. Scale bar indicates mean number of nucleotide substitu-544 

tions per site. 545 

 546 
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Figure 7. Detail of the β-C CoV clade. CoVs generated in the study are indicated in bold. This 547 

sub-tree is a zoom on β-C CoV clade from the tree depicted in Figure 3. Bootstrap values >0.7 548 

are indicated on the tree. Scale bar indicates mean number of nucleotide substitutions per site. 549 

 550 

Figure 8. Detail of the β-D CoV. CoVs generated in the study are indicated in bold. This sub-551 

tree is a zoom on β-D CoV clade from the tree depicted in Figure 3. Bootstrap values >0.7 are 552 

indicated on the tree. Scale bar indicates mean number of nucleotide substitutions per site. 553 
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 554 

 555 

Figure 9. Tanglegram representing host-virus co-evolution between bats of the Western Indian 556 

Ocean and their associated CoVs. Phylogeny of bats (left) was constructed with an alignment 557 

of 11 Cyt b sequences of 1,030 bp by Neighbor-Joining with 1,000 bootstrap iterations. Pruned 558 

phylogeny of Western Indian Ocean bats CoVs (right) was constructed with an alignment of 27 559 

unique sequences of 393 bp from Western Indian Ocean bats CoVs, by Neighbor-Joining with 560 

1,000 bootstrap iterations. 561 
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