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1 Abstract

Sepsis remains a lethal ailment with imprecise treatment and ill-understood biology. A
clinical transcriptomic analysis of sepsis patients was performed for the first time in India
and revealed large-scale change in blood gene expression in patients of severe sepsis and
septic shock admitted to ICU. Three biological processes were quantified using scores
derived from the corresponding transcriptional modules. Comparison of the module scores
revealed that genes associated with immune response were more suppressed compared
to the inflammation-associated genes. These findings will have great implication in the
treatment and prognosis of severe sepsis/septic shock if it can be translated into a bedside
tool.

2 Introduction

Sepsis is a condition with severe systemic inflammation accompanied by dysregualted
host response to infection. It is one of the leading causes of hospital stay, death and
economic burden in worldwide health-care [1–3]. Sepsis is generally considered a disease
continuum from bacterial infection through systemic inflammation, progressing to severe
sepsis with onset of organ failure, ultimately developing into the most lethal septic
shock [1]. Pneumonia, urinary tract infection and intra-abdominal infection are the
chief causes leading to sepsis [1]. Bacteria form the majority of etiologic microorganisms
but the bacterial classes differ geographically. Gram-negative bacteria in India, such
as, Escherichia coli, Klebsiella species and Pseudomonas aeruginosa [4], dominate in
contrast to the gram-positives in the West. While there are many pathogens causing
sepsis, human host response to the infection is very complex. A large body of literature
has provided insights into the genome-scale biology of sepsis [5–8]. However, the clinical
predictions from these discoveries remain to be tested in Indian patients. We set out to
perform unbiased blood transcriptomics in patient with severe sepsis or septic shock (SS)
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from an Indian ICU. One of the major focus of our study was to find the genes and gene
sets associated with poor outcome. Accordingly analysis was performed at multiple levels
(genes, gene sets and networks) converging on key molecular processes (transcriptional
modules) associated with outcome.

3 Results

Figure 1. Analysis flow with results: The left arm describes the steps for
case-control analysis and the right arm describes the analysis for association with
survival.

The analysis plan for our study contained two arms (Figure 1)–firstly detection of
transcriptomic changes associated with sepsis and secondly to identify pathways associated
with survival.

3.1 Genome-level changes in gene expression

Differential gene expression analysis revealed 4221 genes (24% of the total number of
17513 genes assayed) to be significantly altered in sepsis patients compared to age- and
gender-matched healthy controls (Figure 2). This established large scale change in gene
expression in sepsis, impacting multiple pathways.
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Figure 2. Volcano plot showing genome-wide change in gene expression in
Sepsis: The Y-axis is in the negative logarithmic scale, showing more significant genes
(smaller p-values) at the top. Significant genes (FDR p < 0.05) are shown above the
dashed line. Green and red dots represent down- and up-regulated genes respectively.
Approximately 24% of the genome (4221 out of 17513 genes) was observed to be
differentially expressed.

3.2 Temporal change in gene expression

Temporal analysis of differentially expressed (DE) genes (FDR p < 0.05, 2 fold or
greater change) revealed a non-random trend toward the baseline with time (Figure 3).
Additionally, we observed a difference between survivors and non-survivors (Figure S4)
suggesting delayed recovery of the transcriptome in non-survivors compared to survivors.
This is consistent with the trends observed in critically ill subjects [9].

3.3 Pathways associated with disease

To extract higher-order signal, we conducted analysis at the level of “gene sets” (pathways).
Three complementary approaches were pursued: (over-representation) analysis based on
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Figure 3. Temporal change of DE genes: Temporal change of DE genes (FDR p
< 0.05, 2 fold-change or more), there is a non-random trend toward the baseline with
time (p-values from paired t-tests are provided). This is consistent with earlier findings
from patients with trauma [9].

hypergeometric test (ORA), permutation-based gene set enrichment analysis (GSEA) and
topology based perturbation analysis. The intersection from the three analyses consisted
of the pathways Osteoclast Differentiation, Antigen Processing and Presentation (AgPP)
and T-cell Receptor (TCR) signalling (Table 1, Figure 4).

KEGG ID KEGG pathway name Direction of change in SS compared to Control p value

hsa04612
Antigen processing
and presentation
(AgPP)

Down-regulated 3.51e-05

hsa04660
T-cell receptor
signaling (TCR)

Down-regulated 5.82e-07

hsa04380
Osteoclast
differentiation

Up-regulated 2.91e-06

Table 1. Key pathways observed to be perturbed in SS compared to control.
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Figure 4. Pathways perturbed in disease: Each box represents median expression
of genes in the given pathway. Data are plotted for three time points. “Control”
(Healthy individuals), 1st day of sepsis (SS-Day1), 2nd day of sepsis (SS-Day2). The
dotted line connects the median values of the three boxes and represents the trajectory
of the pathway gene expression during sepsis.

3.4 Pathways associated with poor outcome in sepsis

Testing for differential expression in non-survivors compared to survivors revealed 1333
genes (7.6% of the genome) to be associated with survival (p < 0.05). Compared to
the extent of transcriptional alteration in disease process, difference between survivors
and non-survivors of sepsis was small, in terms of both the number of genes significantly
affected (7.6% with survival compared to the 24% with sepsis) and magnitude of fold-
change. Combined over-representation and perturbation analysis [16] revealed three
pathways (Table 2) associated with survival. Each pathway was interrogated further as
described below.

KEGG ID
KEGG pathway

name
Direction

of change in Non-survivors
p value

hsa04064
NF-kB
signalling

Down-regulated 3.5e-03

hsa04612
Antigen processing
and presentation
(AgPP)

Down-regulated 3.6e-09

hsa04660
T-cell receptor
signalling (TCR)

Down-regulated 9.33-05

Table 2. Key pathways observed to be down-regulated in non-survivors in SCB
cohort compared to survivors.
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3.5 NF-κB signalling pathway

NF-κB signalling pathway is known to be associated with cell survival, immunity and
inflammation. This pathway was observed to be significantly down-regulated in non-
survivors compared to survivors (p = 0.0012) in SCB cohort as well as in other cohorts
(Figure 5, Figure S5). Next, we considered the role of NF-κB, a transcription factor
in regulation of several genes of this pathway. We observed that the target genes of
NF-κB (involved in antigen presentation, T-cell activity and macrophage activation) were
significantly (p = 0.004) down-regulated (Figure 8) in non-survivors. The differential
impact of NF-κB on host immunity was tested through relative difference in expression
of genes associated with different macrophage types i.e. M1-specific pro-inflammatory
genes and M2-specific hypo-inflammatory genes. Downregulation of M2-specific gene
expression (p = 0.07) was observed in non-survivors of SCB cohort while M1-specific
gene expression was observed to be up-regulated in survivors.
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Figure 5. Evidence of perturbation of NF-κB signalling pathway: NF-κB
signalling pathway is associated with survival. (A) NF-κB signalling pathway,
Osteoclast differentiation and NOD-like receptor signalling pathway. Each point in this
plot represents a single KEGG pathway. The horizontal axis records
over-representation (negative log p-value) evidence and the vertical axis records the
perturbation (negative log p-value) evidence. The three pathways mentioned here are
all significant when both the evidences are combined (i.e., Fisher’s product of the
p-values). This plot is obtained from analysing data from multiple cohorts published
earlier. (B) NF-κB pathway was also observed to be significantly perturbed in the
SCB cohort by permutation based GSEA method with significant difference between
survivors and non-survivors (p = 0.04).
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3.6 Antigen processing and presentation (AgPP)

This pathway was observed to be down-regulated in non-survivors compared to survivors
(Figure S6). MHC class II genes (Table S3) of this pathway were found to be down-
regulated in non-survivors compared to survivors, suggesting a role in impaired adaptive
immunity functions (potentially mediated by T helper cells) in non-survival.

3.7 T-cell receptor signalling (TCR)

The T-cell receptor (TCR) signalling pathway was observed to be down-regulated in
survivors compared to control, and it was further down-regulated in non-survivors (Table
1; Figure S7). Down-regulation of this pathway (along with antigen presentation) in
non-survivors is consistent with the association of diminished adaptive immune response
with poor outcome.
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3.8 Transcriptional modules underlying survival

Following the principle of monotonic change across disease severity, KEGG pathways [10]
were reconstructed into three transcriptional modules associated with SS. Each of the
three modules was observed to be significantly (p < 0.05) associated with outcome (Figure
6) and immunosuppression was observed to be the module with the highest magnitude of
change (Figure S8). A detailed description of modules is provided in Supplementary Text
2.

Immunosuppression

Simulated Pathway Score

F
re

q
u
e
n
c
y

-5 0 5

0
5
0
0

1
0
0
0

1
5
0
0

p
.v

a
l 
=

 0
.0

3

Coagulation

Simulated Pathway Score

F
re

q
u
e
n
c
y

-4 -2 0 2 4 6

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

p
.v

a
l 
=

 0
.0

1

Inflammation

Simulated Pathway Score

F
re

q
u
e
n
c
y

-4 -2 0 2 4

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

p
.v

a
l 
=

 0
.0

4

Figure 6. Significance of 3 biological modules: Histogram of simulated scores
(GSEA permutation, 10000 times) and observed score (in red straight line) for three
key biological modules. The histogram represents the null distribution of the gene set
perturbation score. The deviation of the observed score for this gene set from the
histogram suggests association between the gene sets and the disease outcome
(non-survival). Significance of the module perturbation is denoted by the p-value.

3.8.1 Immunosuppression:

This module, is derived from the KEGG pathways: Antigen processing and presentation;
T-cell receptor signalling and NK cell mediated cytotoxicity. Each of these pathways was
observed to be significantly down-regulated in survivors compared to control, and further
down in non-survivors (monotonic decrease). Antigen processing and presentation and T
cell receptor mediated pathway genes were observed to be significantly down-regulated
(GSEA p value 0.02 and 0.09 respectively) in non-survivors compared to survivors (Figure
S6, S7). Both MHC class I and MHC class II genes were observed to be down-regulated
(Table S3).
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3.8.2 Coagulation:

A well known key pathophysiological characteristics of sepsis is coagulopathy. A pro-
coagulant state is observed in septic patients due to the interaction of pro-inflammatory
cytokines and tissue factor [11]. We observed Factor III, V, VII, XI to be up-regulated
monotonically from healthy to survivors and further up-regulated in non-survivors,
suggesting a more severe coagulopathy for those patients that did not survive.

3.8.3 Inflammation:

We observed several genes associated with inflammation to be monotonically up-regulated
from control through survivors to non-survivors. Up-regulation of many chemokines
(TGF-β, IL-13, IL-4, IL-6, and IL-21) and key signalling molecules (PI3K/AKT, PKC,
WASP, ROCK) are associated with regulation of actin cytoskeleton (GSEA, p value =
0.04) (which helps in trans-endothelial migration of leukocytes).

4 Discussion

Unbiased and stringent testing revealed about one-fourth of the genome to be transcrip-
tionally altered in day 1 of SS compared to control (Figure 2). This profound change
is induced by the disease state, and is comparable with the scale of change generally
observed in critical illness or sepsis (Table S1). With passage of time in the ICU, the
transcriptome slowly returns to the baseline, with a small but significant difference
between day 1 and day 2 of SS (Figure 3). Of note, there is a deviation in the trajectories
of non-survivors compared to survivors, with the magnitude of differential expression
being greater in non-survivors at both the time points. In general, delayed genomic
trajectory in non-survivors suggests an increased disease severity that resists restoration
of baseline expression. This trend is part of the generic host response seen in critically ill
humans [9]. We have leveraged this observation in the quest for transcriptional modules
with stable association with outcome.

Functionally, there is evidence of up-regulation of osteoclast differentiation and down-
regulation of antigen processing and presentation, T-cell receptor signaling (Table 2).
While immuno-suppression continues to be a recurring theme in sepsis biology, osteoclast
differentiation has only recently been reported in our previous work in the context of
septic shock with some evidence of its association with survival [12].

Immunosuppression in our patients is a result of down-regulation of NF-κB signalling
in non-survivors as established by stringent testing (Figure 5). Monotonic decrease in
non-survivors, i.e., positive correlation between disease severity and differential expression,
suggests that this dysregulation is a stable consequence of SS. Targets of NF-κB include
molecules of the immune system, for example, those associated with T-cell receptor
signaling, antigen presentation and alternative macrophage activation. These are signifi-
cantly down-regulated in non-survivors (Figure 8-9; Table 2). Similarly, NF-κB-mediated
down-regulation of M2-type genes (Figure 9) was consistent with an immunosuppressed
state in the non-survivors. In spite of the tremendous interest in the role of NF-κB in
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inflammation in general and sepsis in particular [13, 14], NF-κB has resisted being a
successful target of sepsis therapy [15–18]. Further investigation is required to improve
our understanding of the precise role of NF-κB in determining the outcome of SS.

Monotonic change across disease severity spectrum (healthy control, survivors, non-
survivors) has the potential to better define molecular underpinning of SS outcome. This
is true not only at the individual gene level but also at the level of functionally connected
gene sets, i.e., transcriptional modules (Figure 7). The modules correspond to the three
major dysregulated pathophysiologic processes considered part of the hallmark of sepsis:
immunosuppression, coagulopathy and inflammation. These transcriptional modules
capture progressive dysfunctional processes in SS, culminating in poor outcome (Figure
6). Although each of the three modules is significantly different between survivors and
non-survivors, the magnitude of immunosuppression is greater than that of coagulation,
with least perturbation for the inflammation module (Figure S8).

Our finding raises questions for management of patients in this region. If validated
on a larger set of patients, it appears that immune-enhancement e.g., immune adjuvant
therapy [19]) shall be a better strategy than inhibition of inflammation.

One caveat is that this study included a small cohort of samples (n=40). Therefore,
the results must be considered preliminary in nature. Secondly all our patients were
recruited from a single clinical center. In order to adequately capture the demographic
diversity of the region, a future multi-centric study shall need to include patients from
different geographical locations across the country.

5 Conclusion

Profound transcriptional reprogramming in SS was interrogated by complementary
bioinformatic strategies revealing down-regulation of immune pathways. NF-κB appears
to be at the center of this change. Data-driven integration of KEGG annotation and
sepsis pathophysiology led to identification of three key transcriptional modules associated
with survival – immunosuppression, coagulopathy and inflammation. Quantitatively, the
magnitude of immunosuppression is much more than that of inflammation, with potential
role in patient stratification. The three modules (containing 288 genes) can be tested
(with the help of quick gene expression profiling technologies at bedside) to determine
which category each patient belongs. Specific therapy can then be catered to each patient
based on that categorisation.

6 Materials and methods

6.1 Differential gene expression analysis

Welch t-test [20] was performed to detect genes DE in SS compared to gender and age
matched healthy controls. Correction for multiple testing was performed to reduce False
Discovery Rate (FDR) [21]. Threshold of FDR p-value of < 0.01 and 2-fold or greater
change; was applied to detect DE genes.
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6.2 Pathway analysis methods

6.2.1 Over-Representation Analysis (ORA)

Significantly up-regulated genes were subjected to over-representation analysis by applying
hypergeometric test [22]. Correction for multiple testing was performed to reduce FDR.
A significant association was detected at threshold of FDR p < 0.001.

6.2.2 Gene Set Enrichment Analysis (GSEA)

Permutation test was performed by randomly scrambling the sample labels (case/control)
and computing the enrichment score (t-statistics) of the gene set for this permuted data
set [23]. Multiple rounds of this process generated the null-distribution of the enrichment
score. Pathways with observed enrichment score significantly deviated (FDR p < 0.05)
from the null distribution were considered significant [23].

6.2.3 Perturbation Analysis of Signalling Pathways

Analysis based on pathway topology (derived from [24]) revealed the probability of
perturbation of the pathway. In this process the positions of the differentially expressed
genes are scrambled in the pathway and for each combination a perturbation score
is calculated. Ultimately a total perturbation score is calculated by summing up the
cumulative perturbation score from each iteration of gene swapping. In our analysis
perturbation score was applied along with over-representation score visualise pathways
(Figure 5) . By combining two different evidences (one from the hypergeometric test
model and the other from the probability of perturbation that takes the pathway topology
into account), a two way evidence visualisation was made possible [24].

6.3 Construction of Biological Modules

We reconstructed three modules (immunosuppression, coagulation and inflammation)
from KEGG pathways associated with SS (Figure 7). First, we selected genes (nodes) from
significantly perturbed pathways, that were also monotonically dysregulated from baseline
in survivors and further in non-survivors. We reasoned that the extent of perturbation of
biological process shall increase with severity of disease, and therefore, the genes that are
monotonically changing are key nodes of outcome-associated modules. Then we extended
the network of genes based on the connectivity as described in a well-curated pathway
database (KEGG [10]). Wherever possible, we made the connectivity parsimonious with
minimal number of non-significant genes (included only to preserve the continuity of
signal flow, in keeping with the directed nature of curated KEGG graph). Three modules
were constructed to describe three aspects of sepsis pathophysiology – inflammation,
coagulation and immunosuppression. Each module was then considered an independent
gene set and tested for significance of transcriptional difference between non-survivors
and survivors by permutation-based testing of pathway score.
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Figure 7. Steps of module construction: The sequence of steps leading to the
construction of the three biological modules. (A) Selection of key biological processes
(e. g. Immune pathways, Signalling pathways, Metabolic pathways) from KEGG
database. (B) Testing for significant perturbation of the pathway in non-survivors. (C)
Selection of pathways with genes differentially expressed and monotonic change from
control through survivors to non-survivors. Finding the pathways which are
monotonically changed. (D) Merging the monotonic pathways into a set of essentially
connected nodes. (E) Construction of three key transcriptional modules (one is
displayed here).

6.4 Selection of data sets from GEO

Electronic search was performed in NCBI GEO (Gene Expression Omnibus) on 06th
December 2017, with the search string: “sepsis or septic shock or survivor or non-survivor”.
Application of human filter (species-human) resulted in 9 transcriptome data sets (Figure
S9; Table S4). One study (GSE78929) was rejected as it contained data from a tissue
(muscle tissue) and not blood. Blood was chosen as it captures the systemic cellular
response in systemic inflammatory disease such as sepsis [25]. Hierarchical clustering of the
gene expression data led to clear age-specific segregation of sepsis transcriptome (Figure
S10). The data from our SCB cohort consisted only of adult sepsis cases. Accordingly,
all subsequent analysis for validation was performed on adult data sets only.

6.5 SCB (Srirama Chandra Bhanja Medical College) cohort

Transcriptomic profiling was performed on sepsis cases and on matched (by age and gender)
healthy controls, who were not suffering from any inflammatory diseases, and were not
related to the patients. Samples were collected at two different time points in the cases. A
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comparison between survivors and non-survivors was planned to identify genomic changes
that are specifically associated with survival. Patients suspected of sepsis were recruited
into the study with defined inclusion and exclusion criteria mentioned in Table S2. Two
blood samples from the sepsis cases were collected, the first at the time of diagnosis
(D1), and a second sample after 24 hours (D2) . Representative single blood sample was
collected from each of the healthy control individuals. Blood samples were collected from
the patients of SS and healthy subjects after obtaining approval from the Institutional
Ethical Committees of the National Institute of Biomedical Genomics, Kalyani and
SCB Medical College, Cuttack. All the methods were carried out in accordance with
the approved guidelines. Informed written consent was obtained from all subjects who
participated in the study. A total of 27 patients (23 with paired transcriptome data for
two time points) and 12 healthy control subjects (for the single time point) were recruited
in this study. For each of the cases and matched control samples quality of RNA (isolated
from whole blood) was assessed by the following criteria: ratio of absorbance of light
at two wavelengths (A260/A280) should be between 1.8 - 2 and RNA Integrity Number
(RIN) of 6 or higher. Another criterion for selection of subjects was based on temporal
analysis, which requires that the two temporal samples from each subject should pass
the quality assessment mentioned above.

6.5.1 Sample processing and quality assessment

Venous blood was collected from patients in PAXgene Blood collection tubes from BD,
Franklin Lakes, New Jersey, USA (cat. no. 762165), containing stabilising reagent that
keeps the blood cells fixed and preserves cellular RNA before further use. PAXgene
Blood RNA isolation Kit from Qiagen, Hilden, Germany (cat. no. 762164) was used
to isolate the RNA from the whole blood according to manufacturer’s instructions.
Spectroscopy was done in Nanodrop-2000 (ND-2000, from Thermo Fisher Scientific,
Waltham, Massachusetts, USA) for checking RNA quality and concentration. Agilent
Bioanalyzer RNA nano kit (Agilent RNA 6000 Nano) was used for checking RNA quality.
Illumina TotalPrep RNA Amplification Kit was used to convert the total RNA to
biotinylated cRNA for hybridisation to microarray chip. Transcriptome profiling was
done on the following microarray platforms: Affymetrix (GeneChipTM Human Gene 2.0
ST Array, cat. no. 902113) and Illumina Microarray Chips (HumanHT-12 v4 Expression
BeadChip Kit, cat. no. BD-103-0204)

6.5.2 Software:

All analysis were done in R [26], a language and environment for statistical computing in
Linux operating system.

6.5.3 Data availability:

A vignette with reproducible code chunks for analysis is provided in the supplementary
data. All data and code are available at (https://figshare.com/) under project
(“ssnibmgsurv”).
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9 Figures and Tables

−2 −1 0 1

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

D
e
n
s
it
y

NF−kB targets

Non−targets

p = 0.003

Figure 8. NF-κB target gene expression density plot: A density plot of targets
of NF-κB between non-survivors and survivors that include antigen processing and
presentation genes and various immune receptor genes. The gray peak in the
background represents all the non-target genes in the genome and the blue peak
represents the NF-κB targets. There is a shift in the target gene expression to the left
(p= 0.005), suggesting NF-κB-induced down-regulation of its targets.
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Figure 9. M2-specific gene expression: Scatterplot of M2 target gene expression
in non-survivors compared to survivors. Each point represents a single gene with mean
expression in the two groups of patients: survivors (x-axis) and non-survivors (y-axis).
For most of the genes there is higher mean expression in survivors, suggesting
significant M2-specific (p = 0.07) under-expression in non-survivors.
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10 Supplementary Text 1

10.1 Immunostimulatory therapy in sepsis

Our result is supportive of Ono et al. [19] who argued in favour of immunostimulation over
targeting inflammation as a possible therapeutic startegy to treat patients suffering from
sepsis. As the immunosuppression involves chiefly the adaptive immune system, there
have been attempts to boost adaptive immunity through IFNγ, granulocyte-macrophage
colony-stimulating factor (GMCSF), or granulocyte colony-stimulating factor GCSF [27] .
However these attempts have failed to demonstrate a clear survival benefit to those who
received these therapies. A meta-analysis [28] reports that GCSF and GMCSF failed
to show survival benefit in sepsis patients. Two Interleukins IL-7 [29] and IL-15 [30]
have been shown to have adaptive immunostimulatory function in sepsis patients. IL7
treatment to sepsis patients restored IFN-gamma secretion and T-cell proliferation [29] in
them. PD-1 is another interesting target molecule for immunostimulatory therapy, as it
causes immunosuppression through IL-10 expression [19]. Anti PD-1 [31] and PDL-1 [32]
therapy in bacterial and fungal murine sepsis showed increased survival. Disruption of
the PD-1/PDL-1 axis seems to be a novel approach for restoring immune function in
sepsis patients [19] .
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11 Supplementary Text 2

Immunosuppression: This module (Figure S1) consists of MHC molecules with co-
stimulators (CD4, CD8), transporters (TAP1/2), and receptors (KIR, TCR) resulting
in NK-cell mediated cytotoxicity and T-cell receptor signaling. TAP1, TAP2 help in
transport of the processed cytosolic pathogenic antigen with the help of MHC class I.
NK cells are the part of innate immunity that detects the pathogen infected cell by MHC
class I and interact through Killer-cell immunoglobulin-like receptors (KIRs) located in
the plasma membrane of NK cells. The NK cells mostly play an instrumental role in
removal of virus infected cells. MHC class II mediated antigen presentation, observed to
be down-regulated in non-survivors leading to impaired TCR signalling with MHC class II
and CD4, CD8 all were significantly down-regulated in non-survivors. This is consistent
with general and perhaps reversible immune paralysis/ suppression in non-survivors.
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Figure S1. Immunosuppression module A schematic representation of the
connected nodes in the immunosuppression module.
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Coagulation: Platelets can detect vascular injury through collagen (up-regulated
in non-survivors and promoting clot formation by platelet activation [33]. This module
(Figure S2) consists of collagen-induced platelet activation and clotting factors both
causing formation of fibrin and a persistent pro-coagulant phenotype. GPVI (up-regulated
in non-survivors) is a key receptor protein that plays an important role in platelet
activation after the collagen is bound to it. Up-regulation (GSEA p = 0.03) of extracellular
matrix (ECM) pathways suggests damage to the ECM. This activates platelets to the
site of injury that contribute to repair of the damaged tissue at that site [33].
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coagulant 
phenotype

Figure S2. Coagulation Module: A schematic representation of the connected
nodes in the coagulation module.

Inflammation: This module (Figure S3) consists of pattern recognition receptors,
chemokines, signaling molecules (PI3K/AKT, MAP Kinases), leading to regulation of
actin cytoskeleton and leukocyte migration. As expected, there is up-regulation of genes
associated with inflammation.

The main input signal of the inflammation emanates from not only the PAMPS
(that recognise microbial antigens), but also the damage-associated molecular patterns
(DAMPs); that indicates tissue damage due to host inflammation. Toll like receptors
recognize pathogen-associated molecular patterns (PAMPs) [34] as well as DAMPs.
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Figure S3. Inflammation Module: A schematic representation of the connected
nodes of the inflammation module.

12 Supplementary Figures and Tables: Immunosup-

pression, rather than inflammation, is a salient

feature of sepsis in an Indian cohort.
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Temporal progression of 1109 differentially regulated genes
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Figure S4. Trajectory of DE genes: This is a line plot of mean expression of DE
genes in SS patients compared to control. Compared to the survivor group, generally
the non-survivor gene expression is more deviated from controls and continues to
diverge with time.
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Figure S5. NF-κB pathway: Boxplot and scatterplot of NF-κB pathway in SCB
cohort. The pathway is monotonically down-regulated from control through survivors
to non-survivors on Day-1.
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Figure S6. Antigen Processing and Presentation Pathway: Boxplot and
scatterplot of Antigen Processing and Presentation Pathway pathway in SCB cohort.
The pathway is monotonically down-regulated from control through survivors to
non-survivors on Day-1.
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Figure S7. TCR signaling Pathway: Boxplot and scatterplot of TCR signaling
pathway in SCB cohort. The pathway is monotonically down-regulated from control
through survivors to non-survivors on Day-1.
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Figure S8. Mean module score in SCB cohort: Barplot shows the magnitude of
gene expression of 3 key modules in each sepsis patients. For each module a gene
expression score (z) was calculated to capture the relative expression of the genes of
the module in the sepsis patients compared to the healthy subjects. Quantitatively,
magnitude of change in expression is highest for the immunosuppresion module.
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Figure S9. PRISMA flowchart: For selection and screening of the data sets from
NCBI GEO.
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Figure S10. Hierarchical Clustering: Using expression of the common genes in
the 8 data sets from GEO. The paediatric data (annotated with prefix “Child”) are
clearly segregated from the “Adult” studies.
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Author year Data Source Disease Country
# Probes
assayed

# DE
probes

% change FDR p threshold
Fold change
threshold

Pubmed ID

Parnell 2013 GSE54514 Sepsis Australia 48804 3677 7.53 0.05 NA 23807251
Severino 2014 GSE48080 Sepsis Brazil 19596 151 0.77 0.05 1.7 24667684
Wong 2007 GSE4607 Septic shock USA 54675 2482 4.54 0.05 NA 17374846
Wong 2009 GSE13904 Septic shock USA 54675 1867 3.41 0.001 2 17374846
Wong 2010 NA Septic shock USA 54675 2355 4.31 0.05 1.5 20009785

Calvano 2005 GlueGrant Endotoxin Shock USA 44000 5093 11.58 0.1 NA 16136080
Xiao 2011 GSE11375 Critical Injury USA 47000 5136 10.93 0.001 2 22110166

This
manuscript

NA
Severe sepsis /
septic shock

India 17513 4221 24.10 0.05 NA NA

GSE4607 Septic shock USA 22017 6179 28.1 % 0.05 NA NA
GSE13904 Septic shock USA 22017 7420 33.7 % 0.05 NA NA
GSE26378 Septic shock USA 22017 8143 37 % 0.05 NA NA
GSE26440 Septic shock USA 22017 10014 45.5 % 0.05 NA NA
GSE8121 Septic shock USA 22017 6517 29.6 % 0.05 NA NA
GSE9692 Septic shock USA 22024 12202 55.4 % 0.05 NA NA

Re-analysis *

GSE95233 Septic shock France 22017 11580 52.6 % 0.05 NA NA

Table S1. Genomic change in available SS reports: This table contains genomic
change in available reports in SS and our results of re-analysis of data downloaded
from NCBI GEO. Details are available in Materials and Methods.

Clinical features

Inclusion criteria

Any two of the following clinical parameters is present in patient
– Body temperature >38 oC or <36 oC
– Heart rate >90 beats per minute
– Respiratory rate >20 breaths/min or arterial PaCO2 <32 mmHg
– WBC count >12 x 109 per microlitre or <4 x 109 per microlitre.

Exclusion criteria
Viral or fugal infection
Chronic inflammatory diseases such as asthama, rheumatoid arthritis etc.
Nosocomial (hospital acquired) infections

Table S2. Inclusion and exclusion criteria : Clinical and laboratory features for
recruitment of sepsis patients for the study
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Genes Function
HLA-DPB1 Forms a part of MHC class II beta chain
HLA-DRB1 Forms a part of MHC class II beta chain
HLA-DRB5 Forms a part of MHC class II beta chain

TAP1
Involved in transport of
MHC class II protein

TAP2
Involved in transport of
MHC class II protein

CD74
Involved in the formation and transport of

MHC class II protein

Table S3. Annoatated table for MHCII genes with their function.
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GSE ID PMID Data Nor-
malization

Group Cell type Study Design Country Total(n) Survivor+Non-
survivor
(first
time-point)

Number of
Survivors

Number of
Nonsurvivors

Mean
Age(yr)

Clinical set-
ting

Age
Group

GSE26378 21738952 RMA Septic shock Whole blood Prospective USA 103 82 70 12 <10 years PICU Child
GSE26440 19624809,

21738952
RMA Septic shock Whole blood Prospective USA 130 98 81 17 <10 years PICU Child

GSE4607 17374846,
18460642

RMA Septic shock Whole blood Prospective USA 123 42 33 9 <10 years PICU Child

GSE9692 18460642 RMA Septic shock Whole blood Prospective USA 45 10 24 6 <10 years PICU Child
GSE48080 24667684,

26484123
RMA Septic shock peripheral

mono-nuclear
cells

Prospective Brazil 10 10 5 5 >18 years ICU Adult

GSE54514 23807251 RMA Sepsis Whole blood Prospective Australia 53 35 26 9 >18 years ICU Adult
GSE63042 25538794 Reads Per

Kilobase of
transcript,
per Million
mapped reads
(RPKM)

Septic shock,
Severe sepsis,
Sepsis

Whole blood Prospective USA 106 82 54 28 >18 years ICU Adult

GSE95233 28341250 RMA Septic shock Whole blood Prospective France 73 51 34 17 >18 years ICU Adult

Table S4. Study characteristics of all the datasets selected for survival meta-analysis.
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Vignette: Immunosuppression, rather than

inflammation, is a salient feature of sepsis in an Indian

cohort
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1 General summary

Sepsis is one of the leading diseases associated with high mortality and morbidity, due to the systemic nature
of this illness, transcriptomic technology is particularly suited to investigation of molecular underpinning of
survival from sepsis episodes. We adopted an analysis approach that combined published transcriptome data
and data generated in our laboratory from Indian sepsis patients leading to the discovery of key immune
pathways to be altered in non-survivors compared to survivors. This is the first clinical transcriptomic study
on sepsis from India, showing that non-survival is associated with down-regulated adaptive immune pathways
and significant M2-specific immune-suppression, possibly regulated by NF-κB signalling. Three Biological
processes related to sepsis were observed to be significantly altered in non-survivors. A patient-specific analysis
reveals up-regulation of coagulation and inflammation but a strong down-regulation of immunosuppression
modules in Indian sepsis patients.

∗sm3@nibmg.ac.in
†skm1@nibmg.ac.in
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Figure 1: Analysis flow with results: The left arm describes the steps for case-vs-control analysis whereas the
right arm describes the steps for identification of pathways associated with survival

2 Getting the data

Availability of data and materials Data and R code are available at the following link (https://figshare.com/)
(search for the project ssnibmgsurv). The data are accessed through the two data packages listed below.
The code can be downloaded as a single zip file (ssnibmgsurvdoc.zip). Upon uncomperssing the zip, install
the two data packages as described below and run the subsequent code to generate the appropriate output.

2.1 Installation of the data package ssnibmgsurv

Dowload the file ssnibmgsurv_1.0.tar.gz from https://figshare.com/ (search for ssnibmgsurv). Change
the directory to where you saved the file. Start R. At the R prompt, issue the following command:

install.packages(pkgs="ssnibmgsurv_1.0.tar.gz", repos=NULL)

# Now the data package ssnibmgsurv is installed on your computer.

# Check with the following command:

library("ssnibmgsurv")

2.2 Installation of the data package ssgeosurv

Dowload the file ssgeosurv_1.0.tar.gz from https://figshare.com/ (search for ssgeosurv). Change the
directory to where you saved the file. Start R. At the R prompt, issue the following command:

install.packages(pkgs="ssgeosurv_1.0.tar.gz", repos=NULL)

# Now the data package ssgeosurv is installed on your computer.

# Check with the following command:

library("ssgeosurv")

Now both the data packages are installed in your computer; let’s focus on starting the analysis.

2.3 Running the analysis: Setting working directory

It is assumed that you have access to a folder ssnibmgsurvdoc. Start R and set the working directory to
ssnibmgsurvdoc. Run the code chunks as follow.
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3 Case control analysis: Identifying genes and pathways DE in
sepsis

# Clearing the workspace and close any graphics window if open

rm(list=ls())

graphics.off()

# Loading the preliminary libraries including data packages

source("Rcode/prelim.R")

source("Rcode/getData.R")

# Using age- and gender-matched controls

matched.12 <- c("C11","C8","C1","C7","C17","C10","C21","C18","C20","C4","C9",

"C12","42D1","1D1","8D1","50D1","60D1", "90D1","62D1","70D1",

"19D1","32D1","14D1","61D1")

esetm <- eset[, matched.12]

rttm <- rowttests(esetm, "Group")

lfcdm<-rttm$dm

pdm <- p.adjust(rttm$p.value, method="BH")

names(pdm) <- rownames(rttm)

names(lfcdm) <- rownames(rttm)

egs.all <- featureNames(esetm)

# Removing some variables that are not to be used for further analysis

rm(snames, ptids)

# Draw a volcano plot to show that 24% of the genome

# are perturbed in sepsis (FDR p < 0.05)

# sepsis and matched control samples are used here

source("Rcode/makeplot_1_volcano_for_genomic_storm.R")
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Figure 2: Volcano plot showing 24 percent of the genome perturbed in sepsis compared to healthy control
(FDR p < 0.05). This establishes large scale change in gene expression in sepsis, and possible multiple
pathways being perturbed.

3.1 Genome-level changes in gene expression

Differential gene expression analysis revealed 1109 genes to be altered in sepsis patients compared to age-
and gender-matched healthy controls. Volcano plot (Figure 2) showed 24% of the genome perturbed in sepsis
compared to healthy control (FDR p < 0.05). This establishes large scale change in gene expression in sepsis,
and possible multiple pathways being perturbed.

# Detect the highly significant DE genes of sepsis - FDR p < 0.01; 2-fold

# Draw box-plot to show temporal changes in control vs cases

upg <- egs.all[which(pdm<0.01 & lfcdm>1)]

downg <- egs.all[which(pdm<0.01 & lfcdm<(-1))]

deg.d1<-union(upg,downg)

# Line plot showing slow return or non-survivors to baseline gene expression

source("Rcode/makeplot_2_temporal_plot_for_DEgns.R")

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/742924doi: bioRxiv preprint 

https://doi.org/10.1101/742924
http://creativecommons.org/licenses/by-nc-nd/4.0/


L
o
g
−

fo
ld

 c
h
a
n
g
e
 

 (
n
o
rm

a
liz

e
d
 t
o
 c

o
n
tr

o
l 
va

lu
e
)

SS−Day1 SS−Day2

−
3

−
2

−
1

0
1

2
3

CONTROL

517 genes up−regulated 

in sepsis

592 genes down−regulated 

in sepsis

p = 4.28e−64

p = 7.38e−89

Figure 3: Temporal change of DE genes (FDR p < 0.05, 2 fold-change or more), there is a non-random trend
toward the baseline with time (p-values from paired t-tests are provided in the legend). This is consistent
with earlier findings from patients with trauma.
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Figure 4: Temporal change of DE genes (FDR p < 0.05, 2 fold-change or more), there is a non-random trend
toward the baseline with time (p-values from paired t-tests are provided in the legend). The delayed return
to baseline is associated with non-recovery from sepsis.

# draw trajectory of DE genes survivor versus non-survivor

source("Rcode/drawDEtrajectorySurvival.R")
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3.2 Pathway analysis results

# Pathway Analysis: ORA, GSEA, SPIA

# ORA - Over representation analysis

pORAup <- getORApvals(upg, egs.all)[,"p"]

pORAup <- p.adjust(pORAup, method="BH")

pORAdown <- getORApvals(downg, egs.all)[,"p"]

pORAdown <- p.adjust(pORAdown, method="BH")

NIBMG.ORA.disease <- cbind(pORAup, pORAdown)

colnames(NIBMG.ORA.disease) <- paste(colnames(NIBMG.ORA.disease),

"NIBMG.disease", sep="_")

# GSEA - Gene Set Enrichment Analysis

# SPIA - Signaling Pathway Impact Analysis

# Warning running this code will take long time (approx 10 minutes each)

source("Rcode/run_GSEA_sepsis_vs_control.R") # GSEA

##

## Loading GSEA permutation t.test result from file ...

## done!

source("Rcode/run_SPIA_sepsis_vs_control.R") # SPIA

## Loading SPIA

## result from file ... done!

# Combine result from 3 pathway analyses and print the Down and Up pathways#

pathsDown = intersect(intersect(names(which(pGSEAdown < 0.01)),

names(which(pORAdown < 0.01))), names(which(pG< 0.01)))

pathways.list[ paste0("path:", pathsDown)]

## path:hsa03013

## "RNA transport - Homo sapiens (human)"

## path:hsa04612

## "Antigen processing and presentation - Homo sapiens (human)"

## path:hsa04660

## "T cell receptor signaling pathway - Homo sapiens (human)"

## path:hsa05332

## "Graft-versus-host disease - Homo sapiens (human)"

# Removing some variables that are not to be used for further analysis

rm(pathsDown)

pathsUp = intersect(intersect(names(which(pGSEAup < 0.01)),

names(which(pORAup < 0.01))), names(which(pG< 0.01)))

pathways.list[ paste0("path:", pathsUp)]

## path:hsa04380

## "Osteoclast differentiation - Homo sapiens (human)"

## path:hsa05133

## "Pertussis - Homo sapiens (human)"

## path:hsa05150

## "Staphylococcus aureus infection - Homo sapiens (human)"

## path:hsa05202

## "Transcriptional misregulation in cancer - Homo sapiens (human)"
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## path:hsa05322

## "Systemic lupus erythematosus - Homo sapiens (human)"

# Removing some variables that are not to be used for further analysis

rm(pathsUp)
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Figure 5: Temporal boxplot of 3 key pathwayes altered in Sepsis by combined pathway analysis.

par(mfrow=c(1,3))

# Box plot of two pathways down-regulated in sepsis

box.plot.KEGG(id="hsa04612", direction="down") # Antigen processing and presentation

box.plot.KEGG(id="hsa04660", direction="down") # T cell receptor signaling

# Box plot up-regulated pathway: Osteoclast Differentiation

box.plot.KEGG(id="hsa04380", direction="up")
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4 Survival analysis

4.1 Survival analysis using published transcriptome data (from NCBI GEO)

# Section B: Survival analysis

# Getting genes and pathways associated with survival

# uses NIBMG and published data sets

###################################################

rm(list=ls())

graphics.off()

##########################################################

# Preliminries

source("Rcode/prelim.R")
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Figure 6: Survival analysis with eight published data sets: human adults and children with sepsis; hierarchical
clustering with log-fold change in gene expression led to evidence of developmental age-specific differential
perturbation; i.e., separate clusters for adult and child data sets. In view of this difference, further analysis
was confined to to Adult data sets when combined with NIBMG data.

#############################

# Get the expression set

source("Rcode/getData.R")

library(ssgeosurv)

data(ss.list) # eight data sets = 4 adult + 4 child

data(ss.surv.list) # 8 datasets with survivors and non-survivors

studies = read.table(file="metadata/studies.txt", header=TRUE, sep="\t")

study.ids = as.character(studies$study.id)

study.type = as.character(studies$age)

names(study.type) = study.ids

##########################################

# Day 1 non-survivor vs survivor with FDR p cutoff 0.01

rtt1 <-rowttests(eset.s, factor(eset.s$Outcome))

sel1 <- rownames(rtt1)[which(rtt1$p.value < 0.01)]

sel1.nibmg.lfc <- rtt1[sel1,]

# Hierarchical clustering of log-fold change of 8 studies

source("Rcode/run_hclust.R")

box()
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# Pathway analysis in GEO data

# ORA: over-representation Analysis

source("Rcode/run_ORA_surv_nonsurv_analysis.R")

# Perform permutation-based GSEA analysis

source("Rcode/run_GSEA_surv_nonsurv_analysis.R")

## Loading gsea_child data from file ... done!

## File exists ...

## Done!...

## Loading gsea_adult data from file ... done!

## File exists ...

## Done!...

#############################

# Two-way evidence plot adult

source("Rcode/run_SPIA_surv_nonsurv_analysis_adult.R")
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res <- spia.res[[1]]

resall.adult <- data.frame(rep(names(ss.adult)[1], nrow(res)),

res$Name, res$ID, res$NDE,

res$pNDE, res$tA, res$pPERT,

res$pG, res$pGFdr, res$Status)

col.nm <- as.character(sapply(strsplit(colnames(resall.adult), "res."), "[[", 2))

col.nm[1] <- "Study"

colnames(resall.adult)<- col.nm

for(i in 2:length(ss.adult)) {

res <- spia.res[[i]]

resedited <- data.frame(rep(names(ss.adult)[i],

nrow(res)), res$Name, res$ID, res$NDE, res$pNDE,

res$tA, res$pPERT, res$pG, res$pGFdr, res$Status)

colnames(resedited)<- col.nm

resall.adult <- rbind(resall.adult, resedited, deparse.level=0)

}

########################################################

# Calculate Fisher's product of p-values of pertabation for all pathways

keggs <- as.character(unique(resall.adult$ID))

# Create empty vector for capturing fisher product of pG

pPERT.Fp.adult <- vector(mode="numeric", length=length(keggs))

names(pPERT.Fp.adult) <- keggs

for(id in keggs) {

pvec <- resall.adult[resall.adult$ID==id, "pPERT"]

pPERT.Fp.adult[id] <- Fisher.test(pvec)["p.value"]

}

rm(pvec)

# Combine by Fisher product the two p values

# for perturbation (pb) and hypergeometric test (ph)

pb <- pPERT.Fp.adult

pb <- p.adjust(pb, "fdr")

ph <- as.numeric(pNDE.paths.ad[paste("hsa",names(pb),sep=""),"p"])

names(ph) <- names(pb)

# Use a floor value for p

ph[ph < 1e-07] <- 1e-07

pb[pb < 1e-07] <- 1e-07

pGmeta.adult <- combfunc(pb,ph, "fisher")

# Capture the fisher product of pPERT pG Meta p values into a dataframe

fisher.prod.spia.adult <- as.data.frame(cbind(paste("hsa",

names(pPERT.Fp.adult), sep=""),

as.numeric(ph), as.numeric(pPERT.Fp.adult),
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as.numeric(pGmeta.adult)))

colnames(fisher.prod.spia.adult) <- c("paths", "pNDE.adult",

"pPERT.adult", "pG.meta.adult")

#####################

# Following code is derived from SPIA::plotP

# The pG threshold is the p-value 0.05 corrected for the number of

# pathways being considered

tr= 0.05

#tr<- 0.05/length(pb)

# plot neg.log.p_PERT against neg.log.p_NDE

plot(-log(ph), -log(pb), col="gray80",

xlim = c(0, max(c(-log(ph), -log(pb)) +1, na.rm = TRUE)),

ylim = c(0, max(c(-log(ph), -log(pb) +1), na.rm = TRUE)),

pch = 19, main = "Two-way evidence plot : Adult Sepsis", cex = 1.5,

xlab = "Evidence of Over-representation, -log(p_ORA)",

ylab = "Evidence of Perturbation, -log(p_PERT)")

# For selected pathways for visualisation: NLR, NFkB, Osteoclast

##################################

sel.paths.ad <- c("04621", "04064", "04380")

col.vec <- c("red2", "purple2", "darkblue")

points(-log(ph)[sel.paths.ad ], -log(pb)[sel.paths.ad ], pch = 19, col = col.vec,

cex = 1.5)

abline(v = -log(tr), lwd = 1, col = "red", lty = 2)

abline(h = -log(tr), lwd = 1, col = "red", lty = 2)

path.nms <- as.character(sapply(strsplit(

pathways.list[paste("path:hsa", sel.paths.ad, sep="")],

" -"), "[[", 1))

# Add a legend to the plot

legend("topright", title="Pathway Names",

legend= paste(sel.paths.ad , path.nms, sep=" "),

text.font=2, text.col = col.vec, horiz=F,

cex=0.8, pch=20, col= col.vec)
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Figure 7: KEGG pathways associated with survival in GEO data; NF-kappaB signalling pathway, Osteoclast
differentiation and NOD-like receptor signalling pathway.
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Figure 8: NF-kappa B signalling pathway boxplot and scatterplot

4.2 Down-regulation of NF-κ B signalling pathway genes in non-survivors

rm(list=ls())

##########################################################

# Preliminries

source("Rcode/prelim.R")

# Get the expression set

source("Rcode/getData.R")

# show gene expression trend for NF-kB signaling pathway

getPval(keggid="hsa04064", drawPlot=TRUE, getSigGenes=TRUE)

## [1] "TNFRSF13C" "CSNK2A2" "ICAM1"

## [4] "LCK" "BCL2A1" "RELB"

## [7] "BCL2L1" "TRAF5" "BCL10"

## [10] "CD40"

# Draw the permutation histogram of GSEA for NF-kB signaling pathway

drawPermutHist(keggid="hsa04064", eset=eset.s, fac=factor(as.character(eset.s$Outcome)))

## p.val zobs

## 0.0441 -3.8605
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Figure 9: NF-kappa B signalling pathway histogram. Permutation bases Gene set enrichment analysis creats
a histogram of simulated pathway scores (in gray bars). The red line shows the observed pathway score in
nonsurvivors when compared to survivor.

4.3 Relative gene expression of the targets of NF-κB

################################################################################

# drawing a histogram for NFkB targets

################################################################################

source("Rcode/plotDensityNFkbTargets.R")
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Figure 10: Relative gene expression of the targets of NFkB (i.e., Antigen processing and presentation genes
and Immune receptor Genes). The gray peak in the background representsdistribution of all genes in the
genome. There is significant down-regulation of the targets in the non-survivors (blue line).

4.4 M2 macrophage-specific down-regulation of gene expression in non-
survivors

# check the expression of M1 vs M2 markers in data from SCB cohort

# read the file containing gene IDs

##############

sel.gns.dat <- read.table("metadata/M1_M2_markers.txt", sep="\t", header=T)

m1.gns <- sel.gns.dat[,1]

m1.gns <- intersect(m1.gns, featureNames(eset))

m2.gns <- sel.gns.dat[,2]

m2.gns <- intersect(m2.gns, featureNames(eset))

# function for plotting macrophage-specific gene expression

plotMgexp = function(type="M1", normalizeByControl=FALSE) {

if(type=="M1") {

egs = m1.gns

} else {

egs = m2.gns

}

# M1 gene expression

gexp.s = rowMeans(exprs(eset[egs, eset$Outcome=="Surv" & eset$Group=="D1"]))

gexp.ns = rowMeans(exprs(eset[egs, eset$Outcome=="Nonsurv" & eset$Group=="D1"]))

if(normalizeByControl==TRUE) {

gexp.c = rowMeans(exprs(eset[egs, which.ctrl]))

gexp.s = gexp.s-gexp.c

gexp.ns = gexp.ns-gexp.c

}
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plot(x = gexp.s, y=gexp.ns, las=1, cex=0.62, col= "blue", pch=16,

ylab = "Mean expression in non-survivors", xlab = "Mean expression in survivors",

main=paste0(type, "-specific gene expression"))

abline(0,1, lty=2, xlim= c(-3, 10), ylim=c(-3, 10))

gsyms <- as.character(unlist(mget(m1.gns, org.Hs.egSYMBOL)))

#gsyms[intersect(which(gexp.1[,1] < -1), which(gexp.1[,2] < -1) )] <- ""

text(x = gexp.s, y=gexp.ns, labels=gsyms, cex= 0.58, pos=2, offset = 0.75, font=2)

pval <- t.test(gexp.s, gexp.ns, paired = T)$p.value

legend.str <- paste("p = ", formatC(pval, digits=1), sep="")

legend("topleft", legend.str, bty="n", text.font=4)

}
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Figure 11: M1 macrophages (classically activated macrophages) are pro-inflammatory, important in host
defence against the pathogens, phagocytosis, secretion of pro-inflammatory cytokines and microbicidal
molecules. M2 macrophages (alternatively activated macrophages) participate in regulation of resolution of
inflammation and repair of damaged tissues. M2-specific under-expression is observed in non-survivors (p =
0.02).

plotMgexp("M2")
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4.5 Down-regulation of Antigen processing and presentation signalling pathway
genes in non-survivors

###################################################

# Survivor versus non-survivor

###################################################

getPval("hsa04612", drawPlot=TRUE, getSigGenes=TRUE) # AgPP

## [1] "HLA-DPA1" "HLA-DPB1" "HLA-DRB1"

## [4] "HLA-DRB5" "HSPA5" "KIR2DL3"

## [7] "KIR3DL2" "CIITA" "PSME1"

## [10] "TAP1" "TAP2" "CD74"
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Figure 12: Status of AgPP pathway in NIBMG data with Box/Scatterplot

drawPermutHist("hsa04612", eset=eset.s, fac=factor(as.character(eset.s$Outcome)))# AgPP

## p.val zobs

## 0.0154 -7.3492
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Figure 13: Status of AgPP pathway in NIBMG data, permutation based Gene set enrichment histogram.
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4.6 Down-regulation of T cell receptor signalling pathway genes in non-
survivors

###################################################

# Survivor versus non-survivor

###################################################

getPval("hsa04660", drawPlot=TRUE, getSigGenes=TRUE) # TCR

## [1] "RASGRP1" "ITK" "LCK"

## [4] "NFKBIE" "SOS2" "BCL10"

## [7] "CD3D" "CD3E" "CD3G"
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Figure 14: Box plot and scatter plot showing down-regulation of TCR pathway in non-survivors
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drawPermutHist("hsa04660", eset=eset.s, fac=factor(as.character(eset.s$Outcome)))# TCR

## p.val zobs

## 0.114 -2.671
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Figure 15: Down-regulation of TCR pathway in SCB cohort, with histogram from permutation based Gene
set enrichment test.
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net.dat <- read.table("metadata//network_input.csv", sep="\t", header=T)

net.list = with(net.dat, split(x=Egid, f=Process))

par(mfrow=c(3, 1), mar=c(2, 16, 2, 16))

for(i in 1:3) {

drawPermutHist(geneids=net.list[[i]],

titlestr=names(net.list)[i],

fac=eset.s$Outcome,

eset=eset.s, cex= 0.80)

box()

}
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Figure 16: Three Biological processes found to be differentially enriched in Nonsurvivors. Refer to the main
manuscript for more details.
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5 Module scores in SCB cohort

# get scores for the three modules from NIBMG data

fn = "Results/nibmgModuleScores.rda"

if(file.exists(fn)) {

cat("Reading NIBMG module scores from file ...")

load(fn)

cat(" done!\n")

} else {

sids = sampleNames(eset)[-c(which.ctrl)]

ids.con = sampleNames(eset)[which.ctrl]

modScores = sapply(names(net.list), function(id) {

egs = as.character(net.list[[id]])

sapply(sids, function(sid) {

eset.curr = eset[,c(sid, ids.con)]

eset.curr$Group = factor(as.character(eset.curr$Group))

rtt = rowttests(eset.curr,"Group")

rttstats = rtt[egs, "statistic"]

z = sum(rttstats)/sqrt(length(egs))

return(z)

})

})

save(modScores, file=fn)

}

## Reading NIBMG module scores from file ... done!

# format the data

sids = rownames(modScores)

sids.df = do.call(rbind,strsplit(sids, split="D"))

colnames(sids.df) = c("Pt","Day")

rm(sids)

dat = data.frame(sids.df, sids=rownames(modScores), modScores)

dat.split = with(dat, split(sids, Pt))

dat.split = sapply(dat.split, as.character)

par(mar=c(3,5,2,1))

dat = sapply(dat.split, function(x)

as.matrix(dat[unlist(x),

c("coagulation","immunosuppression","inflammation")]))

dat1 = dat

for(i in 1:length(dat)) {dat1[[i]] = rbind(dat[[i]], c(0,0,0))}

o = order(sapply(dat, function(x) min(x)))

dat1 = dat1[o]

plotdat = t(do.call(rbind, dat1))

mycols = c("blue", "darkgreen", "red")

b = barplot(plotdat, width=1, ylim=c(-15, 15), beside = T,

col=mycols, , ylab="Module score",

border=mycols, las=2, cex.names=0.9)

legend("top", c("Coagulation", "Immunosuppression", "Inflammation"), horiz=T,

col=mycols,

border=mycols,

pch=15, pt.cex= 1.7, bty="n", inset=c(-0.05, 0))
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require(ggplot2)

dat <- t(abs(plotdat))

apply(t(abs(dat)), 1, median)

## coagulation immunosuppression

## 2.807 3.983

## inflammation

## 0.768

df <- dat

sem <- function(x){

sd(x)/sqrt(length(x))

}

my_mean <- apply(df, 2, mean)

my_sem <- apply(df, 2, sem)

# new data frame for storing the mean and sem

mean_sem_old <- data.frame(means=my_mean, sems=my_sem, group=colnames(df))

mean_sem <- rbind(mean_sem_old[2,], mean_sem_old[1,], mean_sem_old[3,])

rownames(mean_sem) < c("A", "B", "C")

## [1] FALSE FALSE FALSE

# larger font

theme_set(theme_gray(base_size = 2))

# factorize the variable for legend

mean_sem$group <- factor(mean_sem$group, levels = mean_sem$group)

ggplot(mean_sem, aes(x=group, y=means, fill=group)) + theme(legend.position="right") +

geom_bar(stat='identity', width=0.4) +

geom_errorbar(aes(ymin=means-sems, ymax=means+sems), width=.12) +

scale_fill_brewer(palette="Dark2")+

xlab('') + theme(legend.text=element_text(size=12, face="bold")) +

theme(legend.title = element_blank())+

ylab('Absolute module score (z)') +

theme(plot.title = element_text(color="red", size=18, face="bold"),

axis.title.x = element_text(color="blue", size=12, face="bold"),

axis.title.y= element_text(color="blue", size=12, face="bold"))+

theme(axis.text.x = element_text(size=0.0012)) +

theme(axis.text.y = element_text(size=11, face="bold")) +

geom_hline(yintercept=0, color="black", size= 0.46) +

geom_vline(xintercept=0.61, color="black", size= 0.46)
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Figure 18: Barplot showing the magnitude of 3 key modules in each sepsis patients. Each bar represents
mean of patient-level module score with SEM as the error bar. For all three modules, absolute z-scores have
been used. It is clear that there is much greater immunnosuppression compared to inflammtion.
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6 Session Information

## R version 3.4.4 (2018-03-15)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 18.04.1 LTS

##

## Matrix products: default

## BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3

## LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8

## [2] LC_NUMERIC=C

## [3] LC_TIME=en_IN.UTF-8

## [4] LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_IN.UTF-8

## [6] LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_IN.UTF-8

## [8] LC_NAME=C

## [9] LC_ADDRESS=C

## [10] LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_IN.UTF-8

## [12] LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats4 parallel stats

## [4] graphics grDevices utils

## [7] datasets methods base

##

## other attached packages:

## [1] ssgeosurv_1.0

## [2] ssnibmgsurv_1.0

## [3] ggplot2_3.1.0

## [4] KEGG.db_3.2.3

## [5] pathview_1.18.2

## [6] stringr_1.4.0

## [7] gplots_3.0.1

## [8] pca3d_0.10

## [9] rgl_0.99.16

## [10] KEGGREST_1.18.1

## [11] SPIA_2.30.0

## [12] KEGGgraph_1.38.0

## [13] Category_2.44.0

## [14] Matrix_1.2-15

## [15] GSEABase_1.40.1

## [16] graph_1.56.0

## [17] annotate_1.56.2

## [18] XML_3.98-1.19

## [19] illuminaHumanv2.db_1.26.0

## [20] hgu133plus2.db_3.2.3

## [21] org.Hs.eg.db_3.5.0

## [22] AnnotationDbi_1.40.0

## [23] IRanges_2.12.0

## [24] S4Vectors_0.16.0
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## [25] genefilter_1.60.0

## [26] limma_3.34.9

## [27] GEOquery_2.46.15

## [28] Biobase_2.38.0

## [29] BiocGenerics_0.24.0

##

## loaded via a namespace (and not attached):

## [1] bitops_1.0-6

## [2] bit64_0.9-7

## [3] RColorBrewer_1.1-2

## [4] webshot_0.5.1

## [5] httr_1.4.0

## [6] Rgraphviz_2.22.0

## [7] tools_3.4.4

## [8] R6_2.4.0

## [9] KernSmooth_2.23-15

## [10] lazyeval_0.2.1

## [11] colorspace_1.4-0

## [12] DBI_1.0.0

## [13] manipulateWidget_0.10.0

## [14] withr_2.1.2

## [15] tidyselect_0.2.5

## [16] bit_1.1-14

## [17] compiler_3.4.4

## [18] xml2_1.2.0

## [19] labeling_0.3

## [20] caTools_1.17.1.1

## [21] scales_1.0.0

## [22] readr_1.3.1

## [23] RBGL_1.54.0

## [24] digest_0.6.18

## [25] rmarkdown_1.13

## [26] XVector_0.18.0

## [27] pkgconfig_2.0.2

## [28] htmltools_0.3.6

## [29] htmlwidgets_1.3

## [30] rlang_0.3.1

## [31] RSQLite_2.1.1

## [32] shiny_1.2.0

## [33] bindr_0.1.1

## [34] jsonlite_1.6

## [35] crosstalk_1.0.0

## [36] gtools_3.8.1

## [37] dplyr_0.7.8

## [38] RCurl_1.95-4.12

## [39] magrittr_1.5

## [40] Rcpp_1.0.0

## [41] munsell_0.5.0

## [42] stringi_1.4.3

## [43] yaml_2.2.0

## [44] zlibbioc_1.24.0

## [45] plyr_1.8.4

## [46] grid_3.4.4

## [47] blob_1.1.1
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## [48] gdata_2.18.0

## [49] promises_1.0.1

## [50] crayon_1.3.4

## [51] miniUI_0.1.1.1

## [52] lattice_0.20-38

## [53] Biostrings_2.46.0

## [54] splines_3.4.4

## [55] hms_0.4.2

## [56] knitr_1.23

## [57] pillar_1.3.1

## [58] codetools_0.2-16

## [59] glue_1.3.1

## [60] evaluate_0.14

## [61] png_0.1-7

## [62] httpuv_1.4.5.1

## [63] gtable_0.2.0

## [64] purrr_0.2.5

## [65] tidyr_0.8.2

## [66] assertthat_0.2.0

## [67] xfun_0.8

## [68] mime_0.6

## [69] xtable_1.8-3

## [70] later_0.7.5

## [71] survival_2.43-3

## [72] tibble_2.0.1

## [73] memoise_1.1.0

## [74] ellipse_0.4.1

## [75] bindrcpp_0.2.2
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