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ABSTRACT 

Individuals with a diagnosis of multiple sclerosis (MS) often present with deficits in the 

cognitive as well as the motor domain. The ability to perform tasks that rely on both domains 

may therefore be particularly impaired. Yet, behavioral studies designed to measure costs 

associated with performing two tasks at the same time such as dual-task walking have yielded 

mixed results. Patients may mobilize additional brain resources to sustain good levels of 

performance. To test this hypothesis, we acquired event-related potentials (ERP) in thirteen 

individuals with MS and fifteen healthy control (HC) participants performing a Go/NoGo 

response inhibition task while sitting (i.e., single task) or walking on a treadmill (i.e., dual-task). 

In previous work, we showed that the nogo-N2 elicited by the cognitive task was reduced when 

healthy adults are also asked to walk, and that nogo-N2 reduction was accompanied by sustained 

dual-task performance. We predicted that some MS patients, similar to their healthy peers, may 

mobilize N2-indexed brain resources and thereby reduce costs. Somewhat to our surprise, the 

HC group performed the Go/NoGo task more accurately while walking, thus showing a dual-task 

benefit, whereas, in line with expectation, the MS group showed a trend towards dual-task costs. 

The expected nogo-N2 reduction during dual-task walking was found in the HC group, but was 

not present at the group level in the MS group, suggesting that this group did not modulate the 

nogo-N2 process in response to higher task load. Regression analysis for the pooled sample 

revealed a robust link between nogo-N2 reduction and better dual-task performance. We 

conclude that impaired nogo-N2 adaptation reflects a neurophysiological marker of cognitive-

motor dysfunction in MS.  
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INTRODUCTION 

How do individuals with mobility and cognitive limitations leverage their brain resources 

to most effectively organize their behavior as they ambulate through a complex and ever-

changing environment? This question captures a central issue faced by individuals with 

neurological diseases such as multiple sclerosis (MS). Limitations may be overcome through 

recruitment of additional brain regions, at least during early stages of MS, with neuroimaging 

studies showing that recruitment of new brain regions or more extensive recruitment of typically 

engaged regions was associated with better cognitive performance in MS1-4. How brain resources 

are effectively deployed during ambulation is less clear due to the requirement of most imaging 

approaches to remain stationary during recordings. More recent studies acquiring 

electroencephalographic (EEG) recordings during walking and applying advanced signal 

processing to correct for motion and muscle artefacts have demonstrated the feasibility of 

obtaining clean electro-cortical signals during locomotion5-10. Here, we employed an EEG-based 

dual-task walking design to determine whether some individual with MS efficiently deploy 

cortical resources to maintain a high level of performance during multitasking.         

One common approach to investigate cognitive-motor coupling in the laboratory setting 

is the dual-task walking paradigm 11-13. Participants are asked to walk while simultaneously 

engaging in a cognitive task. Changes in gait, such as decreased walking speed are measured 

relative to a walking-only task. Similarly, changes in cognition such as increased error rates are 

measured relative to a cognitive-only task (e.g. participants sit or stand while performing the 

cognitive task). Relative decrements in performance are called dual-task costs (DTC) and may be 

suggestive of cognitive-motor interference (CMI). Individuals with MS show robust costs in the 

form of reduced walking speed and/or poorer cognitive performance as they engage in a 

secondary task14-17. Yet, it is not clear whether MS patients show CMI beyond the costs seen in 

healthy control participants. A recent meta-analysis of thirteen dual-task walking studies reported 

small overall effect sizes, and that only 7 out of 13 reported greater costs in individuals with MS 

relative to individuals without MS18.  Similarly, studies probing associations between DTC and 

measures of disability, cognition, and disease duration in MS have produced mixed results19. 

Investigating the neural underpinnings of DTC may provide new insights, possibly showing that 

individuals with MS with no or equal cost to their healthy counterparts do so by bringing 
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additional brain resources to bear, much as has been seen in fMRI studies, albeit in the absence 

of ambulation1-3,20. 

The little that is known about the neural underpinnings of dual-task costs during 

ambulation in MS20-23 is based on functional near infrared spectroscopy (fNIRS) recordings of  

hemodynamic activity over frontal cortex during walking. Hernandez and colleagues found 

greater elevation in oxygenation levels over prefrontal regions during Walking While Talking 

compared to Normal Walking in individuals with MS relative to healthy controls20. There was no 

difference in walking DTC between groups. This is consistent with MS patients compensating 

for neural degeneration by increasing neural activation to sustain a high level of performance20. 

In contrast, this same group found smaller increases of PFC activation in MS relative to healthy 

controls22 when having participants talk and walk on a 10-cm wide virtual balance beam, which 

is more demanding and taxes balance. Differences in dual-task complexity may have contributed 

to differences in their results.   

A relatively novel approach known as Mobile Brain/Body Imaging (MoBI) facilitates the 

integration of electroencephalographic (EEG) recordings and gait kinematics with high 

millisecond time resolution while participants engage in dual-task walking behaviors6,24,25. We 

previously applied MoBI to measure dual-task effects on gait and the event-related potentials 

(ERPs) associated with a cognitive task in healthy younger and older adults. Participants 

performed a Go/NoGo task, which requires overcoming a pre-potent response established by 

frequent Go stimuli to inhibit response execution to infrequent NoGo stimuli. The ERP response 

to nogo-trials (requiring response inhibition) compared to go-trials (response execution) is 

associated with increased frontal N2/P3 amplitudes, with N2 and P3 being negative- and 

positive-going potentials peaking about 200ms and 300ms after stimulus presentation, 

respectively26,27. Healthy adults showed ERP and gait modulations accompanied by maintained 

Go/NoGo performance under dual-task load. More specifically, we showed that the nogo-N2 was 

reduced during walking compared to sitting. In addition, younger adults increased their stride 

time, thereby making fewer, longer steps, while performing the response inhibition task. In 

contrast, older adults showed no N2 modulation, no change in stride time, and a decrement in 

their Go/NoGo performance under dual-task load28. We concluded that the nogo-N2 modulation 

reflected flexible cortical resource allocation under increased task load. Here, we tested the 

hypothesis that some individuals with MS, similar to their healthy peers, show nogo-N2 
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modulation linked to better dual-task performance. Establishing neuro-markers of flexible 

resource allocation during ambulation will provide novel insights into the neural network 

underlying real-world multitasking difficulties in MS and inform development of targeted 

interventions aimed at mitigating these issues.  

 

METHODS 

Participants 

 Thirteen individuals with relapsing-remitting MS (10 females) were recruited through 

referrals from a neurologist at Jacobi Medical Center, ads posted on the National MS Society 

webpage as well as through announcements by leaders of MS support groups organized by the 

New York Chapter of the National Multiple Sclerosis Society. Individuals, who expressed 

interest in participating in our study were interviewed over the phone to determine date and type 

of MS diagnosis. Fifteen healthy controls (9 females) were recruited using flyers, ads, and a 

laboratory database. Prior to coming in, all volunteers completed a web-based survey to screen 

for general and mental health. Participants were invited for two visits. The first visit was used to 

conduct neuropsychological testing and the second visit to perform the EEG study. The first visit 

lasted approximately 2 hours. The second visit lasted approximately 3.5 hours with .5 hours for 

capping, 1.5 for data collection, and 1.5 hours for periods of rest to mitigate fatigue. Written 

consent was required from all participants according to a protocol approved by the institutional 

review board at Einstein and compliant with the tenets of the Declaration of Helsinki. 

 

Demographic and neuropsychological assessment  

The following demographic information was obtained from both healthy controls and MS 

participants: age, gender, and level of education. Participants with MS filled out the Patient-

determined Disease Steps (PPDS), which is a self-assessment scale of disease status assessing 

mobility and daily activities limitation29. Cognitive function was evaluated in both groups using 

the Minimal Assessment of Cognitive Function in MS (MACFIMS), a battery of seven 

neurological assessments. These include the Paced Auditory Serial Addition Test version 3 

(PASAT-3), Symbol Digit Modalities Test (SDMT), California Verbal Learning Test, second 
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edition (CVLT-II), Brief Visuospatial Memory Test – Revised (BVMT-R), Delis-Kaplan 

Executive Function System (D-KEFS) Sorting Test, Judgment of Line Orientation Test (JLO) 

and the Controlled Oral Word Association Test (COWAT). These tests assess processing 

speed/working memory, new learning and recent memory, spatial processing and higher-level 

executive function, which are commonly used to probe cognitive domains affected in MS30. Leg 

function/ambulation was also measured using the Timed 25-Foot Walk Test and arm/hand 

function was measured using the 9-Hole Peg Test (9-HPT) to test for mobility differences 

between healthy controls and MS participants. Finally, we computed the Multiple Sclerosis 

Functional Composite (MSFC) score based on the Timed 25-Foot Walk, the 9-HPT, and the 

PASAT-3. The MSFC is a standardize score based on the National Multiple Sclerosis Society’s 

Clinical Outcomes Assessment Task Force database31,32.  In two cases, neuropsychological 

testing was not administered. In total, 14 HCs and 12 MS participants completed the 

neuropsychological testing battery.  

 

Stimuli and task 

Participants performed a speeded visual Go/No-Go paradigm using images from the 

International Affective Picture System (IAPS), a database of photographs with normative ratings 

of emotional status33. Only photographs that are classified as affectively neutral or positive were 

included. Images were presented centrally for 600ms with a random stimulus-onset-asynchrony 

(SOA) ranging from 800 to 1000ms. Stimuli were presented using Presentation software version 

14.4 (Neurobehavioral Systems, Albany, CA, USA) and projected (InFocus XS1 DLP, 1024 x 

768 pxl) onto a black wall. On average, images subtended 28° horizontally by 28° vertically. 

Participants performed the response inhibition task by quickly and accurately clicking a wireless 

computer mouse button in response to the presentation of each image, while withholding button 

presses to the second instance of any picture repeated twice in a row. The probability of Go and 

No-Go trials was 0.85 and 0.15, respectively. Participants completed an average of 12 blocks 

(each approximately 4 minutes) consisting of three experimental conditions presented in a 

pseudorandom order: five blocks performing the response inhibition task while sitting, five 

blocks performing the response inhibition task while walking, and two blocks walking without 

performing the task. All participants took part in a practice block before undertaking the main 

experiment. Walking blocks were performed on a treadmill (LifeFitness TR-9000) positioned 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2019. ; https://doi.org/10.1101/743328doi: bioRxiv preprint 

https://doi.org/10.1101/743328


7 
 

approximately 1.5 meters from the wall onto which the images were projected. Participants were 

instructed not to prioritize any single subtask (gait versus cognitive task) but to perform both 

tasks to the best of their ability. To guard against falls, a custom-designed safety harness was 

worn while walking (see figure 1 in De Sanctis11 for an illustration of the apparatus in use). 

Participants determined their preferred treadmill walking speed at the beginning of the 

experimental session, then sustained this speed throughout the duration of the recordings. 

Average walking speed was 3.53 mph for the healthy control group (range: 2.1 – 4.3) and 3.17 

mph (range: 2.4 – 4.0) for the MS patient group.  

 

Gait cycle recording and analysis 

Foot force sensors recorded temporal parameters of the gait cycle while participants 

walked on the treadmill during either uninterrupted walking or while concurrently engaged in the 

Go/No-Go task. Three sensors (TekscanFlexiForce A201 transducers) were positioned on the 

sole of each foot: at the center of the back of the heel, the big toe ball and midway along the 

outer longitudinal arch. These positions enabled the detection of changes in plantar pressure 

during various stance phases including initial contact, loading response, mid-stance, terminal 

stance and pre-swing. Force signals were sampled at 512 Hz using an Analog Input Box 

(BioSemi) connected and integrated via optical fiber with the Biosemi ActiveTwo EEG system. 

Continuous data were butterworth low-pass filtered at 10Hz, epoched into 10 sec intervals, and 

normalized against the standard deviation. To assess stride time, we measured peak-to-peak 

intervals using the force signal derived from a heel sensor (e.g., time of a complete gait cycle is 

heel contact to next heel contact of that same foot). Automatic peak detection software 

(MATLAB custom scripts) with one standard deviation as threshold was used to determine if 

each peak was significantly larger than the data around it. Peak-to-peak intervals were included 

for further analysis only if the duration to complete a cycle was > 500ms and < 1800ms.  

 

Event related potential recording and analysis 

 Scalp recordings were conducted with a 64-channel EEG system (BioSemi ActiveTwo, 

Amsterdam, The Netherlands), digitized at 512 Hz and bandpass filtered from 0.05 to 100 Hz (24 
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dB/octave). The BioSemi system uses as reference two electrodes, Common Mode Sense and 

Driven Right Leg, which form a feedback loop to drive the average potential of the subject (the 

Common Mode voltage) as close as possible to the ADC reference voltage in the AD-box. Pre-

processing and analysis was performed using custom MATLAB scripts (MathWorks, Natick, 

MA) and EEGLAB34. Continuous raw data were re-referenced to CPz, and filtered from 0.5 to 

40 Hz to remove low frequency drift and high frequency noise. All blocks across conditions (i.e. 

sitting or walking) were appended and noisy channels were automatically removed by detecting 

channels with flat lines (>8 sec.), correlation between neighboring channels < 0.4, and values of 

line noise exceeding signal by eight standard deviations. In addition to the automated rejection, 

data were visually inspected and additional channels were excluded if artefacts were present over 

extended periods of time (~50 sec.). On average, 6 (ranging from 3 to 13) EEG channels were 

removed due to excessive noise. The remaining channels were re-referenced to a common 

average reference and visually inspected for prominent artifacts. Next, individual participant data 

were decomposed using an Independent Component Analysis and components identified as eye 

movement activity were removed6,35. Furthermore, epochs automatically identified as artifactual 

based on spectrum thresholding were excluded. Finally, excluded channels were re-inserted 

using a spherical interpolation. We computed epochs time-locked to stimulus presentation with 

an 800ms post-stimulus period and a 50ms pre-stimulus baseline for Go trials during which the 

participant successfully responded (Hit trials) and No-Go trials during which the participant 

successfully withheld a response (Correct Rejection trials [CRs]). Incorrect trials were excluded 

from the analysis. The average numbers of accepted trials for HC participants were 622 (go) and 

52 (nogo) while sitting and 704 (go) and 71 (nogo) during walking. For MS participants, mean of 

accepted trials were 687 (go) and 57 (nogo) while sitting and 776 (go) and 69 (nogo) during 

walking.       

N2amplitude: The N2 ERP component associated with successful response inhibition in a 

Go/No-Go paradigm has been well characterized in previous studies 27,36-41. We quantified the 

N2 component over central scalp site Cz where we previously found dual-task effects to be of 

maximal strength11,42. We identified the N2 amplitude on a subject-by-subject basis by averaging 

across trials and subsequently applying automated peak detection within a 180ms time window. 

The time windows were centered on the nogo-N2 grand means peak amplitude measured in HC 

at 298ms (during sitting) and 298ms (during walking) and in MS at 314ms (during sitting) and 
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319ms (during walking). To quantify the N2 amplitude on the single trial-level, we used area-

under-the-curve measurements between two time points spanning a 60ms period applying the 

trapezoidal method. Time windows were centered on the N2 peak amplitude derived from single-

subject ERP. Statistical analysis was based on N2 area-under-the-curve obtained on single-trial 

level.  

Statistical analysis  

 Go/NoGo performance: Accuracy in the Go/NoGo task is impacted by task strategy43, 

which may vary between and within a participant (i.e., over the course of the experiment). For 

example, a participant may decide to adopt a liberal response strategy thereby minimizing misses 

on go-trials, while accruing higher numbers of false alarms on nogo-trials. Alternatively, a 

participant may decide to adopt a conservative response strategy thereby minimizing the number 

of false alarms on nogo-trials, while accruing higher numbers of misses on go-trials. The d-prime 

calculation based on signal detection theory, is a way to assess task accuracy and account for a 

participant’s response strategy43. Calculation of d-prime is based on the accuracy during go-trials 

and nogo-trials and reflects the ability to distinguish between target (go) and non-target (no-go) 

stimuli across trials. We performed a two-way repeated measures analysis of variance (ANOVA) 

with between-subject factor Group (MS versus HC) and within-subject factor Task Load (single- 

versus dual-task load) to analyze task accuracy.        

 Gait performance: Two repeated measures ANOVAs for stride time and stride time 

variability with between-subject factor Group (MS versus HC) and within-subject factor Task 

Load (single- versus dual-task load) were performed.  

ERP: Mixed-effects models were implemented to analyze the EEG data, using the lmer 

function in the lme4 package44 in R (Version 3.1.2, 45). The advantages of this approach in 

modeling EEG data have been previously described46,47. Allowing for the modeling of both 

discrete and continuous variables at multiple levels of variation, mixed-effects models are 

particularly useful when analyzing complex data. Importantly, compared to traditional ANOVA 

approaches, mixed-effects models are a) more flexible in dealing with unbalanced and missing 

data; and b) more flexible regarding statistical dependencies arising from repeated 

measures (present in EEG experiments given that repeated measurements are taken across trials 

from the same subjects and that there are spatial correlations between adjacent channels). Area 
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under the curve at Cz was the numeric dependent variable. Group (HC = −0.5, MS = 0.5) was a 

contrast-coded fixed factor, and task load as well as trial type were numeric fixed factors. Trial 

was added as random factor, along with by-subject slope adjustments for task load48. Models 

were fit using the maximum likelihood criterion. P values were estimated using Satterthwaite 

approximations. 

 Association between d-prime and ERP modulation: To investigate the relationship 

between performance in the Go/NoGo task and modulation of the nogo-N2 to increasing task 

load, we computed the differences in d-prime and nogo-N2 between the dual- and single-task 

conditions. Positive values for d-primediff and nogo-N2diff reflect relative better performance and 

stronger nogo-N2 reduction with increasing task load (i.e., from sitting to walking). In the first 

model, we performed a linear regression analysis with d-primediff as the dependent variable and 

nogo-N2diff as the independent variable. A second model included diagnosis and the interaction 

diagnosis-by-N2 modulation as predictors to test whether the association differs between groups. 

  

Demographic and neuropsychological results 

Table 1 displays demographic and clinical information. There were no group differences 

in age, sex, or years of education. Average time passed since receiving MS diagnosis was 7.34 

years (ranging from 1 to 18 years). 

 MS (n=13) HC (n=15) p-values 

DEMOGRAPHIC    

Age in years   34.9   34.6   0.33 

Years of Education  15.4 16.1 0.93 

Gender (f/m) 10/3  9/6    0.33 

Years passed since receiving diagnosis  7.3 --  

Patient Determined Disease Steps (PDDS) 1.58 --  

NEUROPSYCHOLOGICAL TESTS     

Visual Spatial Memory (BVMTR-Total Recall) 24.0 26.9 .264 

Visual Spatial Memory (BVMTR – delayed recall ) 9.0 10.7 .064 

Visual Spatial Skills (JLO)              24.4 26.1 .265 

Verbal fluency (COWAT) 33.8 45.7 .016* 
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Word list total recall (CVLT-II) 53.4 62.7 .005* 

Word list long delayed recall (CVLT-II) 11.5 13.9 .023* 

Symbol Digit Modalities Test (SDMT)  45.0 57.4 .014* 

Fine Motoric (9-Hole Peg Test) .0481 .0395 .005* 

Paced Auditory Serial Addition Test- v.3 (PASAT-3) 26.1 52.7 .000* 

Gait (25-Foot Walk Test) 7.3 4.8 .009* 

Multiple Sclerosis Functional Composite (MSFC) -.54 .49 .000* 

Walking Speed in mph (treadmill) 1.97 2.19 .192 

Table 1: Sample characteristics and neuropsychological test scores for participates in the MS and 

HC groups. Test scores in the MS group revealed robust deficits in processing speed, verbal 

fluency, working memory, as well as fine and gross motor impairments.   

 

There was a significant group difference for the COWAT (t24 = 2.6, p = .016), the CVLT-

II Total Recall (t24 = 2.8, p = .009), the CVLT-II Delayed Recall (t24 = 2.4, p = .023), the SDMT 

(t24 = 2.6, p = .014), and the PASAT-3 (t24 = 5.4, p < .001). Furthermore, group differences 

indicating fine and gross motor impairments in our MS group were documented with the 9-HPT 

(t24 = 3.1, p = .005) and Timed 25 ft. Walk Test (t24 = -2.8, p = .009). Finally, we show group 

differences for the MSFC composite scores (t24 = 5.7, p < .001). These results indicate that 

overall the MS group performed more poorly across these three measures (i.e., processing speed, 

fine motor, and gross motor) in comparison to both the HC group as well as in comparison to the 

National Multiple Sclerosis Society’s Clinical Outcomes Assessment Task Force database 

population31,32. 

 

Behavioral results 

Figure 1 (left panel) illustrates results obtained for the d-prime analysis, assessing 

accuracy in the Go/NoGo task for HC and MS groups performing under single-task (sitting) and 

dual task (walking) load. For d-prime, a two-way repeated-measures ANOVA with factors of 

Group and Task Load revealed a significant main effect of Group (F1, 26 = 4.90, p = .036) due to 

the HC group performing better overall, and a significant Group X Task Load interaction (F1, 26 = 

9.42, p = .005). Follow-up t-tests indicated that the HC group performed significantly better on 

the response inhibition task as load increased from sitting to walking (t14 = 2.23, p = .043), while 
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for the MS group, performance declined with increased motor load but this comparison did not 

reach significance (t12 = 2.15, p = .052).  

 

Figure 1: Analysis of Go/NoGo performance (d-prime, left panel) showed a dual-task benefit for 

HC, while in performance in MS was sustained under dual-task load (st = single task, dt = dual-

task). Stride time and stride time variability are displayed for walking-only blocks (black) and 

walking while performing the cognitive task (red). No group or task load effects were found.    

 

Gait cycle results 

Figure 1 (middle and right panels) illustrates stride time and stride time variability for 

single task (black) and dual task (red) walking for HC and MS patients. Foot force sensor 

recordings from one HC and three MS participants were unusable due to technical difficulties, 

therefore gait cycle results are reported from 10 MS participants and 14 HCs. Overall, both 

groups exhibited faster stride times when performing the task (F1, 22 = 6.85, p = .016). However, 

after including treadmill walking speed as a covariate there were no longer any differences in 

average stride time. For stride time variability, there were no significant effects.         

 

Electrophysiological Results 

Figure 2 shows grand mean waveforms with vertical standard error bars at each data 

point at electrode site Cz for participants in the HC (left column) and MS (right column) groups. 

Grand mean ERP results are reported from 13 HC and 13 MS participants. Electrophysiological 

data from two HCs were excluded due to excessive movement-related noise. The ERP 
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modulation as a function of task load during the N2 time period in HC is most clearly illustrated 

in the bottom row of figure 2, which shows the difference waveforms (CRERP minus HitERP).     

 

Figure 2: Grand mean ERPs at electrode site Cz for the HC and MS groups performing the 

Go/NoGo task under single (i.e., sitting; top row) and dual-task (i.e., walking, middle row) load. 

Difference waves (CRs minus Hits) for sitting and walking conditions are plotted in the bottom 

row. Difference waveforms most clearly illustrate N2 amplitude modulations as a function of 

task load in the HC group.      

 

Figure 3 illustrates distribution of single-subject N2 amplitudes as a function of task-load (left 

column) and trail type (right column). Also, the 2nd and 4th row in figure 3 shows mean 
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differences between conditions and groups (black dots) together with a bootstrap sampling 

distribution and 95% confidence intervals (vertical back lines). 

 

Figure 3: N2 amplitude mean difference for comparisons between groups, task load, and trial 

types are shown in Cumming estimation plots. The raw data is plotted on the upper axes 

(summary measurements are displayed as gapped lines to the right of each plot: means are 

indicated as a gap in the lines, vertical lines represent standard deviation error bars); each mean 

difference is plotted on the lower axes as a bootstrap sampling distribution. Mean differences are 

depicted as dots; 95% confidence intervals are indicated by the ends of the vertical error bars 49. 
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Statistical analysis of the N2 revealed the following effects: there was a significant effect 

of trial type, with correct rejections eliciting a stronger N2 response than hits (ß = -25.04, SE = 

5.26, p < .001). The interaction between task load and trial type was also significant (ß = 24.65, 

SE = 7.00, p < .001): the difference between correct rejections and hits was reduced during dual-

task (i.e., walking) compared to single-task load (i.e., sitting). Though no main effect of group 

was found, the interaction between group and trial type was significant (ß = 23.91, SE = 7.21, p 

< .001): When compared to the healthy controls, who presented a significantly stronger N2 

response for correct rejections than for hits, individuals diagnosed with MS showed less N2 

differentiation between correct rejections and hits. Additionally, a three-way interaction between 

group, task load, and trial type was found to be significant (ß = -27.96, SE = 9.58, p < .01): for 

the HC, the N2 differentiation between correct rejections and hits was reduced during dual-task 

compared to single-task load; for the individuals diagnosed with MS the N2 differentiation 

between correct rejections and hits during single and dual-task load were not statistically 

different. These interactions can be better appreciated in Figure 4. 

 

 

Figure 4: Box plots illustrating N2 amplitude by group and task load. Participants in the HC 

group showed the N2 modulation as a function of task load.   

Figure 5 illustrates the relationship between nogo-N2 modulation and d-prime as a 

function of task load. Values are plotted as difference measures. More positive values on the x/y 
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axes represent stronger N2/higher accuracy during walking compared to sitting. By pooling 

participants across both groups, we find a significant correlation (r=−0.44, p=0.02) between 

stronger nogo-N2 reduction and better Go/NoGo performance during dual-tasking. Yet, after 

including diagnosis and the interaction, diagnosis-by-N2 modulation, in our model where d-

prime is the dependent variable, the interaction term is not significant (p=0.32) and the 

association between N2 modulation and d-prime was not significant for either diagnosis group 

(p-values: 0.11 for HC and 0.86 for MS), likely due to insufficient power. 

 

 

Figure 5: Scatter plot illustrating d-prime and N2 modulation for each participant. Both 

measures are plotted as difference values between single and dual-task load. As predicted, 

stronger N2 reduction was association with better Go/NoGo performance during dual-task 

walking. However, association was not significant after including group and group-by-load 

interaction as predictor in the model.       

 

DISCUSSION 

 We applied a dual-task MoBI approach5,11,28 to record brain activity in conjunction with 

gait and Go/NoGo performance measurements, to gain insights into the cortical correlates of 

dual-task processing in multiple sclerosis. Based on our prior work, we predicted that some 

individuals with MS, similar to their healthy control counterparts, are able to adapt information 

processing to increased dual-task load and thereby reduce costs typically associated with 
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performing two tasks simultaneously 50,51. We have previously shown that adapted processing, 

indexed by load-related N2 modulation, was accompanied by better dual-task performance28. We 

predicted a linear relationship with, stronger N2 modulation being linked to less DTCs. Our goal 

was to move towards developing neuro-markers of flexible resource allocation during 

ambulation, which may help design more targeted intervention to mitigate real-world 

multitasking difficulties in MS.  

The Go/NoGo accuracy results are in line with the robust literature on cognitive 

impairments52-54 and also reaffirm the ambiguity of DTC reports in MS17. That is, individuals 

with MS performed worse in the Go/NoGo task, but deficits were not worsened under dual-task 

load. With regard to our ERP findings, we found group differences with MS patients showing 

less N2 differentiation between CR and hit trials than HC.  Our findings are consistent with the 

existing literature demonstrating associations between aberrant ERP brain activity and cognitive 

impairments in MS 55-57. The finding of group differences in N2 adaptation to increasing task-

load is strikingly similar to our prior MoBI work comparing younger and older adults28. The 

three-way interaction between group, trial type, and task-load confirmed that the N2 

differentiation (i.e., N2CR > N2Hit) found during single-task load was reduced under dual-task 

load. The adaptation of nogo-N2 processes to increased task load was present in HC, but not in 

MS.   

Our data do not support our prediction that some individuals with MS adapt nogo-N2 

processes to higher task load and thereby minimize DTCs. By pooling participants across both 

groups, we showed a significant linear association between stronger nogo-N2 reduction and 

better Go/NoGo performance during dual-tasking. A linear model may, on first sight, suggest 

that there is a continuum along which participants in both groups deploy the same N2-indexed 

adaptation process. After including diagnosis and the interaction term diagnosis-by-N2 in our 

model, however, the association between N2 modulation and d-prime was not significant, 

possibly due to insufficient power. As can be seen in Figure 5, the significant association for the 

pooled sample was mostly driven by the HC group. That is, the slopes of the linear function 

fitting the HC and pooled group were very similar. In contrast, the slope fitting the MS data was 

close to zero which might suggest that there is no relationship between load-related nogo-N2 

modulation and Go/NoGo accuracy.  
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Differences in adapting the cognitive nogo-N2 to increased motor load point to an 

impairment of processing and integrating multiple tasks in multiple sclerosis. Relatively higher 

DTCs may be suggestive of a failure to mobilize additional N2-indexed brain resources during 

dual-task walking in MS. However, further tests of the N2/d-prime association in MS are 

required to support the aforementioned conclusion. Of note, recent ERP investigations in MS 

assessing cognition while participants were stationary (i.e., cognitive-only task) reported 

evidence in support of compensatory neural functions55-57. For example, Lopez-Gongora found 

larger ERP amplitudes in MS relative to HC, even though groups did not differ in their response 

inhibition performance.   

There are limitations to our study that are important to mention.  First, the average time 

of receiving a diagnosis prior to study participation was 7.3 years and ranged from 1 to 18 years. 

Including patients with advanced MS may have tempered our goal to identify compensatory 

functioning, an ability thought to be rather limited to patients during early disease stages. Our 

sample size consisted of 13 patients.  Future studies may increase sample size to enhance the 

sensitivity to detect dual-task effects on gait and ERP measures. Furthermore, individuals with 

MS showed a relative decline in Go/NoGo performance under dual-task load, yet the decline was 

not significant. Robust DTC in the MS group would lend stronger support to our assertion that 

abnormal nogo-N2 modulation reflects cognitive-motor dysfunction in MS. 

In summary, we linked differences in dual-task walking performance to a 

neurophysiological marker and provided relevant insight into aberrant cortical activity associated 

with processing and integrating multiple tasks in multiple sclerosis. To our knowledge, this is the 

first EEG-based dual-task walking study in MS. Cognitive-motor paradigms address more 

precisely patient-reported multitasking deficits and may therefore improve the sensitivity of 

patient assessments. Importantly, low cost wireless mobile EEG systems of high signal quality 

are readily available58. We believe that EEG-based measurements of cognitive-motor issues may 

eventually be sensitive enough to be deployed in the clinical setting to track a patient’s disease 

progression and test therapeutic efficacy of interventions.   
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