1 Genome-wide analysis of GATA factors in moso bamboo (*Phyllostachys edulis*)

2 unveils that PeGATAs regulate shoot rapid-growth and rhizome development

- 3 Taotao Wang¹, Yong Yang¹, Shuaitong Lou², Wei Wei¹, Zhixin Zhao³, Chentao Lin⁴,
- 4 Liuyin Ma^{2*}
- 5 ¹Basic Forestry and Proteomics Research Center, College of Forestry, Fujian
- 6 Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian
- 7 Agriculture and Forestry University, Fuzhou 350002, China
- 8 ²Fujian Provincial Key Laboratory of Plant functional Biology, College of Life
- 9 Sciences, Fuzhou 350002, China
- ³College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo
- 11 726000, China
- ⁴Department of Molecular, Cell and Developmental Biology, University of California,
- 13 Los Angeles, CA 90095, USA
- ^{*}Corresponding author:
- 15 Liuyin Ma: Tel. +86 591 86392267; email: lma223@fafu.edu.cn
- 16

17

bioRxiv preprint doi: https://doi.org/10.1101/744003; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

18 ABSTRACT

19 Background

- 20 Moso bamboo is well-known for its rapid-growth shoots and widespread rhizomes.
- 21 However, the regulatory genes of these two processes are largely unexplored.
- 22 GATA factors regulate many developmental processes, but its role in plant height
- 23 control and rhizome development remains unclear.
- 24 Results

25	Here, we found that bamboo GATA factors (PeGATAs) are involved in the
26	growth regulation of bamboo shoots and rhizomes. Bioinformatics and
27	evolutionary analysis showed that there are 31 PeGATA factors in bamboo, which
28	can be divided into three subfamilies. Light, hormone, and stress-related
29	cis-elements were found in the promoter region of the PeGATA genes. Gene
30	expression of 12 PeGATA genes was regulated by phytohormone-GA but there
31	was no correlation between auxin and PeGATA gene expression. More than 27
32	PeGATA genes were differentially expressed in different tissues of rhizomes, and
33	almost all PeGATAs have dynamic gene expression level during the rapid-growth

34	of bamboo shoots. These results indicate that PeGATAs regulate rhizome
35	development and bamboo shoot growth partially via GA signaling pathway. In
36	addition, PeGATA26, a rapid-growth negative regulatory candidate gene
37	modulated by GA treatment, was overexpressed in Arabidopsis, and
38	over-expression of PeGATA26 significantly repressed Arabidopsis primary root
39	length and plant height. The PeGATA26 overexpressing lines were also resistant
40	to exogenous GA treatment, further emphasizing that PeGATA26 inhibits plant
41	height from Arabidopsis to moso bamboo via GA signaling pathway.
40	
42	Conclusions
42 43	• Conclusions Our results provide an insight into the function of GATA transcription factors in
43	Our results provide an insight into the function of GATA transcription factors in
43 44	Our results provide an insight into the function of GATA transcription factors in regulating shoot rapid-growth and rhizome development, and provide genetic
43 44 45	Our results provide an insight into the function of GATA transcription factors in regulating shoot rapid-growth and rhizome development, and provide genetic resources for engineering plant height.

50 Background

51	Moso bamboo is one of most-abundant non-timber forestry species and provides
52	important resources for food, architecture, papermaking and fiber [1]. More
53	importantly, moso bamboo is known for its explosive shoot growth rate, with a peak
54	growth rate of 1 meter per day [1]. The rapid-growth shoot is largely dependent on the
55	widespread rhizome system, which provide energy resources by absorbing from soil
56	and more importantly, transporting from other rhizome-connected adult bamboos [2].
57	Therefore, studying the development of shoots and rhizomes will help us understand
58	the rapid-growth regulation of bamboo and provide effective candidate genes for
59	genetic manipulation of crop and forestry species.
60	The GATA factors play important roles in many developmental processes by binding
61	to the consensus DNA sequence (A/T)GATA(A/G) to regulate gene expression at the
62	transcriptional level [3, 4]. The GATA factors have a highly conserved type IV zinc
63	finger DNA binding domain ($CX_2CX_{17-20}CX_2C$) and followed by a basic region [5-7].
64	In animals, GATA factors typically contain two zinc finger domains

66	Animal GATAs are involved in development, differentiation, and control of cell
67	proliferation [7]. However, the fungal GATA factors only contain a single zinc finger
68	domain that is highly similar to the C-terminal zinc finger domain of the animal
69	GATA factors [4, 8]. In plants, GATA factors contain CX ₂ CX ₁₈ CX ₂ C or
70	CX ₂ CX ₂₀ CX ₂ C zinc finger domain [9, 10]. Interestingly, most of plant GATA factors
71	have a single zinc finger domain, and very few of them also contain two zinc finger
72	domains [9-11].
73	In animals, GATA factors involve in cell differential and organ development.
74	Mutations in animal GATA factors cause severe developmental disorder diseases
75	including anemia, deafness, renal and cardiac defects [12]. Fungal GATA factors play
76	roles in nitrogen control, siderophore biosynthesis, light-regulated
77	photomorphogenesis and circadian regulation [4].
78	Plant GATA factors originates from the identification of GATA motifs in regulatory
79	regions of light and circadian clock responsive genes [13]. The first GATA factor
79 80	regions of light and circadian clock responsive genes [13]. The first GATA factor identified in plant is NTL1 from <i>Nicotiana tabacum</i> [14]. GATA factors have been

82	soybean (64) [9, 10, 15]. Plant GATA factors are involved in many developmental
83	processes, including plant architecture [16], flowering development [17], hypocotyl
84	elongation [18] and seed germination [19]. Plant GATA factors employ several
85	underneath molecular mechanisms, such as modulate nitrogen metabolism [14, 20],
86	act as transcriptional regulator by either integrity of light and phytohormone signal
87	transduction [21, 22] or direct involvement in phytohormone signal transduction to
88	regulate plant growth [23].
89	Plant GATA factors regulate light signal transduction by combining with GATA
90	promoter of light related genes [24, 25]. GATA2 (At2g45050) has also been identified
91	as a key transcriptional regulator of the integration of light and brassinosteroid
92	signaling pathways [22]. Recent evidences suggest that GATA factors are involved in
93	the regulation of plant hormone signal transduction. Two orthologous GATA-type
94	transcription factors- GNC and CGA1/GNL from Arabidopsis thaliana were identified
95	as GA-regulated genes [21, 23]. Loss-of-function mutants and overexpression lines of
96	GNC and GNL are functionally related to germination, greening, and flowering time
97	[17]. Chromatin immunoprecipitation (CHIP) results show that these two genes are

98	direct targets	of PIF	transcription	factors,	together	with	the	fact	that	gnc	and	gnl	
----	----------------	--------	---------------	----------	----------	------	-----	------	------	-----	-----	-----	--

99	loss-of-function mutations suppress gal phenotypes, supporting that GNC and GNL
100	are important repressors of GA signaling [21]. Another important phytohormone, auxin,
101	is also regulated by GNC and GNL through functioning downstream of ARF2 [23]. In
102	addition, the GATA factors are induced by cytokinin [26]. These results indicate that
103	GATA factors play crucial roles in plant development and phytohormone-mediated
104	growth. However, the role of GATA factors in rapid-growth and rhizome development
105	remains elusive.
106	Recently, large-scale transcriptome analysis has shown that light and phytohormones
107	may play important roles in the rapid-growth of bamboo [27-29]. In addition, a large
108	number of transcription factor families are involved in the abiotic stress response and
109	flower development have been studied in moso bamboo [30-32]. Although our group
110	has functionally characterized rapid-growth associated key gene-PeGSK1, the
111	rapid-growth associated transcription factor families are largely unexplored in moso
112	bamboo.

113 In this study, we performed genome-wide survey of GATA factors in moso bamboo. A

- 114 total of 31 GATA factors were identified in the moso bamboo genome. The
- 115 phylogenetic relationship, gene structure and conserved domains of moso bamboo were
- systematically analyzed. The phytohormone-related *cis*-element and gene expression
- 117 of *PeGATAs* under GA and auxin treatment were also characterized. More importantly,
- the gene expression of *PeGATAs* in different rhizome tissues and rapid-growth shoot
- 119 were detailed analyzed. In addition, one of growth related PeGATA-PeGATA26 was
- 120 overexpressed in Arabidopsis to functional validate its role in regulating plant height.
- 121 Overall, our results provide information on the involvement of GATA factors in
- 122 rhizome tissue development and rapid-growth shoot.
- 123 **Results**

124 Genome-wide characterization of GATA factors in moso bamboo

- 125 To identify the GATA factors in moso bamboo, the bamboo reference genome was used
- to scan the GATA factors using HMMER and blast tools
 (http://forestry.fafu.edu.cn/db/PhePacBio/download.php) [33]. A total of 31 potential
 GATA factors were identified in moso bamboo and named PeGATA1 to PeGATA31

bioRxiv preprint doi: https://doi.org/10.1101/744003; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

			ORF	Size	MW		Sub-
Name	Gene ID	Location	length(bp)	(aa)	(kDa)	PI	family
PeGATA1	PH01000001G0820	603239-605821(- stand)	762	253	27.2	7.11	
PeGATA2	PH01000036G1110	651571-655167(+ stand)	1212	403	42.4	5.2	
PeGATA3	PH01000040G1560	1013911-1015300(- stand)	801	266	28.7	9.77	•
PeGATA4	PH01000114G0660	460195-464981(+ stand)	912	303	32.2	5.96	•
PeGATA5	PH01000157G0800	521887-523791(- stand)	654	217	23.2	6.15	
PeGATA6	PH01000162G1360	945504-954318(+ stand)	1500	499	56.4	9.4	
PeGATA7	PH01000232G0180	85809-87165(- stand)	420	139	15.6	9.23	•
PeGATA8	PH01000242G0460	296415-297844(- stand)	648	215	22.6	8.2	•
PeGATA9	PH01000263G0760	473691-475362(- stand)	1095	364	37.5	7.72	
PeGATA10	PH01000284G0590	365850-367843(- stand)	1131	376	39.3	5.89	
PeGATA11	PH01000417G1130	669097-674119(- stand)	948	315	35.8	8.87	
PeGATA12	PH01000468G1050	681872-683301(+ stand)	663	220	22.7	5.78	•
PeGATA13	PH01000604G0620	351426-352613(+ stand)	399	132	14.6	9.36	•
PeGATA14	PH01000750G0690	435897-442169(+ stand)	777	258	28.1	8.18	•
PeGATA15	PH01000836G0660	444348-452795(- stand)	1413	470	51.6	8.57	•
PeGATA16	PH01000985G0260	141878-143100(+ stand)	402	133	14.8	9.87	•
PeGATA17	PH01001002G0190	175975-177694(+ stand)	831	276	29.4	8.98	•
PeGATA18	PH01001129G0380	296297-297943(+ stand)	699	232	26	9.16	•
PeGATA19	PH01001155G0480	343290-344746(- stand)	741	246	25.3	9.66	
PeGATA20	PH01001253G0390	263024-267886(- stand)	516	171	18.9	9.95	•
PeGATA21	PH01001451G0450	270274-272851(- stand)	930	309	32.6	8.68	
PeGATA22	PH01001557G0370	244289-248001(+ stand)	594	197	20.7	9.14	•
PeGATA23	PH01001584G0350	297120-303918(- stand)	1035	344	37.8	4.75	•
PeGATA24	PH01001907G0160	109783-111580(+ stand)	1017	338	36.2	9.26	•
PeGATA25	PH01002105G0190	151795-153666(+ stand)	1248	415	44	8.6	
PeGATA26	PH01002473G0050	19960-21655(- stand)	1011	336	36.1	9.64	•
PeGATA27	PH01002681G0110	59436-60698(- stand)	690	229	24	8.49	•
PeGATA28	PH01002830G0260	174984-177126(- stand)	381	126	13.8	9.69	•
PeGATA29	PH01003365G0100	53196-55342(+ stand)	369	122	13.3	9.4	•
PeGATA30	PH01003433G0110	88789-92096(- stand)	1167	388	39.8	9.33	
PeGATA31	PH01004789G0060	58264-61570(- stand)	993	330	35	6.06	

Table 1 GATA factors in moso bamboo

bp: base pair, aa: amino acids, MW: molecular weight, PI: isoelectric point, kDa: kilodalton

based on the chromosomal location. The CDS and protein sequences of PeGATA genes
were listed in Additional file 1 and 2: Table S1 and S2. The detailed information of
these PeGATA factors including length of CDS, size of amino acid, molecular weight
(MW) of protein, gene location on chromosome and isoelectric point (PI) were listed in
Table 1.

134	The length of CDS	ranges from 366 b	p to 1.500 bp, and the	length of proteins ranges

135	from 122 aa to 499 aa (Table 1). PeGATA29 is the smallest GATA protein with 122
136	amino acids, and the largest protein is PeGATA6 with 499 amino acids (Table S1). The
137	predicted molecular weight of 31 PeGATA proteins ranges from 13.3 kDa (PeGATA29)
138	to 56.4 kDa (PeGATA6) with an average size of 29.86 kDa (Table 1). The predicted PI
139	of 31 PeGATA factors are all below 10.0, and the minimal protein is PeGATA23 with
140	only 4.75 (Table 1).
141	To further investigate and characterize sequence conservation in the GATA proteins,
142	multiple sequence alignments were performed using the amino acid sequences of the
143	conserved GATA motifs in 31 PeGATAs (Fig. 1). Most bamboo GATA factors contain a
144	single zinc finger domain. However, unlike Arabidopsis, several bamboo GATA factors
145	contain multiple zinc finger domains (Fig. 2). Most of bamboo GATA factors contain
146	18 residues in the zinc finger loop (CX ₂ CX ₁₈ CX ₂ C), while five of them have 20
147	residues in the zinc finger loop ($CX_2CX_{20}CX_2C$) (Fig. 1). Interestingly, the gene
148	subfamily analysis revealed that all of these five PeGATA factors all belong to the Class
149	C type of the PeGATA family (Fig. 3). Similar to Arabidopsis and rice, moso bamboo

150	does not contain the animal- and fungal-type CX ₂ CX ₁₇ CX ₂ C zinc finger domains (Fig.
151	1). Notably, five PeGATA genes factors have a defective GATA zinc finger domain (Fig.
152	1). PeGATA1 lacks the first Cys residue (-SHC) and PeGATA30 lacks the last Cys
153	residue (CND-). Meanwhile, the GATA factors PeGATA14, PeGATA17 and
154	PeGATA18 have only partial GATA motif (SRLTPAMRRGPTGPRSLCNAC for
155	PeGATA14, CSDCNTTKTPLWRSGPCGPKAA for PeGATA17 and
156	CSDCNTTKTPLWRSGP for PeGATA18) (Fig. 1). The observation is similar to the
157	rice GATA factors as OsGATA24 also contains a partial GATA motif [9]. The results
158	indicated that the bamboo GATA factors have a highly conserved GATA motif,
159	especially compared to rice.
160	To further reveal the diversification of GATA genes in moso bamboo, putative
161	conserved functional domain and motifs were also predicted in the NCBI conserved
162	domain database and program MEME. Through MEME analysis, 10 motifs among the
163	different gene subfamilies is shown in Fig. 2 and the identified multilevel consensus
164	sequence for the motifs is shown in Additional file 3: Table S3. Motif 1 and 5 presented
165	in 29 PeGATA proteins and they were annotated as conserved GATA zinc finger

166	domain CX ₂ CX ₁₈ CX ₂ C and CX ₂ CX ₂₀ CX ₂ C, respectively (Fig. 2). Motif 5 was not
167	found in PeGATA1, PeGATA14 and PeGATA23 by MEME (Fig. 2), which may be
168	attributed to the zinc finger GATA subfamily domain corresponding to the conserved
169	domain. Motif 2, 7 and 10 appeared nearly all members in subfamily I, and motif 4 and
170	motif 6 only appeared in subfamily II (Fig. 2). Motif 3 was identified as the CCT
171	domain and motif 9 was identified as TIFY domain (Fig. 2). These two domains were
172	specific to subfamily III that was consistent with the classification by conserved
173	domain as shown in Fig. 2. The identification of subfamily-specific motifs from
174	bamboo GATA factors suggests that these motifs may contribute to the functional
175	differences among different subfamilies.
176	Comparison analysis of the GATA subfamily among Arabidopsis, rice and moso
177	bamboo
178	GATA factors in Arabidopsis and rice are classified in the clade A-D according to the
179	residues of zinc fingers [9]. To determine the phylogenetic relationship among GATA
180	genes in Arabidopsis, rice and moso bamboo, unrooted phylogenetic tree with 90
181	GATA factor sequences from all three species was constructed. The phylogenetic tree

182 analysis shows that all GATA factors have three major clades (Classes A, B and C) (Fig.

183	3). Among them, Class A is the largest clade and contains 38 members. In this clade,
184	twelve bamboo GATA factors (PeGATA1/2/5/6/9/10/11/19/21/25/30/31) clustered with
185	the Arabidopsis GATA factors AtGATA1, AtGATA2, and AtGATA4, which have been
186	reported to be involved in light regulation of gene expression and photomorphogenesis
187	[22, 34]. Class B formed the second largest clade containing 33 members and 13
188	bamboo GATA factors (PeGATA3/7/8/12/13/16/17/18/24/26/27/28/29) clustered with
189	the Arabidopsis GATA factors AtGATA21 (GNC) and AtGATA22. These two GATA
190	factors regulates phytohormone response, chlorophyll biosynthesis, starch production,
191	plant architecture, and nitrogen metabolism [17, 21, 23, 34, 35]. In Class C, six bamboo
192	GATA factors (PeGATA4/14/15/20/22/23) clustered with the Arabidopsis GATA factor
193	AtGATA25 (ZIM, Zinc-finger protein expressed in Inflorescence Meristem) and shows
194	the potential roles of hypocotyl and petiole elongation [18]. It is worth noting that no
195	bamboo GATA factor is found in Class D, which explains that bamboo GATA factors
196	may have different functions compared to Arabidopsis and rice.

197 Gene structure of bamboo GATA genes in moso bamboo

198	To determine the phylogenetic relationships among different members of the GATA
199	factors in moso bamboo, a phylogenetic analysis based on alignments of the 31
200	full-length GATA protein sequences was performed. As shown in Fig. 1 and Fig. 3, the
201	protein sequence alignment and neighbor-joining phylogenetic tree divides 31
202	PeGATAs into three clades according to the pattern of zinc finger domain or
203	homologous domains to the Arabidopsis and rice GATA factor families. The gene
204	structure of the PeGATA genes was shown in Fig. 4. The total exon numbers of
205	PeGATAs from each subfamily were calculated. Subfamily I comprised 12 members
206	with two or three exons except PeGATA19 and PeGATA6. PeGATA19 has only one
207	exon and <i>PeGATA6</i> has more then three exons with long introns. Subfamily II consists
208	of 13 members, and all of them contain two or three exons. Subfamily III was formed
209	by included 6 members with five to twelve exons (Fig. 4). The gene structure of GATA
210	factors is similar to that of rice [9]. Overall, the PeGATA genes contain exons ranging
211	from one to twelve in its CDS, and the gene structure is obviously different from each
212	other. The results indicated that the bamboo GATA genes have undergone significant
213	changes during its long evolutionary history.

214 Identification of hormone-related cis-elements in the promoter of the PeGATA

215 genes

- 216 To further explore the function and regulatory pattern of the PeGATA gene, the
- 217 PlantCARE database was used to scan the putative *cis*-elements inside the 1500 bp
- 218 upstream of transcription start site. We categorized *cis*-elements into four categories
- 219 based on their functions: light response elements, development, hormone and stress
- associated cis-elements (Fig. 5). The predicted cis-elements in PeGATA genes were
- closely related to the function of the GATA family in other plants [17, 19, 22, 23, 25].
- 222 Light responsive elements like G-box, GT1 and TCT were widely present in the
- 223 promoter of *PeGATA* genes, and the G-box element has been reported to be involved in
- the regulation of chlorophyll II biosynthesis in Arabidopsis [36]. We also identified
- several hormone-responsive cis-elements such as ABRE [37], CGTCA-motif, TGACG,
- 226 and TCA-elements (abscisic acid, MeJA and salicylic acid), and abiotic
- 227 stress-responsive elements including ARE, GC-motif, LTR and MBS. In addition,
- tissue specific elements such as CAT-box, circadian responsive element and cell cycle
- 229 regulation elements like MSA-like were also found in the promoter of the PeGATA

230 genes, which may have function in the regulation of plant morphology, flowering and

- growth [38]. Overall, *cis*-elements analysis indicated that bamboo GATA factors might
- be involved in response to light and phytohormone to regulate growth.
- 233 Transcription factors are typically located in the nucleus and regulate transcription of
- the target genes by binding to the *cis*-elements in their promoters. Consistent with our
- 235 hypothesis, subcellular localization assays in tobacco showed that randomly selected
- bamboo GATA genes PeGATA7, 20, 26 and 28 were clearly localized in the nucleus
- according to the GFP and DAPI stain signals (Fig. 6). Localization analysis revealed
- that bamboo GATA factors could also act as transcription factors to regulate gene
- 239 expression.

240 Dynamic gene expression pattern of *PeGATAs* in rhizome tissues

The bamboo rhizome system can be divided into three groups: lateral buds, rhizome tips, and new shoot tips [2]. The widespread rhizome system is essential for rapid-growth of bamboo shoot through adopting and utilizing nutrients including nitrate [39]. The GATA factors are also related to nitrogen metabolism in other species

245 [20], so we firstly checked if GATA genes expressing differentially in lateral buds,

246	rhizome tips, and new shoot tips. By analyze the RNA-seq data from our previous study
247	[2], we showed significant differential expression pattern of PeGATA genes among
248	different rhizome tissues (Fig. 7a, Additional file 4: Table S4). As shown in Fig. 7a, a
249	total of 15 PeGATA genes (PeGATA1, 5, 9, 10, 14, 18, 19, 20, 21, 23, 25, 26, 27, 28 and
250	29) showed significantly higher expression in lateral buds than that from other two
251	tissues. Five PeGATA genes (PeGATA6, 7, 8, 11 and 22) highly expressed in the new
252	shoot tips, while reduced their expression in lateral buds. In the rhizome tips, seven
253	PeGATA genes (PeGATA2, 3, 4, 15, 16, 24 and 30) have remarkable higher expression
254	than other two tissues. In addition, <i>PeGATA12</i> and 31 expressed highly both in lateral
255	buds and rhizome tips, while slightly expressed in new shoot tips. Overall, 29 of the 31
256	PeGATA genes showed differential expression in three bamboo rhizome tissues,
257	suggesting that PeGATA factors may contribute to the growth regulation of rhizome.
258	Expression profile of <i>PeGATAs</i> in bamboo under the treatment of exogenous
259	phytohormone
260	GATA factors are closely related to phytohormones to regulate Arabidopsis growth and
261	development [21, 23], take together with the identification of phytohormone related

262	cis-elements in the promoter of the bamboo GATA genes (Fig. 5b), we rationally
263	hypothesized that the <i>PeGATA</i> genes are also tightly regulated by phytohormones. To
264	test our hypothesis, we performed gene expression analysis of the PeGATA genes under
265	GA and auxin treatment based on the RNA-seq data published in the previous studies
266	[28, 40]. A total of 12 PeGATA genes showed significant gene expression under GA
267	treatment (Fig. 7b, Additional file 5: Table S5). Among them, the expression of
268	PeGATA7, 9, 10, 19, 30 and 31 was increased in GA ₃ (100 µM) treated seedlings
269	compared to that from untreated control (Fig. 7b). The largest difference was observed
270	in PeGATA10 (increased by 3.22-fold after GA3 treatment). In contrast, six genes
271	(PeGATA1, 17, 18, 24, 25 and 26) showed lower expression in GA ₃ -treated seedlings
272	than control seedlings (Fig. 7b). PeGATA26 was the most down-regulated gene with a
273	56% expression level reduction, and followed by <i>PeGATA18</i> with a 54% decline. It is
274	worth noting that the other 19 PeGATA genes did not show significant expression
275	change under GA treatment. These results indicate that the gene expression of
276	PeGATAs is at least partially regulated by GA.

277	To test the relationship between <i>PeGATA</i> gene expression and auxin, we also analyzed
278	the gene expression pattern of <i>PeGATA</i> genes under NAA treatment (5 μ M NAA) in
279	bamboo seedlings (Fig. 7c, Additional file 6: Table S6). Interestingly, unlike the results
280	of GA treatment, only PeGATA8 and PeGATA9 showed significant gene expression
281	change under auxin treatment. Although the expression levels of some other genes
282	including PeGATA1, 2, 10, 16 and 22 were slightly changed, the gene expression of
283	most PeGATA genes did not change under auxin treatment (Fig. 7c), suggesting that
284	PeGATAs may not be affected by auxin. Overall, these results suggest that PeGATAs
285	are partially regulated by GA, but are not affected by auxin.
285 286	are partially regulated by GA, but are not affected by auxin. Genes expression pattern of <i>PeGATAs</i> in the rapid-growth of bamboo shoots
286	Genes expression pattern of <i>PeGATAs</i> in the rapid-growth of bamboo shoots
286 287	Genes expression pattern of <i>PeGATAs</i> in the rapid-growth of bamboo shoots As the rapid-growth of bamboo shoots is largely determined by phytohormone and
286 287 288	Genes expression pattern of <i>PeGATAs</i> in the rapid-growth of bamboo shoots As the rapid-growth of bamboo shoots is largely determined by phytohormone and nutrients [2, 27], and we have demonstrated that <i>PeGATAs</i> are differentially expressed
286 287 288 289	Genes expression pattern of <i>PeGATAs</i> in the rapid-growth of bamboo shoots As the rapid-growth of bamboo shoots is largely determined by phytohormone and nutrients [2, 27], and we have demonstrated that <i>PeGATAs</i> are differentially expressed in rhizome tissues and under GA treatment (Fig. 7a, b), we hypothesized that <i>PeGATAs</i>

293	almost all GATA genes changed their gene expression in at least one of fast-growing
294	stages. Among them, seven PeGATA genes (PeGATA1, 3, 9, 12, 14, 16, 26 and 31)
295	continued to decrease their gene expression with the increase of shoot height (Fig. 8).
296	The best example is <i>PeGATA9</i> , which showed over 30-fold expression reduction in
297	9-meter shoots compared to 0.15-meter shoots. The results indicate that these PeGATAs
298	genes may be negatively correlated with shoot height. Another groups of PeGATA
299	genes (PeGATA5, 6, 7, 8, 11, 15, 16, 20, 21, 22, 23, 24, 27, 28, 29 and 30) showed
300	minimal gene expression at the middle growth stages. The results indicate that these
301	PeGATAs play an important role in the negative regulation of shoot growth at the
302	middle shoot development stages. Another sets of PeGATA genes (PeGATA2, 4, 10 and
303	19) increased their expression at early shoot developmental stages, and then reduce
304	their expression along with the increase of shoot heights. Finally, three PeGATA genes
305	(PeGATA17, 18 and 27) were increased their expression during early shoot
306	developmental stages, then reduced their expression during middle developmental
307	stages, and then increased their expression again during late shoot developmental
308	stages. Interestingly, we did not find that any <i>PeGATA</i> genes continued to increase its

309 expression along with bamboo shoot development. Overall, our results indicate that

310 *PeGATAs* genes may be negatively correlated with rapid-growth of bamboo shoots.

311 Over-expression of *PeGATA26* negatively regulates plant height in Arabidopsis

- 312 To understand the function of PeGATA factors, we chose PeGATA26 as an example to
- 313 verify the role of PeGATA factors in plant growth. *PeGATA26* showed higher gene
- 314 expression in the growth-inactive lateral buds than the growth-active rhizome tips and
- new shoot tips (Fig. 7a). Moreover, *PeGATA26* have lower gene expression under GA
- treatment (Fig. 7b), and its expression decreased along with rapid-growth of bamboo
- 317 shoots (Fig. 8). These results suggest that *PeGATA26* act as a negative regulator of plant
- 318 growth and height in moso bamboo. Therefore, we hypothesized that *PeGATA26* plays
- 319 a crucial role in regulating plant growth. In a previous study, we successfully
- 320 characterized one of the fast growth-suppressing genes *PeGSK1* by over-expressing it
- 321 into Arabidopsis [1]. Therefore, we used a similar strategy to verify the function of
- 322 *PeGATA26* in regulating plant growth by over-expressing it into Arabidopsis.
- 323 The homozygous T3 transgenic lines were used to analyze phenotype, and 324 over-expression of *PeGATA26* resulted in a significant growth retardation phenotype

325	(Fig. 9a). Gene expression of .	PeGATA26 was successfully	detected by qRT-PCR (Fig.

326	9b). The phenotypes between the two over-expressing lines were similar and the
327	intensity of phenotype correlated with the expression of each transgenic lines (Fig. 9a).
328	Therefore, <i>PeGATA26</i> over-expressing line 1 (PeGATA26-ox1) with a stronger
329	phenotype was used for further detailed phenotypic analysis. Interestingly,
330	PeGATA26-ox1 showed a significant dwarf phenotype with a dramatic shorter
331	inflorescence compared to the control (Fig. 9c), indicating that PeGATA26 inhibits
332	growth of plant height. Moreover, PeGATA26 also repressed primary root growth (Fig.
333	9c). However, PeGATA26 promoted Arabidopsis hypocotyl length (Fig. 9c). These
334	results indicate that <i>PeGATA26</i> regulates plant growth in a tissue-specific manner:
335	repressing cell growth in roots and inflorescences, while promoting cell growth in
336	hypocotyls.
337	As PeGATA26 was down-regulated under the GA treatment in bamboo seedlings (Fig.
338	7b), we subsequently analyzed whether PeGATA26 was also regulated by GA in
339	Arabidopsis. Interestingly, exogenous GA treatment did not recovery the dwarf
340	phenotype of PeGATA26-ox1 (Fig. 9d), indicating that PeGATA26 is negatively

correlated with GA to regulate plant height in Arabidopsis. Similar to the results of its

-	
342	Arabidopsis orthologous gene [21], the gene expression pattern of the GA signaling
343	pathway genes in PeGATA26-ox1 were also similar to those observed in the GA
344	biosynthesis mutants- gal (Fig. 9e). The results support that PeGATA26 also repressed
345	GA signaling downstream of the DELLA protein. These results suggest that
346	PeGATA26 inhibits plant root and stem growth in Arabidopsis, take together with its
347	gene expression negatively correlated with the growth of rhizome tissues and shoot in
348	moso bamboo, we concluded that PeGATA26 is a negative growth regulator for plant
349	height control from Arabidopsis to moso bamboo.
350	

351 Discussion

341

Moso bamboo is one of important non-timber forestry species with great value in providing food and building materials [33]. Moreover, bamboo is known for its fast-growing shoots and widespread rhizomes [2]. It has been reported that several gene families are involved in flower development and abiotic stress [30-32, 41], the rapid-growth associated transcription factors remain elusive. The genome sequences of

357	moso bamboo[33] and transcriptome studies [2, 27, 28, 40] provide important
358	platforms for the identification of rapid-growth shoot and rhizome development
359	associated gene families. The rapid-growth related genes could provide useful
360	information for genetic manipulation of plant height in future.
361	GATA factors have key functions in developmental control and response to the
362	environmental stresses [16, 17, 19]. In this study, we characterized 31 GATA factors
363	from the moso bamboo (Table 1), and PeGATA factors have highly conserved zinc
364	finger protein domains compared to Arabidopsis and rice GATA factors (Figs. 1-4).
365	More importantly, gene expression analysis of PeGATAs in different rhizome tissues
366	and fast-growing bamboo shoots showed that several PeGATAs had negative
367	expression patterns with bamboo shoots and rhizome growth (Figs. 7a, 8). Furthermore,
368	the gene expression of <i>PeGATAs</i> was partially dependent on phytohormone-GA in
369	bamboo (Figs. 7b). Moreover, overexpression of PeGATA26 in Arabidopsis repressed
370	the growth of root and plant height in a GA dependent manner (Fig. 9). Overall, our
371	results indicate that <i>PeGATAs</i> are involved in regulating the growth of plant height
372	from Arabidopsis to moso bamoo probably through GA signaling pathway.

373	Bioinformatics analysis showed that there were 31 PeGATA factors in moso bamboo
374	(Fig. 1). The number of bamboo GATA factors was closer to other species, including
375	Arabidopsis (29), rice (28) and apple (35) [9, 10, 15]. Furthermore, most of PeGATA
376	factors have a conserved single $CX_2CX_{18-20}CX_2C$ zinc finger domain that is highly
377	similar to that from Arabidopsis and rice (Fig. 1). In addition, the subfamily of I to III
378	from moso bamboo showed a highly evolutionary conservation compared to
379	Arabidopsis and rice (Fig. 3). These results indicate that most of the GATA factors from
380	moso bamboo are conserved compared to other species. However, unlike containing
381	only one zinc-finger domain in subfamily I GATA factors from Arabidopsis and rice [9],
382	PeGATA6 and PeGATA11 from the bamboo GATA subfamily I have two GATA-type
383	zinc finger domains (Fig. 1). Moreover, more protein domains from the bamboo GATA
384	subfamily III were identified compared to that from Arabidopsis and rice (Fig. 2).
385	Interestingly, a unique feature of the PeGATA factors is that they only have three
386	subfamilies compared to the four subfamilies of Arabidopsis and rice (Fig. 3). These
387	differences suggest that PeGATAs do have certain specificity compared to that from
388	Arabidopsis and rice. Future analysis the functions of GATA factors, including

389 AtGATA26, AtGATA27 and OsGATA30 from subfamily IV (Fig. 3), can help us reveal

- 390 why bamboo lacks these GATA factors.
- 391 The first GATA factor is identified according to the light and circadian clock related
- 392 *cis*-elements in its promoters [13]. Thus, the function of the GATA factors can be
- 393 predicted based on the identification of *cis*-elements from their promoter. In this study,
- 394 we found that the promoter of *PeGATAs* has many important *cis*-elements, including
- light responsive element, cell cycle regulation and phytohormone responsive elements
- 396 (Fig. 5), which are closely related to the regulation of plant growth. Thus, PeGATAs
- 397 may be involved in regulating plant growth through these *cis*-elements to affect their
- 398 gene expression and further downstream genes.

The bamboo has a well-established rhizome system to develop new shoot tips and widespread rhizome tips [2, 39]. However, the lateral buds of bamboo rhizomes are not active and dominant in growth [2]. Therefore, identification of GATAs with different expression patterns in these tissues will help us clarify the role of GATA factors in rhizome development, which remains unclear. In this study, we found that 15 *PeGATA* genes are highly expressed in lateral buds (Fig. 7a). Among them, *AtGATA2*

405	(orthologous gene of <i>PeGATA9</i>) has been reported to have a function to restrict cell
406	division in the proliferation domain of Arabidopsis root meristem [42], and high
407	expression of <i>PeGATA9</i> in lateral buds indicates that <i>PeGATAs</i> may also be involved in
408	inhibiting the cell division in bamboo lateral buds (Fig. 7A). In contrast, the lower
409	expression of <i>PeGATA9</i> in the actively growing new shoot tips and rhizome tips (Fig.
410	7A), suggesting a negative correlation between <i>PeGATA9</i> and cell growth in bamboo
411	rhizome. It has been reported that AtGATA22, a orthologous gene of PeGATA18, is
412	involved in response to cytokinin and negatively regulates root growth in Arabidopsis
413	[43], we found that <i>PeGATA18</i> has higher gene expression in lateral buds (Fig. 7a),
414	suggesting that <i>PeGATA18</i> may play a role in negative regulation of lateral buds cell
415	growth. Similarly, the orthologous gene of PeGATA26 also plays a negative role in
416	elongation growth [21]. Overall, these results suggest that these 15 PeGATAs may
417	contribute to negatively regulating the growth of lateral buds. Next, five <i>PeGATAs</i> were
418	highly expressed in the new shoot tips than the other two tissues (Fig. 7a). Among them,
419	the mutation of GATA19 (orthologous gene of PeGATA8) in Arabidopsis causes
420	meristem defects [44]. Here, the high expression of PeGATA8 in new shoot tips (Fig.

421	7a), suggests th	hat <i>PeGATA8</i>	mav also l	be involved in the	e regulation of	of shoot meristem

422	development in bamboo. Furthermore, seven PeGATAs were highly expressed in the
423	rhizome tips, indicating that they are involved in the growth of the rhizome tips (Fig.
424	7a). Overall, more than 87% of PeGATAs (27/31) was highly expressed in one of
425	rhizome tissues (Fig. 7a). The results indicate that <i>PeGATAs</i> strongly participate in the
426	regulation of rhizome growth. Once the transformation system is ready in future,
427	functional characterization of these PeGATAs in moso bamboo will help us elucidate
428	the exact role of PeGATAs in rhizome growth control.
429	The correlation between GATA factors and GA or auxin has been extensively studied in
430	Arabidopsis [21, 23, 42, 45]. In this study, we found that gene expression of 12
431	PeGATAs changed under GA treatment, while only two PeGATAs responded to auxin
432	treatment (Fig. 7b, c). In addition, motif analysis indicated that the promoter of
433	PeGATAs has more GA-related cis-elements than auxin (Fig. 5b). Our results indicate
434	that GA rather than auxin frequently regulates the expression of <i>PeGATAs</i> in moso
435	bamboo.

436	Gene expression analysis showed that almost all PeGATAs have changed their
437	expression during the rapid-growth of bamboo shoots (Fig. 8). For example, GATA2
438	(orthologous gene of PeGATA9) limits cell division in root meristem of Arabidopsis
439	[42], and the expression of <i>PeGATA9</i> was down-regulated over 30 times in late
440	rapid-growth stage (9 m) than the early stage (0.15 m) (Fig. 8). The results indicate that
441	PeGATA9 may also negatively regulate the rapid-growth of bamboo shoot.
442	Identification of many rapid-growth related PeGATAs indicates that PeGATAs are
443	involved in regulating the bamboo shoot. The rapid-growth of bamboo shoot is tightly
444	controlled by phytohormone [27]. Current studies reveals that ABA is the only negative
445	regulator of fast-growing shoots, while BR, auxin, GA and cytokinin antagonize with
446	ABA to promote rapid-growth of bamboo shoots [27]. Interestingly, all of the 12
447	GA-related PeGATAs showed differential expression in at least one of rapid-growth
448	stages (Figs. 7b, 8), suggesting that GA may regulate rapid-growth of bamboo shoots
449	via modulating gene expression of <i>PeGATAs</i> . To understand the function of GA-related
450	PeGATAs in plant height control, PeGATA26 was selected to validate its role in
451	Arabidopsis growth (Fig. 8). Overexpression of <i>PeGATA26</i> in Arabidopsis resulted in

452 growth retardation phenotypes such as dwarfism and shorter primary root length, and

- 453 the *PeGATAs* over-expressed lines was resistant to GA treatment (Fig. 8). Overall, these
- 454 results further support that *PeGATAs* could regulate plant heights from Arabidopsis to
- 455 moso bamboo via GA signaling pathway.

456 **Conclusions**

- 457 With the explosive growth rates of bamboo shoots and widespread rhizomes, the
- 458 identification of key regulatory genes in the bamboo shoot and rhizome growth control
- 459 will provide important genetic resources for the genetic manipulation of plant height. In
- this study, we characterized 31 GATA factors from moso bamboo. More importantly,
- 461 the gene expression of *PeGATAs* is closely related to the development of rhizome
- 462 tissues and rapid-growth of bamboo shoots. Moreover, the gene expression of
- 463 PeGATAs was partially regulated by the phytohormone-GA in bamboo. In addition,
- 464 functional characterization of *PeGATA26* in Arabidopsis provides insight into how
- 465 *PeGATAs* regulate plant height from Arabidopsis to bamboo via the GA signaling
- 466 pathway. However, we also noticed that GA regulates expression of only part of
- 467 PeGATAs. As ABA-related *cis*-elements are more widespread than GA, and ABA is the

468	only known negative re	gulatory hormones i	n the rapid-grow	th control of bamboo
469	shoots, we cannot rule ou	ut that <i>PeGATAs</i> may	also regulate plar	t height through ABA
470	signaling pathway. In s	ummary, our results	provide certain	evidence that GATA
471	transcription factor regul	ate the development	of rhizome tissues	and the rapid-growth
472	of bamboo shoots.			
473	Methods			
474	Identification of GATA	factors in moso bam	iboo	
475	To identify the GATA fac	tors, the genome and	protein sequences	of moso bamboo were
476	downloaded	from	BambooGDB	database
477	(http://forestry.fafu.edu.c	n/db/PhePacBio/dow	nload.php) [33]. GATA protein
478				
	sequences from Arabido	psis and rice were obt	tained from previo	ous published data [9].
479	sequences from Arabidop We performed multiple se	-	-	-
479 480	-	equence blast and alig	mment with an exp	bected value of 10. The
	We performed multiple se	equence blast and alig GATA domain (PF00	mment with an exp	bected value of 10. The http://pfam.xfam.org/)
480	We performed multiple set HMMER profile of the 0	equence blast and alig GATA domain (PF00 amboo protein databas	mment with an exp 320) from Pfam (se with a threshold	bected value of 10. The http://pfam.xfam.org/) d: e-values < 10 ⁻⁵ [46].

484 and isoelectric points (PI) of bamboo GATA factors were predicted by ProtParam

485 (https://web.expasy.org/protparam/).

486 **Phylogenetic tree, conserved domain, motif recognition and** *cis***-elements analysis**

- 487 Multi-sequence alignment of the GATA protein sequences was carried out by ClustalX
- 488 [47], and phylogenetic tree was constructed using MEGA7 by the Neighbour-Joining
- 489 method (bootstrap analysis for 1000 replicates) [48]. Conserved domains were obtained
- 490 from NCBI (https://www.ncbi.nlm.nih.gov/cdd) [49] and motifs were analyzed using
- 491 MEME with default parameters (version 5.0.5, http://meme-suite.org/tools/meme) [50].
- 492 For cis-elements analysis, DNA sequences from 1.5-kb upstream region of each
- 493 PeGATA gene were used to scan any potential cis-element using the PlantCARE

494 database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [51].

- 495 Subcellular localization analysis
- 496 To verify the location of PeGATAs, the full-length CDSs without stop codon from four

497 PeGATA genes were cloned into a modified pCambia3301 vector with C-terminal GFP

- 498 as described in our previous study [1]. The ACTIN2::PeGATAs-GFP and the
- 499 ACTIN2::GFP control constructs were then transiently transformed into tobaccos, and

- 500 GFP and DAPI fluorescence was observed using a microscope (20x, Zeiss,
- 501 LSM880). .

502 Gene expression analysis

- 503 To investigate gene expression levels of the PeGATA genes in different tissues or
- both hormone treatments, RNA-seq data was downloaded from Short Read Archive (SRA)
- database for the lateral buds, rhizome tips and new shoot tips (SRP093919) [2], and
- bamboo seedlings under GA and auxin treatment (SRP119416 and SRP109631) [28,
- 507 40], respectively. The pair-end reads were mapped to the moso bamboo reference
- 508 genome using tophat2, and differential expressed genes were detected by cufflinks with
- 509 defaults parameters [52].

510 Plant materials and qRT-PCR analysis

- 511 The moso bamboo shoots used in this study were collected in JianOu County (E118°28';
- 512 N27°00'), Fujian Province, China. The middle internode of different height of bamboo
- 513 shoots were sampled and stored in liquid nitrogen immediately.
- 514 qRT-PCR analysis was performed for each member of the GATA family genes during
- 515 the rapid-growth of bamboo shoots. Total RNA was extracted from the bamboo

530	Competing interests
529	Declarations
528	The primers used in this study were listed in Additional file 7: Table S7.
527	were measured using ImageJ[1].
526	used for phenotype analysis. The primary root length, plant height and hypocotyl length
525	procedures for the <i>PeGSK1</i> in our previous study[1]. The T3 generation seedlings were
524	The PeGATA26 was cloned and expressed in Arabidopsis exactly following the
523	Ectopic expression analysis
522	72 °C for 30 s.
521	was used for qRT-PCR: 95 °C for 5 min; 40 cycles of 95 °C for 10 s, 60 °C for 10 s and
520	ChemoHS qPCR Mix (Monad, RN04002M) in a 20 μ l reaction. The following program
519	using the CDS of each PeGATA gene. qRT-PCR were performed using MonAmp TM
518	RN05004M). Primers for qRT-PCR were designed on Primer3 (http://primer3.ut.ee/)
517	taken for reverse transcription into cDNA using a commercial Kit (Monad,
516	samples using HiPure Plant RNA Mini Kit (Magen, R4151-02) and $1\mu g$ RNA was

531 The authors declare that they have no competing interests.

532 Funding

533	This work was supported by the National Natural Science Foundation of China (Nos.
534	31741025 and 31500258 to L.M), the Outstanding Youth Research Talents
535	Development Program in Fujian Province University to Liuyin Ma, the Outstanding
536	Youth Research Talents Program of Fujian Agriculture and Forestry University (No.
537	KXJQ17011 to L.M.), and the Scientific Research Foundation of the Graduate School
538	of Fujian Agriculture and Forestry University (to T.W.).
539	Author contributions
540	T.W., C.L., and L.M. conceived the ideas. T.W. and W.W. performed the experiments.
541	T.W., Y.Y., S.L. and Z.Z. contributed to data analysis. T.W. and L.M. wrote the
542	manuscript.
543	Figure legends
543 544	Figure legends Fig. 1 Alignment of the amino acid sequences of bamboo GATA factors. The GATA

547 **Fig. 2** Schematic diagram of conserved domain analysis in bamboo GATA proteins.

548 Each color represents a different motif.

549	Fig. 3 Phylogenetic analysis of GATA factors in bamboo, rice and Arabidopsis. The
550	phylogenetic tree was made based on the amino acid sequences using MEGA7.0 by
551	the neighbor-joining method with 1000 bootstrap replicates. The tree shows four
552	major phylogenetic classes (Classes A to D) indicated by different colors.
553	\Box Fig. 4 Phylogenetic analysis and gene structure of bamboo GATA factors. (a)
554	Phylogenetic tree construction of the PeGATA factors based on the amino acid
555	sequences using MEGA 7.0. The tree showed three major phylogenetic subfamilies
556	(subfamilies I to $\ \bullet$) , represented by different colored backgrounds. (b) CDS/UTR
557	structure of the <i>PeGATA</i> genes. The yellow and green boxes indicate exons and UTRs,
558	and the black lines represent introns. The size of exons and introns can be estimated
559	using the scale at the bottom.
560	Fig. 5 Cis-elements analysis in the promoter of bamboo GATA genes. (a): Overview
561	of the main types of cis-elements identified from the 1.5-kb upstream sequence of the
562	bamboo GATA genes by the PLANTCARE database. (b): Hormone related
563	cis-elements were analyzed and each colored block with numbers represents the

564 number of *cis*-elements in the bamboo GATA promoter.

565	Fig. 6 Subcellular localization analysis of bamboo GATA factors. The bamboo
566	GATA genes were cloned and constructed in a modified pCambia3301 vector with a
567	C-terminal GFP fusion. These vectors were transformed into tobacco, and the GFP
568	and DAPI signals were captured from the identical areas by microscopy (20x).
569	Fig. 7 Expression profiles of bamboo GATA genes in different tissues and hormone
570	treatment. (a): The gene expression of 31 bamboo GATA genes in different rhizome
571	tissues was presented by heatmap. (b) and (c): The expression of bamboo GATA
572	genes in the seedlings under GA and auxin treatment. Expression values were
573	normalized and presented at the right side, and green represents lower expression
574	level and red indicates a higher expression level.
575	Fig. 8 The expression level of GATA genes in bamboo shoots. The gene expression
576	values were detected by qRT-PCR. The Y-axis and X-axis indicate relative expression
577	level at different height of shoots. S1: 0.15 m shoots; S2: 0.5 m shoots; S3: 1.6 m
578	shoots; S4: 4.2 m shoots; S5: 9 m shoots.
579	Fig. 9 Ectopic expression of <i>PeGATA26</i> inhibits the plant height of Arabidopsis. (a):

580	Overexpression	of	PeGATA26	resulted	in	а	dwarf	phenotype	in	Arabidopsis.	(b):

581	The expression level of <i>PeGATA26</i> were detected in both transgenic with the <i>ACTIN2</i>
582	gene as an internal control. (c): Phenotypic analysis of plant height, hypocotyl length
583	and primary root length in PeGATA26 overexpressing line 1 compared to control.
584	They all have significant differences compared to the control by the t-test: $P \le 0.0001$,
585	which was represented by four stars in the figure. (d): Overexpression of PeGATA26
586	repressed plant height of Arabidopsis and PeGATA26-ox1 was resistant to exogenous
587	GA treatment. (e): The expression of GA signaling genes in the PeGATA26-ox1 was
588	similar to that of GA biosynthesis mutants-gal. The expression of GA signaling genes
589	was detected by qRT-PCR and the ACTIN2 was used as the internal control.
590	
591	SUPPORTING INFORMATION

592 Additional files

593 Additional file 1: Table S1. The coding region sequences of *PeGATA* genes.

594 Additional file 2: Table S2. The amino acid sequences of PeGATA factors.

595 Additional file 3: Table S3. List of protein motifs identified in PeGATA factors.

596 Additional file 4: Table S4. Gene expression of *PeGATA* genes in different rhizome

- 597 tissues.
- 598 Additional file 5: Table S5. Gene expression of *PeGATA* genes under GA treatment.
- 599 Additional file 6: Table S6. Gene expression of *PeGATA* genes under auxin
- 600 treatment.
- 601 Additional file 7: Table S7. List of primers used in this study.
- 602

603 **References**

- Wang T, Li Q, Lou S, Yang Y, Peng L, Lin Z, Hu Q, Ma L: GSK3/shaggy-like kinase 1
 ubiquitously regulates cell growth from Arabidopsis to Moso bamboo
 (Phyllostachys edulis). *Plant Sci* 2019, 283:290-300.
- Wang T, Wang H, Cai D, Gao Y, Zhang H, Wang Y, Lin C, Ma L, Gu L:
 Comprehensive profiling of rhizome-associated alternative splicing and
 alternative polyadenylation in moso bamboo (Phyllostachys edulis). *Plant J* 2017,
 91:684-699.
- 611 3. Lowry JA, Atchley WR: Molecular evolution of the GATA family of transcription
 612 factors: conservation within the DNA-binding domain. J Mol Evol 2000,
 613 50:103-115.
- 614 4. Scazzocchio C: The fungal GATA factors. Curr Opin Microbiol 2000, 3:126-131.
- 615 5. Katsumura KR, Bresnick EH, Group GFM: The GATA factor revolution in
 616 hematology. *Blood* 2017, 129:2092-2102.
- 617 6. Patient RK, McGhee JD: The GATA family (vertebrates and invertebrates). Curr
 618 Opin Genet Dev 2002, 12:416-422.
- 619 7. Crispino JD, Horwitz MS: GATA factor mutations in hematologic disease. *Blood*620 2017, 129:2103-2110.
- 621 8. Teakle GR, Gilmartin PM: Two forms of type IV zinc-finger motif and their

bioRxiv preprint doi: https://doi.org/10.1101/744003; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

622		kingdom-specific distribution between the flora, fauna and fungi. Trends
623		<i>Biochem Sci</i> 1998, 23 :100-102.
624	9.	Reyes JC, Muro-Pastor MI, Florencio FJ: The GATA family of transcription factors
625		in Arabidopsis and rice. Plant Physiol 2004, 134:1718-1732.
626	10.	Zhang C, Hou Y, Hao Q, Chen H, Chen L, Yuan S, Shan Z, Zhang X, Yang Z, Qiu D <i>et</i>
627		al: Genome-wide survey of the soybean GATA transcription factor gene family
628		and expression analysis under low nitrogen stress. PLoS One 2015,
629		10 :e0125174.
630	11.	Zhang Z, Ren C, Zou L, Wang Y, Li S, Liang Z: Characterization of the GATA gene
631		family in Vitis vinifera: genome-wide analysis, expression profiles, and
632		involvement in light and phytohormone response. Genome 2018, 61:713-723.

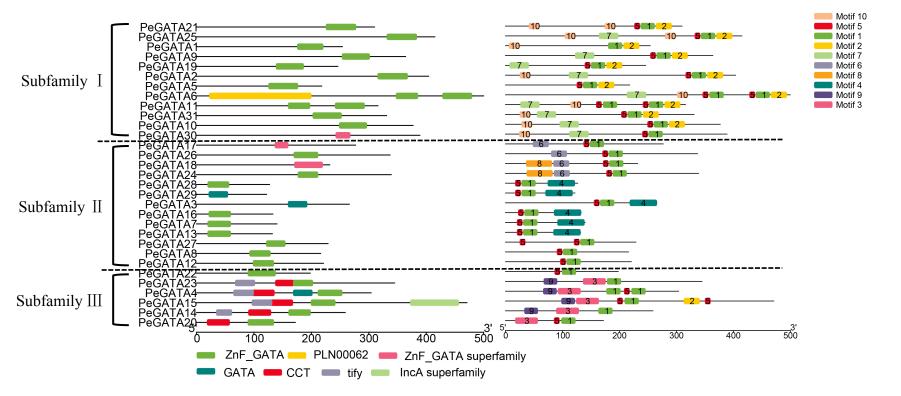
- Tremblay M, Sanchez-Ferras O, Bouchard M: GATA transcription factors in
 development and disease. *Development* 2018, 145:dev164384.
- 635 13. Terzaghi WB, Cashmore AR: Light-regulated transcription. Annual Review of Plant
 636 Physiology and Plant Molecular Biology 1995, 46:445-474.
- 637 14. Daniel-Vedele F, Caboche M: A tobacco cDNA clone encoding a GATA-1 zinc
 638 finger protein homologous to regulators of nitrogen metabolism in fungi. *Mol*639 *Gen Genet* 1993, 240:365-373.
- 640 15. Chen H, Shao H, Li K, Zhang D, Fan S, Li Y, Han M: Genome-wide identification,
 641 evolution, and expression analysis of GATA transcription factors in apple
 642 (Malus×domestica Borkh.). Gene 2017, 627:460-472.
- Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, Chen X, Zhu T, Bi Y-M, Rothstein SJ:
 Rice cytokinin GATA transcription Factor1 regulates chloroplast development
 and plant architecture. *Plant Physiol* 2013, 162:132-144.
- Richter R, Bastakis E, Schwechheimer C: Cross-repressive interactions between
 SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold
 tolerance, and flowering time in Arabidopsis. *Plant Physiol* 2013, 162:1992-2004.
- Shikata M, Matsuda Y, Ando K, Nishii A, Takemura M, Yokota A, Kohchi T:
 Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA
 factor gene family. J Exp Bot 2004, 55:631-639.
- Liu P-P, Koizuka N, Martin RC, Nonogaki H: The BME3 (Blue Micropylar End 3)
 GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed
 germination. *Plant Journal* 2005, 44:960-971.

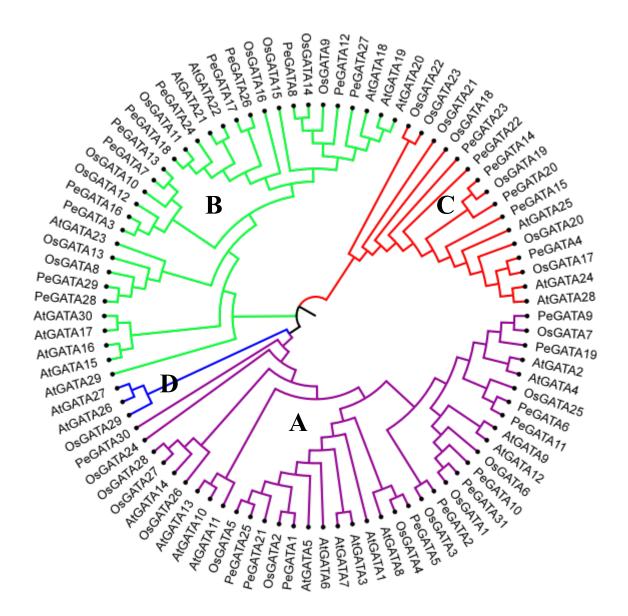
655	20.	Fu YH, Marzluf GA: nit-2, the major nitrogen regulatory gene of Neurospora
656		crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol
657		<i>Cell Biol</i> 1990. 10 :1056-1065.

- Richter R, Behringer C, Müller IK, Schwechheimer C: The GATA-type transcription
 factors GNC and GNL/CGA1 repress gibberellin signaling downstream from
 DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. *Genes Dev* 2010,
 24:2093-2104.
- Luo X-M, Lin W-H, Zhu S, Zhu J-Y, Sun Y, Fan X-Y, Cheng M, Hao Y, Oh E, Tian M *et al*: Integration of light- and brassinosteroid-signaling pathways by a GATA
 transcription factor in Arabidopsis. *Dev Cell* 2010, **19**:872-883.
- Richter R, Behringer C, Zourelidou M, Schwechheimer C: Convergence of auxin and
 gibberellin signaling on the regulation of the GATA transcription factors GNC
 and GNL in Arabidopsis thaliana. *Proc Natl Acad Sci U S A* 2013, **110**:13192-13197.
- Buzby JS, Yamada T, Tobin EM: A light-regulated DNA-binding activity interacts
 with a conserved region of a Lemna gibba rbcS promoter. *Plant Cell* 1990,
 2:805-814.
- 671 25. Carre IA, Kay SA: Multiple DNA-Protein Complexes at a Circadian-Regulated
 672 Promoter Element. Plant Cell 1995, 7:2039-2051.
- Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T: Characterization of a unique
 GATA family gene that responds to both light and cytokinin in Arabidopsis
 thaliana. *Biosci Biotechnol Biochem* 2007. **71**:1557-1560.
- Li L, Cheng Z, Ma Y, Bai Q, Li X, Cao Z, Wu Z, Gao J: The association of hormone
 signalling genes, transcription and changes in shoot anatomy during moso
 bamboo growth. *Plant Biotechnol J* 2018, 16:72-85.
- Zhang H, Wang H, Zhu Q, Gao Y, Wang H, Zhao L, Wang Y, Xi F, Wang W, Yang Y et *al*: Transcriptome characterization of moso bamboo (Phyllostachys edulis)
 seedlings in response to exogenous gibberellin applications. *BMC Plant Biol*2018, 18:125-125.
- 29. Zhao H, Lou Y, Sun H, Li L, Wang L, Dong L, Gao Z: Transcriptome and
 comparative gene expression analysis of Phyllostachys edulis in response to
 high light. *BMC Plant Biol* 2016, 16:34-34.
- 68630.Liu H-L, Wu M, Li F, Gao Y-M, Chen F, Xiang Y: TCP Transcription Factors in Moso687Bamboo (Phyllostachys edulis): Genome-Wide Identification and Expression

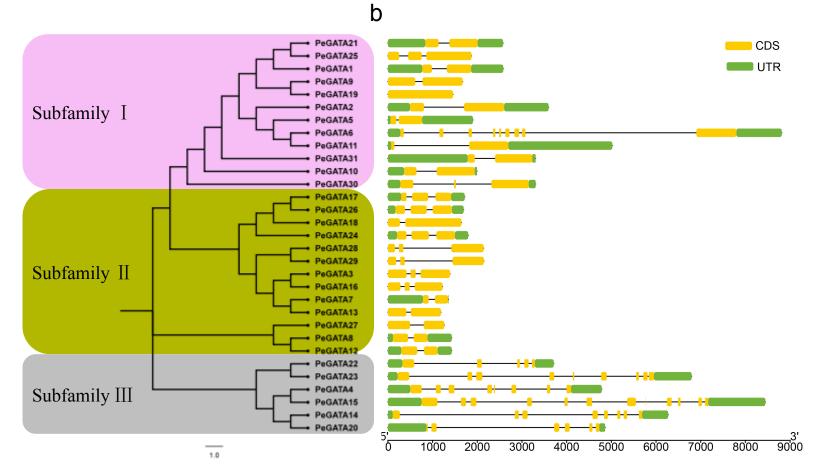
688 Analysis. Front Plant Sci 2018, 9:1263-1263.

- 689 31. Cheng X, Xiong R, Yan H, Gao Y, Liu H, Wu M, Xiang Y: The trihelix family of
 690 transcription factors: functional and evolutionary analysis in Moso bamboo
 691 (Phyllostachys edulis). *BMC Plant Biol* 2019, **19**:154-154.
- Hou D, Cheng Z, Xie L, Li X, Li J, Mu S, Gao J: The R2R3MYB Gene Family in
 Phyllostachys edulis: Genome-Wide Analysis and Identification of Stress or
 Development-Related R2R3MYBs. *Front Plant Sci* 2018, 9:738.
- 695 33. Peng Z, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y *et al*: The draft
 696 genome of the fast-growing non-timber forest species moso bamboo
 697 (Phyllostachys heterocycla). *Nat Genet* 2013, 45:456-461.
- 69834.Jeong MJ, Shih MC: Interaction of a GATA factor with cis-acting elements699involved in light regulation of nuclear genes encoding chloroplast700glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys701Res Commun 2003, 300:555-562.
- Chiang Y-H, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber
 JJ, Schaller GE: Functional characterization of the GATA transcription factors
 GNC and CGA1 reveals their key role in chloroplast development, growth, and
 division in Arabidopsis. *Plant Physiol* 2012, 160:332-348.
- Kobayashi K, Obayashi T, Masuda T: Role of the G-box element in regulation of
 chlorophyll biosynthesis in Arabidopsis roots. *Plant Signal Behav* 2012,
 708 7:922-926.
- Yang X, Yang Y-N, Xue L-J, Zou M-J, Liu J-Y, Chen F, Xue H-W: Rice ABI5-Like1
 regulates abscisic acid and auxin responses by affecting the expression of
 ABRE-containing genes. *Plant Physiol* 2011, 156:1397-1409.
- 38. Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, Machida Y,
 Watanabe A: A novel cis-acting element in promoters of plant B-type cyclin
 genes activates M phase-specific transcription. *Plant Cell* 1998, **10**:331-341.
- Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C: Dynamic allocation and transfer of
 non-structural carbohydrates, a possible mechanism for the explosive growth
 of Moso bamboo (Phyllostachys heterocycla). Sci Rep 2016, 6:srep25908.
- Wang W, Gu L, Ye S, Zhang H, Cai C, Xiang M, Gao Y, Wang Q, Lin C, Zhu Q:
 Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis,
 transport and signaling family genes in moso bamboo (Phyllostachys)


	721	heterocycla). BMC Genomics 2017, 18:870-870.
--	-----	--


- Sun H, Wang S, Lou Y, Zhu C, Zhao H, Li Y, Li X, Gao Z: Whole-Genome and
 Expression Analyses of Bamboo Aquaporin Genes Reveal Their Functions
 Involved in Maintaining Diurnal Water Balance in Bamboo Shoots. *Cells* 2018,
 725 7:pii: E195.
- Jiang K, Yung V, Chiba T, Feldman LJ: Longitudinal patterning in roots: a
 GATA2-auxin interaction underlies and maintains the root transition domain. *Planta* 2018, 247:831-843.
- Kollmer I, Werner T, Schmulling T: Ectopic expression of different
 cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters
 plant growth and development. *J Plant Physiol* 2011, **168**:1320-1327.
- Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM: Transcription repressor
 HANABA TARANU controls flower development by integrating the actions of
 multiple hormones, floral organ specification genes, and GATA3 family genes in
 Arabidopsis. *Plant Cell* 2013, 25:83-101.
- Ravindran P, Verma V, Stamm P, Kumar PP: A Novel RGL2-DOF6 Complex
 Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a
 GATA Transcription Factor. *Mol Plant* 2017, **10**:1307-1320.
- Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K,
 Eddy SR, Sonnhammer ELL *et al*: The Pfam protein families database. *Nucleic Acids Res* 2008. 36:D281-D288.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X
 windows interface: flexible strategies for multiple sequence alignment aided by
 quality analysis tools. *Nucleic Acids Res* 1997, 25:4876-4882.
- Kumar S, Stecher G, Tamura K: MEGA7: Molecular Evolutionary Genetics
 Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 2016, 33:1870-1874.
- Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK,
 Geer RC, Gonzales NR *et al*: CDD/SPARCLE: functional classification of proteins
 via subfamily domain architectures. *Nucleic Acids Res* 2017, 45:D200-D203.
- Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA
 and protein sequence motifs. *Nucleic Acids Res* 2006, 34:W369-W373.
- 51. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts
 S: PlantCARE, a database of plant cis-acting regulatory elements and a portal to

bioRxiv preprint doi: https://doi.org/10.1101/744003; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.


- 754 tools for in silico analysis of promoter sequences. Nucleic Acids Res 2002,
- 755 **30**:325-327.
- 756 52. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D, Pimentel H, Salzberg S, Rinn
- 757 J, Pachter L: Differential gene and transcript expression analysis of RNA-seq
- 758 experiments with TopHat and Cufflinks. *Nat Protoc* 2012, **7**:562-578.
- 759

PeGATA21				SVRYKSGRLLPEYRPACSPTFVNALHS	55		
PeGATA2	5 RI	CSHCGVQK.		SVRYKSGRLLPEYRPACSPTYVSALHS	55		
PeGATA1		.SHCGVQK.		GVRYKSGRLLPEYRPACSPTFVGSIHSNSH	55		
PeGATA9	RI	CTHCASEK.	. TFCWRTGFLGFKTLCNAC	GVRFKSGRLMPEYRPAASPTFVLTQHS	55		
PeGATA19	9 RI	CTHCGSEK.	. TE <mark>CWRTGELGAKTLCNAC</mark>	GVRFKSGRLMPEYRPAASPTFVLTQHS	Class 55		
PeGATA2	R	CTHCQIEK.	. TF <mark>CWRAGFLGFKTLCNAC</mark>	GVRYKSGRLFPEYRPAASPTFVPSIHS	55		
PeGATA5	R	CTHCAVEE.	.TFCWRLGFDGFRTLCNAC	GVRFKSGRLFPEYRPANSPTFSPLLHS	A 55		
PeGATA6	KI	CTHCMSYK.	.TF <mark>CWRAGFLGFKTLCNAC</mark>	GVRFKSGRLLPEYRPANSPTFVSYMHS	55		
PeGATA11	l <mark>Ki</mark>	CTHCMSYK.	.TF <mark>CWRA</mark> GFLGF <mark>KT</mark> LCNAC	GVRFKSGRLLPEYRPANSPTFVSYMHS	55		
PeGATA31	L RI	CLHCETDK.	.TEQWRTGEMGEKTLCNAC	GVRYKSGRLVQEYRPAASPTFMVSKHS	55		
PeGATA1() MI	CLHCETDR.	.TP <mark>QWRT</mark> GPMGPKTLCNAC	GVRYKSGRLVPEYRPAASPTFMVSKHS	55		
PeGATA3(D RI	CLHCETDK.	.TP <mark>QWRT</mark> GPMGPKTLCNDA	VQ <mark>RVR</mark> GAVQVGAAG <mark>AG</mark> VPAVGEPDL <mark>R</mark> R	55		
PeGATA1	7 R	CSDCNTTK.	.TELWRSGECGEKAAEGAA	GDDGL <mark>RG</mark> .GAKVGT <mark>P</mark> SDA <mark>AT</mark> AHPKVKKE	55		
PeGATA2	5 R	CSDCNTTK.	.TFLWRSGFRGFKSLCNAC	GIRQRKA.RRAMMAS.GASTEGAKVGTPS	55		
PeGATA18	B R'	CSDCNTTK.	.TFLWRSGFCGFKVKLLSF	HPLSLIF.MCSMCNFASYRVLQVVTLIF	55		
PeGATA24	t R	CLDCNTTK.	.TFLWRSGFCGFKSLCNAC	GIRQRKA.RRAMAAVTAAAANGGAAGVG	55		
PeGATA28	B R:	CVECRTTT.	.TEMWRGGETGERSLCNAC	GIRYRKK.RRQELGQDQKQF.QQHRGEAT	55		
PeGATA29	э т:	CVECGTTT.	.TEMWRGGETRERSLCNAC	GIRYRKK.RRQELGLDQKQQQHHGEATT	55		
PeGATA3	K	CTDCHTTK.	.TFLWRGGFSGFKSLCNAC	GIRYRKK.RREALGLDAGEGAEQQQQKK	Class 55		
PeGATA1(5 <mark>K</mark> 2	CTDCHTTK.	.TELWRGGESGEKSLCNAC	GIRYRKK.RREALGLDAGEGAEQQQKKK	B 55		
PeGATA7	K	CADCHTTK.	.TELWRGGETGEKSLCNAC	GIRYRKR.RRQALGLDATETEGAEQQQQ	55		
PeGATA13	s Ki	CADCHTTK.	.TELWRGGETGEKSLCNAC	GIRYRKR.RROALGLEAAA.EGAEOOOK	55		
PeGATA2	7 RI	CANCGTTS.	.TELWRNGERGEKSLCNAC	GIRFKKEERRAAAAAAESGGAWCGYSAQ	55		
PeGATA8	R	CANCDTTS.	.TELWRNGERGEKSLCNAC	GIRYKKEERRAAAAVAPPPPQDSGVGY	55		
PeGATA12	2 N2	CANCDTTS.	.TELWRNGERGEKSLCNAC	GIRYKKEERRAAAAAVAPTALPSDSGV	55		
PeGATA22	2 II	CONCGTSEK	MTFAMRRGFAGF <mark>RT</mark> LCNAC	GLMWANKGTLRSCPKANVEAPLVTI	55		
PeGATA23	3 LI	CONCGTSEK	MTFAMRRGFAGF <mark>RT</mark> LCNAC	GLMWANKFLFYYFLWAWRKLFVDEQ	55		
PeGATA4	SI	CHHCGASAT	OTEMMERGEDGERTLCNAC	GLMWANKILVLEATSRCHHCGASAT	Class 55		
PeGATA1	5 SI	CH <mark>HCG</mark> ISAT:	LTEMMRRGEDGERMLCNAC	GLMWANKGMMRDLS.KAPTAPLRVVP	55		
PeGATA14	ł.	THSR	LTFAMRRGFTGFRSLCNAC	GLKWANKGTLRS.PLNAPKVTVQHPTNLSKMC	C 54		
PeGATA2) TI	CONCGISSR:	LTFAMRRGFAGFRSLCNAC	GLMWANKGTLRS.PLNAPKMTLQHPA	55		
* * GATA motif * *							
	40-1	AA	GATA mou				
	0.0	5 10	15 20 25	30 35 40 45 50 55 WebLoge 3.6.0			

а

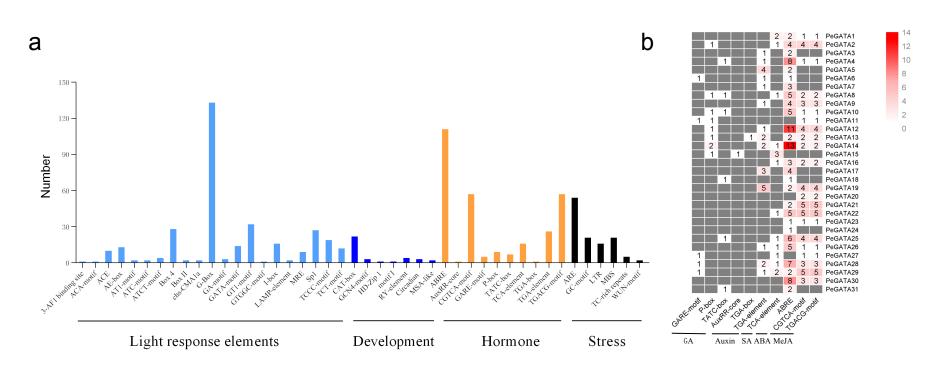
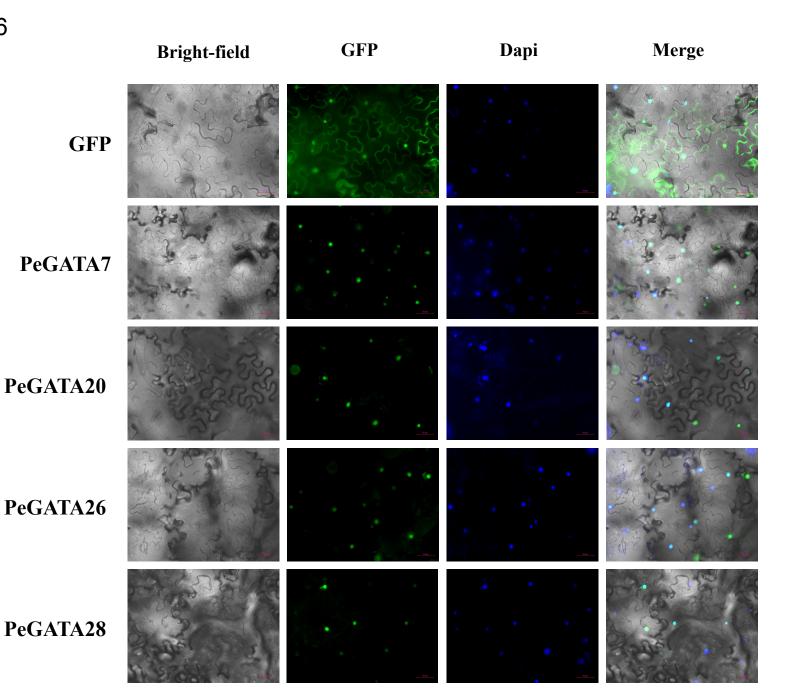
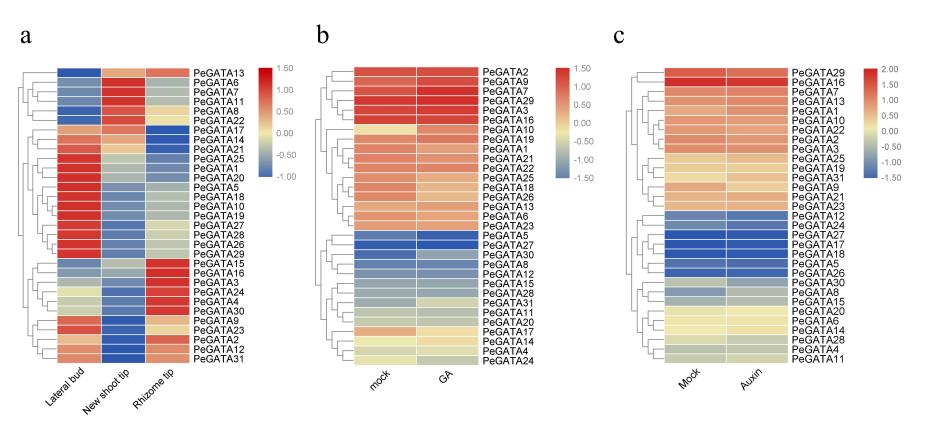
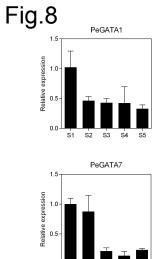





Fig.6

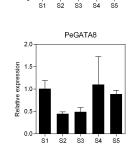
0.0

1.5

1.0

0.5

S1

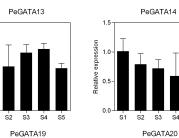

ative expression

ň 0.0

sion

expres

S1 S2

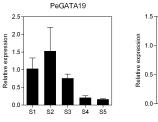


S4 S5

PeGATA2

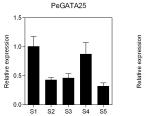
3

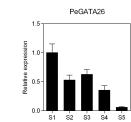
Relative expression -5



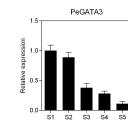
1.5-

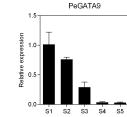
1.0

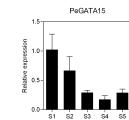

0.0

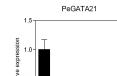

expr

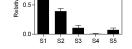
S3 S4

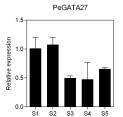

s5

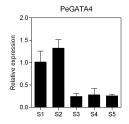





S1 S2 S3 S4


S5





PeGATA10

S1 S2 S3 S4

PeGATA16

PeGATA22

S4 S5

PeGATA28

S1 S2 S3 S4 S5

S5

2.0

1.0

0.0

1.5

uoissa 1.0-

0.5

0.0

1.5

S 1.0-

0.5-

0.0

1.5

1.0

0.5

0.0

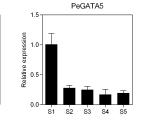
ession

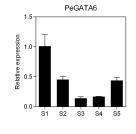
exp

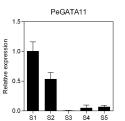
lativ

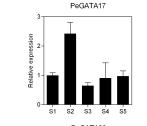
å

s1 s2 s's

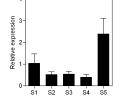

s1 s2 S3 S4 S5

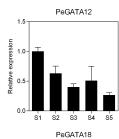

axpr

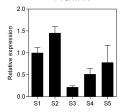

ession 1.5

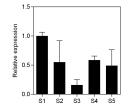

expr


å 05

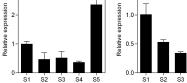


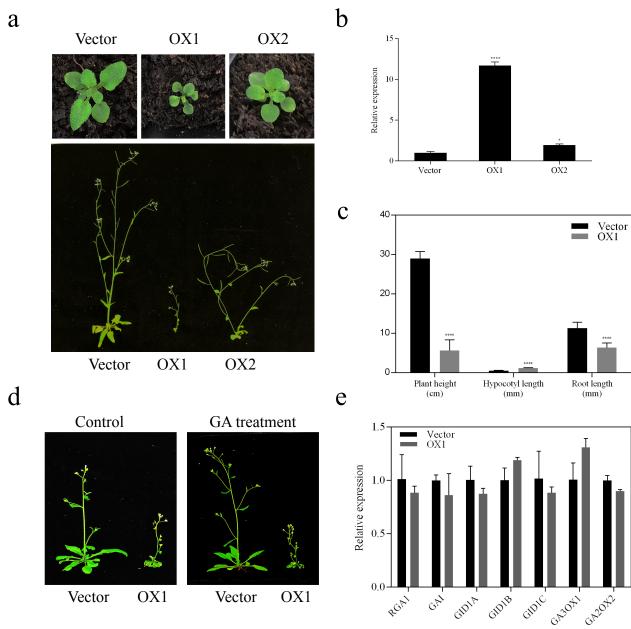






PeGATA24


PeGATA30


ativ

å

PeGATA31

s4 S5

