
 

Comprehensive longitudinal study of epigenetic mutations in 1 

aging 2 

Yunzhang Wang1, Robert Karlsson1, Juulia Jylhävä1, Åsa K. Hedman2,3, Catarina Almqvist1,4, Ida K. 3 

Karlsson1,5, Nancy L. Pedersen1, Malin Almgren6, Sara Hägg1 4 

 5 

1.  Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 6 

Sweden 7 

2.  Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden 8 

3.  Pfizer Worldwide Research and Development, Stockholm, Sweden 9 

4.  Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden 10 

5.  Institute of Gerontology and Aging Research Network – Jönköping (ARN-J), School of Health 11 

and Welfare, Jönköping University, Jönköping, Sweden 12 

6.  Department of Clinical Neuroscience, Centrum for Molecular Medicine, Karolinska Institutet, 13 

Stockholm, Sweden 14 

 15 

Email: yunzhang.wang@ki.se; robert.karlsson@ki.se; juulia.jylhava@ki.se; asa.hedman@ki.se; 16 

Catarina.almqvist@ki.se; ida.karlsson@ki.se; nancy.pedersen@ki.se; malin.almgren@ki.se; 17 

sara.hagg@ki.se 18 

 19 

*Corresponding author: 20 

Dr. Sara Hägg, Associate Professor, Department of Medical Epidemiology and Biostatistics, 21 

Karolinska Institutet, Nobels väg 12A, Stockholm 17177, Sweden,  22 

Phone:  +46-8-524 82236 23 

  24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744250doi: bioRxiv preprint 

https://doi.org/10.1101/744250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Abstract  25 

Background: The role of DNA methylation in aging has been widely studied. However, epigenetic 26 

mutations, here defined as aberrant methylation levels compared to the distribution in a 27 

population, are less understood. Hence, we investigated longitudinal accumulation of epigenetic 28 

mutations, using 994 blood samples collected at up to five time points from 375 individuals in old 29 

ages.  30 

Results: We verified earlier cross-sectional evidence on the increase of epigenetic mutations with 31 

age, and identified important contributing factors including sex, CD19+ B cells, genetic 32 

background, cancer diagnosis and technical artifacts. We further classified epigenetic mutations 33 

into High/Low Methylation Outliers (HMO/LMO) according to their changes in methylation, and 34 

specifically studied methylation sites (CpGs) that were prone to mutate (frequently mutated 35 

CpGs). We validated four epigenetically mutated CpGs using pyrosequencing in 93 samples. 36 

Furthermore, by using twins, we concluded that the age-related accumulation of epigenetic 37 

mutations was not related to genetic factors, hence driven by stochastic or environmental effects.  38 

Conclusions: Here we conducted a comprehensive study of epigenetic mutation and highlighted 39 

its important role in aging process and cancer development.  40 

 41 
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Introduction 44 

Epigenetic processes, among which DNA methylation is one of the most well studied, are 45 

fundamental in human aging [1]. Studies on DNA methylation have identified age-associated 46 

changes in methylation levels shared by individuals [2,3], and have also reported an increasing 47 

divergence of methylation levels between individuals with age [4,5].  48 

Epigenetic mutations, defined as aberrant methylation levels that can lead to unusual gene 49 

expression, may be involved in cancer development and important for human aging [6,7]. Unlike 50 

age-associated changes in methylation levels that are shared among individuals, the incidences of 51 

epigenetic mutations are rare, stochastic and inconsistent between individuals. Epigenetic 52 

mutations can partly explain the increasing variability of methylation levels between individuals 53 

over time, but the extreme methylation levels may concur stronger biological consequences, such 54 

as cancer. Epigenetic mutations could contribute to the aging process through the accumulation 55 

of abnormally methylated CpGs (cytosine-phosphatase-guanine sites), which could further cause 56 

abnormal gene expression and downstream effects in tissues. A previous study by Gentilini et al 57 

[7] specifically defined epigenetic mutations as extreme outliers within a population, with 58 

methylation levels exceeding three times interquartile ranges (IQR) of the first quartile (Q1-3 × 59 

IQR) or the third quartile (Q3+3 × IQR). They found that the total numbers of epigenetic 60 

mutations increased exponentially with age. However, since this finding was based on a cross-61 

sectional study, it needs to be validated in a longitudinal setting, where the accumulation of 62 

epigenetic mutations over time can be followed within the same individuals. Moreover, it is not 63 

yet known what the clinical consequences of accumulated epigenetic mutations are, and if 64 

individuals with a high burden of epigenetic mutations are prone to develop cancer as previously 65 
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suggested [6,8].  66 

In this study, we used a Swedish twin cohort including 375 individuals sampled up to five times in 67 

late life across 18 years (Table 1). We first validated the age-related increase of epigenetic 68 

mutations from a longitudinal perspective. Next, we identified important factors associated with 69 

the number of epigenetic mutations, including sex, cellular composition (CD19 B-cells), genetic 70 

background and technical artifacts. In parallel, we analyzed the direction of change in 71 

methylation level and characterized the epigenetic mutations as High- (HMO) and Low 72 

Methylation Outliers (LMO). We also studied the association between epigenetic mutations and 73 

cancer, as well as the genetic influence on epigenetic mutations using a twin approach. Last, we 74 

validated a select set of epigenetic mutations using bisulfite pyrosequencing. 75 

Results 76 

Longitudinal accumulation of epigenetic mutations is exponentially 77 

associated with age 78 

To explore the longitudinal increase in number of epigenetic mutations, we measured DNA 79 

methylation data (Illumina 450k array) repeatedly in whole blood samples (n=994) from 80 

participants in the Swedish Adoption/Twin Study of Aging (SATSA; Table 1) [9]. To avoid 81 

confounding by underlying genetic variation, we removed 20,660 CpGs that were associated with 82 

at least one single nucleotide polymorphism (SNP) (p<1e-14) within 1 Mbps (mega base pairs), i.e. 83 

cis-methylation quantitative loci (cis-meQTLs). In the remaining 370,234 CpGs, the number of 84 

epigenetic mutations ranged from 58 to 26,291 in each sample, using the definition in Gentilini et 85 

al [7]. Across samples, the number of epigenetic mutations had a right-skewed distribution, 86 
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which was close to normal distribution after log10-transformation (Figure S1).  87 

After identifying epigenetic mutations in SATSA, we found that the log10 total number of 88 

epigenetic mutations increased with age (p=1.22e-13) longitudinally (Figure 1A). We also 89 

identified additional factors and confounders associated with the number of epigenetic 90 

mutations (Table 2). Women had a slightly higher average number of epigenetic mutations than 91 

men (p=6.33e-3). Low sample quality, as defined by the log10-transformed number of CpGs with 92 

detection p-values over 0.01, was positively associated with the total number of epigenetic 93 

mutations (p=1.48e-117). In general, unreliable samples tended to have more epigenetic 94 

mutations, indicating that measurement errors could also be identified as epigenetic mutations. 95 

However, after adjusting the mixed models for detection p-value, the effect of age on number of 96 

epigenetic mutations remained unchanged. Using predicted cellular compositions, CD19+ B cell 97 

composition was positively associated with the total number of epigenetic mutations (p=5.06e-98 

23). After removing cis-meQTLs, the first genetic principal component (PC) showed only a minor 99 

effect on the total number of epigenetic mutation (p=0.041). 100 

Out of all CpGs, 237,398 (64%) were defined as epigenetic mutations in at least one sample, but 101 

only 1,185 (0.32%) CpGs were mutated in more than 50 samples; subsequently defined as 102 

frequently mutated CpGs. Only two of the 1,185 frequently mutated CpGs were also identified to 103 

be age-differentially methylated sites (aDMS) in our previous study [3]. The frequently mutated 104 

CpGs were still significantly associated with age, sample quality, CD19+ B cell compositions and 105 

genetic PC1, while sex was no longer significant (Table 2). 106 

High/Low Methylation Outliers 107 

Compared to normal methylation levels in the population, epigenetic mutations can be either 108 
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higher or lower in methylation level. Hence, we defined HMO and LMO as CpGs with abnormally 109 

higher or lower methylation levels than the average (Figure S2). Of the defined epigenetic 110 

mutation sites, almost half were identified as HMOs and the other half as LMOs (118,259 HMOs 111 

and 119,175 LMOs). Thirty-six CpGs were defined as both HMOs and LMOs because those sites 112 

had intermediate methylation levels and very small IQRs. However, among the frequently 113 

mutated CpGs, there were significantly more HMOs than LMOs (969 and 216, p<1e-16) (Figure 2). 114 

Nevertheless, numbers of both sets of frequent mutations (log10-transformed) significantly 115 

increased with age (p=2.09e-17 for HMOs and p=1.14e-05 for LMOs) (Figure 1B and C). Sex was 116 

no longer a significant factor with either frequent HMOs or LMOs. The composition of CD19+ B 117 

cell was still strongly associated with HMOs (p=2.25e-12), but only marginally significant for 118 

LMOs (p=0.046). Sample quality, as measured by detection p-value, showed strong effects on 119 

both frequent HMOs and LMOs, however LMOs were much more influenced (p=8.09e-30) than 120 

HMOs (p=3.58e-8). Moreover, the first genetic principal component became a significant factor 121 

(p=7.65e-5) when analyzing frequent HMOs, while it had no effect on LMOs (p=0.92) (Table 2).    122 

Functional annotation of epigenetic mutations 123 

To characterize HMO and LMOs, we examined their locations in relation to CpG island regions 124 

and regulatory features. Compared to all CpGs analyzed, where 33.5% of CpGs locate in CpG 125 

islands, HMOs were enriched within CpG islands (63% of CpGs, p<1e-16) and frequent HMOs 126 

even more so (88% of CpGs, p<1e-16). On the other hand, LMOs were mostly located outside of 127 

CpG islands (88% CpGs outside of CpG islands, p<1e-16), but the opposite was true for frequent 128 

LMOs, which were enriched in CpG islands (51% of CpGs, p=8.6e-8) (Figure 3). We further 129 

explored regulatory features of the frequent epigenetic mutations using the Ensembl database 130 
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[10], and found that frequent HMOs were enriched in promoter regions (p=1.1e-10), but less 131 

likely to be found in CCCTC-Binding factor (CTCF) binding sites (p=1.4e-09) and regions of open 132 

chromatin (p=3.6e-07) (Figure 4A). The frequent LMOs, on the other hand, were enriched in CTCF 133 

(p=7.7e-12) and transcription factor binding sites (p=3.9e-05), open chromatin (p=0.0012), and 134 

promoter flanking regions (p=0.041), while depleted in promoter regions (p=6.9e-19) (Figure 4B). 135 

Epigenetic mutation is associated with cancer diagnosis 136 

As aberrant DNA methylation levels in gene regulatory regions may cause abnormal gene 137 

expression, which may be associated with cancer, we analyzed epigenetic mutations in relation to 138 

cancer diagnosis in the SATSA participants. Cancer diagnosis date was retrieved using linkage to 139 

The National Patient Registry (prior to May 2016) including ICD-codes for all cancer types (ICD7 140 

codes 140-205, ICD8 codes 140-209, ICD9 codes 140-208, ICD10 codes C00-C97 and B21). The 141 

SATSA participants included 29 prevalent cancer cases diagnosed already at baseline, and 79 142 

incident cases that developed cancer during the follow-up period. Hence, information on 143 

whether the participant was diagnosed with cancer by the end of the follow-up was tested in the 144 

mixed model for associations with log10-transformed numbers of epigenetic mutations. Samples 145 

of individuals with cancer, including samples before and after cancer diagnosis, were observed to 146 

have a higher number of frequent HMOs (p=0.013), but no associations were found for frequent 147 

LMOs (p=0.71, Table 2). Furthermore, in the survival analysis, people with a higher number of 148 

frequent HMOs had a higher risk of cancer incidence (Table S1). 149 

Epigenetic mutations are shared within twin pairs 150 

By applying a co-twin control design we could further study the genetic effect and the genetic-151 

age interaction in association with epigenetic mutations. We calculated the number of shared 152 

epigenetic mutations within a twin pair sampled at the same time, and studied their association 153 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744250doi: bioRxiv preprint 

https://doi.org/10.1101/744250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

with time and twin zygosity using a random effects model (Table 3). The numbers of shared 154 

epigenetic mutations were normalized in order to compare the effect sizes from different sets of 155 

CpGs. First, taking all CpGs into account (n=390,894), the number of shared epigenetic mutations 156 

increased significantly with age (�=0.019, p=0.026) and MZ pairs shared more epigenetic 157 

mutations than DZ pairs (�=1.078, p=3.41e-18). After excluding 20,660 cis-meQTL CpGs, the age 158 

effect became stronger (�=0.025, p=5.98e-3) while the zygosity effect was smaller (�=0.855, 159 

p=1.05e-11). Last, within the 20,660 cis-meQTL-CpGs, the number of shared epigenetic 160 

mutations was not associated with age (�=2.86e-4, p=0.969), while the zygosity difference 161 

(�=1.461, p=8.34e-28) was larger than in results from non-meQTL-CpGs. None of the three tests 162 

showed significant twin zygosity-age interaction or sex effect. 163 

Epigenetic mutations were validated using pyrosequencing 164 

To verify epigenetic mutations identified from 450k array, we selected four frequently mutated 165 

CpGs (One HMO: cg05270750, and three LMOs: cg17338133, cg25351353, cg05124918) in 93 166 

samples from 26 individuals for validation with pyrosequencing. In general, the pyrosequencing 167 

results were well correlated with methylation data measured by the 450k array (cg05270750: 168 

r=0.84; cg17338133: r=0.59; cg25351353: r=0.80; cg05124918: r=0.77). In addition, we compared 169 

methylation levels of mutated samples to the normal group using results from the 450k array and 170 

pyrosequencing respectively. In pyrosequencing data, significant differences were observed 171 

between mutated samples and normal ones, using the same definition of a mutated sample as 172 

that for the 450k array data (Table 4). Hence, pyrosequencing technically validated epigenetic 173 

mutations identified from the 450k array. Although the agreement between the two methods 174 

was generally good, we still observed large differences between pyrosequencing and 450k data in 175 
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some samples, where four samples in cg17338133 and six samples in cg 05124918 showed over 176 

15% methylation level differences between 450k array and pyrosequencing data after centering 177 

their mean methylation levels. This indicates that we might wrongly-detect or fail to detect 178 

epigenetic mutations from 450k chip data. In general, pyrosequencing data were more stable and 179 

changes in methylation levels were smoother than that from 450k array (Figure 5). For example, 180 

in cg05270750 measured by the 450k array (Figure 5E), one participant was identified to have 181 

epigenetic mutations in the first three measures, but the methylation level turned back to normal 182 

status in the last two measures. However, pyrosequencing data showed the methylation levels of 183 

the five measures from this individual were consistently defined as epigenetic mutations. 184 

Functional validation of epigenetic mutations in cancer tissues 185 

To further verify the overabundance of epigenetic mutations in cancer tissues, we picked a gene 186 

PR/SET domain 7 (PRDM7) which was the only gene related to CpGs tested in pyrosequencing 187 

(cg05270750), and analyzed DNA methylation and gene expression data of the gene in tumor 188 

tissues and normal adjacent tissues using The Cancer Genome Atlas (TCGA) [11] data 189 

downloaded from Wanderer [12]. We selected the four most common cancer types in both sexes 190 

combined: lung cancer, breast cancer, colorectal cancer and prostate cancer [13]. The total 191 

numbers of tumor and normal adjacent samples were 2,209 and 261 respectively, all cancer 192 

types combined. On average, the expression levels of PRDM7 were higher in tumor tissues than 193 

normal adjacent tissues in all cancer types, but the difference was only statistically significant for 194 

lung cancer (p=1.83e-09, Table S2). For DNA methylation data, the tumor tissues had significantly 195 

lower methylation levels than normal adjacent tissues in the gene body (Figure 6A).  However, for 196 

CpGs in the PRDM7 promoter (from cg06295223 to cg26935333), there was no significant 197 
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difference between the mean methylation levels of cancer and normal adjacent tissues (Figure 198 

6A). To quantify and compare epigenetic mutations in both tissues, we used the distribution of 199 

normal adjacent samples to determine epigenetic mutation cutoffs. By calculating the number of 200 

epigenetic mutations in tissue samples, tumor tissues had higher proportions of epigenetic 201 

mutations in the gene body, while epigenetic mutations were not observed in normal adjacent 202 

tissues. In the gene promoter, tumor and normal adjacent tissues had similar and relatively low 203 

proportions of epigenetic mutations (Figure 6B). 204 

Discussion 205 

In this study, we analyzed age-related accumulation of epigenetic mutations from a longitudinal 206 

perspective in old Swedish twins. Apart from being exponentially associated with age, epigenetic 207 

mutations were also associated with sex, CD19+ B cell count, genetic background, cancer 208 

incidence and technical factors. We further analyzed frequent HMOs and LMOs separately and 209 

found that biological factors, including B cell compositions and genetic factors, were more 210 

strongly associated with frequent HMOs than LMOs, while LMOs were more influenced by 211 

technical factors. Moreover, cancer diagnosis was significantly associated with the increase of 212 

epigenetic mutations, especially among frequent HMOs, while the same was not true for LMOs. 213 

Emerging evidence indicate that epigenetic mutations could be related to cancer [6], as 214 

epigenetic mutations may cause abnormal gene expression, which could contribute to the 215 

development of cancer. On the other hand, mutated DNA sequences and abnormal epigenetic 216 

regulation in tumor cells may in turn cause more epigenetic mutations. In this study, we found 217 

that the number of epigenetic mutations was significantly higher in samples of individuals who 218 
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were diagnosed with cancer by the end of follow-up. Therefore, we conclude that the number of 219 

epigenetic mutations may accumulate long before the diagnosis of cancer. The survival analysis 220 

further showed that a higher number of frequent HMOs could be a risk factor for cancer 221 

incidence. These results support a previous finding where the number of epigenetic mutations 222 

were higher in tumor tissues than in normal tissues [8]. Follow-up studies with more participants 223 

are needed to better establish the possible relationship between epigenetic mutations and 224 

cancer. 225 

In this study, DNA methylation data were corrected for cellular compositions predicted by the 226 

Houseman method [14], yet imputed CD19+ B cell count was significantly associated with 227 

epigenetic mutations, but not other cell types. A possible explanation could be that B cells have a 228 

unique methylation pattern compared to other lymphocytes [15]. Also, B cell composition was 229 

still a strong factor for frequent HMOs but the effect became very week for frequent LMOs, 230 

probably because cell specific CpGs are enriched in promoter regions [15] where HMOs are 231 

mostly found.  232 

When studying functional annotations associated with the epigenetic mutations, we found that 233 

the location and regulatory features were different for frequent HMOs and LMOs. The observed 234 

enrichment of HMOs in CpG islands and promoter regions indicated that HMOs were more 235 

related to biological function than LMOs, which is in line with the fact that technical bias was 236 

significant in LMOs.  237 

The concept of epigenetic mutations should be discussed in relation to methylation variability, as 238 

they both describe methylation divergence between individuals. However, epigenetic mutations 239 

refer to more extreme methylation levels carried by a small number of individuals, while 240 
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methylation variability is considered to be a population pattern. In contrast to traditional 241 

association studies on methylation levels, where CpGs of higher variances are more likely to have 242 

statistical power, CpGs of high variances could have too large inter quartile ranges to be identified 243 

as epigenetic mutations by definition. Therefore, the identified frequent epigenetic mutations 244 

were different from the age-associated CpGs or age-varied CpGs reported prior to this study 245 

using the same data [3,5], and thus may contribute to the aging processes by other ways than 246 

through the epigenetic drift. 247 

Even after excluding cis-meQTL CpGs, a small genetic effect captured by the first genetic PC was 248 

associated with epigenetic mutations, especially in frequent HMOs. To further explore how 249 

genetic background and age affected the accumulation of epigenetic mutations, we studied the 250 

number of shared epigenetic mutations between twins over time. Here we did not simply 251 

exclude cis-meQTL CpGs, but considered them as epigenetic mutations caused by genetic variants 252 

inherited at birth. For all CpGs and non-meQTL CpGs, we observed both age and genetic effect 253 

associated with the number of shared epigenetic mutations within the twin pair. To isolate the 254 

genetic effect, we specifically analyzed cis-meQTL CpGs and found that in this selection, the 255 

number of shared epigenetic mutations did not change with age. This result was consistent with 256 

a previous paper showing that meQTL-CpG associations are stable over time [16]. Additionally, 257 

we failed to detect an interaction between genetic factors and age, indicating that the increase of 258 

epigenetic mutations with age was not dependent on the genetic background. Therefore, the 259 

remaining genetic effect observed after removing cis-meQTL CpGs was probably due to trans-260 

meQTLs or unidentified cis-meQTLs. In conclusion, the age effect on the accumulation of 261 

epigenetic mutations is independent of genetic background. However, we might not have enough 262 
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statistical power to detect a significant age-genetic interaction on shared epigenetic mutations, 263 

since the age effect estimated for MZ twins was larger than for DZ twins. Moreover, due to the 264 

limit of the age range in this study (48 to 98 years), we could not exclude the possibility of 265 

genetic-associated development of epigenetic mutations in early ages, which remains to be 266 

examined by future studies.  267 

Technical artifacts and poor sample quality could lead to erroneous measures that interfere with 268 

identifying true biological methylation outliers. Although sample quality control based on 269 

detection p-value was applied in the pre-processing pipe-line of the methylation data, it was still 270 

found to strongly influence the identification of the epigenetic mutations. Although the technical 271 

effect was strong and hard to avoid, the effect of age on epigenetic mutations was not biased as 272 

we randomized samples on microarrays. Another important technical artifact is the batch effect 273 

from different arrays, but we adjust for batches both in data pre-processing and as a random 274 

effect in the mixed effect model. Hence, despite the confounding issues from different technical 275 

biases when analyzing methylation outliers, the underlying biological phenomenon of increasing 276 

number of epigenetic mutations with age still holds. 277 

Validation of the epigenetic mutations identified in 450k data was done by pyrosequencing, 278 

which also detected aberrant methylation levels proving that they were true biological outliers 279 

and not simply technical errors. However, some samples showed very different results between 280 

the two methods suggesting measurement errors existed. When comparing results from the two 281 

methods, pyrosequencing data were more stable and better indicated that epigenetic mutations 282 

were persistent over time, which supported the accumulation of epigenetic mutations as a factor 283 

of aging.  284 
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The HMO site cg05270750 validated by pyrosequencing is located in the promoter region of the 285 

gene PRDM7, which encodes a Histone-Lysine Trimethyltransferase involved in histone 286 

modification. To further explore the potential consequence of epigenetic mutations, we analyzed 287 

DNA methylation and gene expression of gene PRDM7 in data on tumor and normal adjacent 288 

tissues from TCGA. The expression of PDM7 in normal adjacent tissues were very low, as 289 

previously seen [17]. Nevertheless, we observed higher expression of PRDM7 in tumor tissues, 290 

especially in lung cancers, suggesting the abnormal expression of PRDM7 could be related to the 291 

dysregulation of histone modification in tumor. On the other hand, we observed similar 292 

proportions of epigenetic mutations between tumor and normal adjacent tissues in the gene 293 

promoter, but more epigenetic mutations in the gene body for tumor tissues. Since normal 294 

adjacent tissue can be regarded as an intermediate state between healthy and tumor tissues, it is 295 

suggested that, in the process of cancer development, epigenetic mutations were likely to first 296 

accumulate in gene promoters and then spread to the whole epigenome.  297 

Conclusions 298 

In summary, using longitudinal DNA methylation data, we showed that the accumulation of 299 

epigenetic mutations is exponentially associated with age in old adults, and once mutations are 300 

established, they are stable over time. Furthermore, epigenetic mutations are enriched in 301 

important regulatory sites, e.g. promoter regions of genes involved in histone modification 302 

processes, which could potentially be an explanation to why people who develop cancer have 303 

more epigenetic mutations than others do. In addition, we showed that the burden of 304 

accumulation associated with the human aging process is unlikely to be driven by underlying 305 
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genetic background. Hence, accumulation of epigenetic mutations is an underexplored area in 306 

the field of aging, and warrants further studies to enhance our understanding of this 307 

phenomenon. 308 

Methods 309 

Study population 310 

Twins as participants in this study were enrolled in the SATSA longitudinal cohort study [18]. After 311 

quality control, a total of 994 blood samples obtained from 375 individuals in five longitudinal 312 

waves (1992-2012) were used in the analyses. The 375 participants had a mean age of 68.9 years 313 

(SD=9.7) at their first measurement, and 223 (59.5%) were women. Of the 375 participants, 197 314 

contributed samples in three or more waves. Phenotype data were collected through 315 

comprehensive questionnaires and physical testing at each sampling wave. Phenotypes used in 316 

this study include chronological age, sex, zygosity, smoking status and cancer diagnosis. 317 

DNA methylation data 318 

DNA methylation data were obtained from DNA extracted from whole blood samples measured 319 

by Infinium HumanMethylation450 BeadChips. In total 485,512 CpG sites were measured for 320 

each sample. The quality control and preprocessing methods of the methylation data were 321 

described in a previous study [3]. Samples from individuals lacking genetic data were removed, 322 

retaining a total of 994 samples for analyses. Blood cellular compositions were estimated by the 323 

Houseman method [14] using a reference panel [15]. The methylation data were adjusted by 324 

cellular compositions using a linear regression before the analyses. Additionally, batch effects, 325 

which were detected as slides on the 450k chip, were adjusted using the Combat method from 326 
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the sva package [19]. 327 

Genotype data and imputation 328 

Genetic data were measured by Infinium PsychArray (Illumina Inc., San Diego, CA, USA) with 329 

588,454 SNPs detected for every individual. After quality control, data were imputed to the 1000 330 

Genomes Project phase 1 version 3 reference [20] using IMPUTE2 version 2.3.2 [21,22] with 331 

default parameters. The first 10 PCs were calculated based on a linkage disequilibrium pruned set 332 

of directly genotyped autosomal SNPs. 333 

 334 

Identifying epigenetic mutations 335 

The definition of an epigenetic mutation was consistent with Gentilini et al [7]. For each CpG, the 336 

quartiles of methylation levels were calculated for every CpG using the first observation available 337 

from each individual, and were calculated separately for men and women to avoid the sex effect 338 

on methylation levels. Samples having methylation levels three times the inter quartile range 339 

higher than the third quartile or lower than the first quartile were identified as mutated outliers. 340 

Methylation levels were presented in beta-values, which indicate the methylation proportions. 341 

CpGs associated with cis-meQTLs (<1 Mbps) were removed from further epigenetic mutation 342 

analyses. For the rest of the CpGs, outlier samples were identified as epigenetic mutations, and 343 

the total number of epigenetic mutations was counted for every sample. Identified epigenetic 344 

mutations were classified into HMOs and LMOs according to whether they exceed the upper or 345 

lower boundary of normal methylation levels (defined as 3 times IQR higher than the third 346 

quantile or lower than the first quantile). 347 
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Statistical analysis 348 

A mixed effect model was fitted to measure the association of the number of epigenetic 349 

mutations on age and other factors (Equation 1). A log-10 transformation was applied to the 350 

number of epigenetic mutations to form a distribution closer to a normal distribution. For each 351 

sample, the log10-transformed number of CpGs with detection p-values over 0.01 was used to 352 

indicate the sample quality. In the formula, i, j and k denote individual, slide batch and waves; β0, 353 

β1, β2, β3, β4, β5, β6 denote fixed intercepts, fixed coefficient of age, sex, CD19 B cell 354 

composition, first genetic principal component, detection p-value and whether the individual 355 

developed cancer; u0, u1 and ε denotes random intercept of individual, slide batch and random 356 

error. 357 

 358 

����,�,� � �� � ����	�,�,� � ��
	�� � ���
	���,�,� � �	��1� � �
������,�,� � �����
	�� � ���

� ��� � ��,�,�   ���. 1� 

The survival analysis of cancer diagnosis and epigenetic mutations was performed using a Cox 359 

model. The model included sex, current smoking as baseline exposure, number of epigenetic 360 

mutations as a time-varying covariate, and attained age as the time scale. The model was further 361 

adjusted for twin pair and batch effect using robust standard error. 362 

In twin analysis, a mixed effect model was used to study the number of exact same epigenetic 363 

mutations between paired twins measured at the same time in association with age, sex and twin 364 

zygosity (Equation 2),  365 

����� �,� � �� � ����	�,� � ��
	�� � ��!"�� � �	!"�� # ��	�,� � ��� � ��,�   ���. 2� 

where % and & denote individual and longitudinal measure; β0, β1, β2, β3, β4 denote fixed 366 

intercept, fixed coefficient of age, sex, zygosity and zygosity-age interaction; ���, and � denote 367 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744250doi: bioRxiv preprint 

https://doi.org/10.1101/744250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

random intercept of individual and random error. 368 

All statistical analyses were performed in R version 3.4.3. 369 

Pyrosequencing 370 

In total, 93 samples from 26 individuals were measured by pyrosequencing to validate epigenetic 371 

mutations in 4 CpGs (cg05270750, cg17338133, cg25351353, cg05124918). The samples were 372 

selected to present 4 to 5 longitudinal measures for every individual. The selection of CpGs was 373 

based on their primer quality, and having large numbers of mutated samples. The primers of the 374 

four CpGs were designed using the software PyroMark Assay Design by QIAGEN. DNA samples 375 

were converted by bisulfite reaction performed on EZ-96 DNA Methylation-Gold™ MagPrep kit 376 

provided by ZYMO RESEARCH CORP. Converted samples were randomized in a 96-well plate and 377 

sequenced for each CpG on PyroMark Q96 ID provided by QIAGEN. The raw data were processed 378 

in PyroMark Q24 Software v2.5.8 by QIAGEN. 379 
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Figure legends 467 

Figure 1. The number of epigenetic mutations (log10-transformed) increased longitudinally with 468 

age in a longitudinal perspective using genome-wide DNA methylation data from repeated whole 469 

blood samples collected in the Swedish Adoption/Twin Study of Aging (SATSA; n=375 470 

participants). The numbers of epigenetic mutations of samples were counted from: A) total 471 

epigenetic mutations (n=370,234, p=1.22e-13 for association with age), B) frequent high 472 

methylation outliers (HMO) (n=969, p=2.09e-17 for association with age), and C) frequent low 473 

methylation outliers (LMO) (n=216, p=1.14e-05 for association with age).  474 

 475 

Figure 2. The distribution of mutated samples for high methylation outliers (HMOs) and low 476 

methylation outliers (LMOs). For most CpGs, epigenetic mutations only occurred in a small 477 

number of samples, but HMOs were more likely to appear in a large number of samples (n>50) 478 

than LMOs (969 HMOs and 216 LMOs, p<1e-16). 479 

 480 

Figure 3. Proportions of high methylation outliers (HMOs) and low methylation outliers (LMOs) in 481 

different CpG island regions. HMOs are enriched in CpG islands (p<1e-16) while LMOs are more 482 

distributed outside of CpG islands (p<1e-16), especially in open sea regions. However, both 483 

frequent HMOs and LMOs are enriched in CpG islands (p<1e-16 and p=8.6e-8). 484 

 485 

Figure 4. The distribution of regulatory features of frequent high methylation outliers (HMOs) and low 486 

methylation outliers (LMOs). Compared to the background distribution of the 450k array design, 487 

frequent HMOs were enriched in promoter regions (A), while the opposite was true for LMOs (B). 488 

 489 

Figure 5. The longitudinal change of four CpGs in 93 samples from 26 individuals measured by 490 

450k array (left panel) and pyrosequencing (Pyroseq, right panel) techniques. Methylation levels 491 

of A) cg05270750 from 450k-chip, B) cg05270750 from Pyroseq, C) cg17338133 from 450k-chip, 492 

D) cg17338133 from Pyroseq, E) cg25351353 from 450k-chip, F) cg25351353 from Pyroseq, G) 493 

cg05124918 from 450-chip, H) cg05124918 from Pyroseq. Samples are shown as points colored 494 

by their mutation status defined by the 450k data and lines links longitudinal samples collected in 495 

the same individual.  496 

 497 

Figure 6. Comparing the DNA methylation and epigenetic mutation patterns of gene PRDM7 498 

between tumor and normal adjacent tissues. Data were downloaded from TCGA through 499 

Wanderer. The cancer types included lung cancer, breast cancer, colorectal cancer and prostate 500 

cancer. A) The location of CpGs related to gene PRDM7 in UCSC genome browser. B) The 501 

methylation levels of CpGs in gene PRDM7. Tumor and normal adjacent tissues had similar 502 

methylation levels in the gene promoter, while the methylation levels of tumor tissues in the 503 

gene body were significantly lower than normal adjacent tissues. C) The proportion of epigenetic 504 

mutations in tumor and normal adjacent tissues. Tumor tissues had higher proportions of 505 

epigenetic mutations in the gene body, while both tumor and normal adjacent tissues had similar 506 

but low proportion of epigenetic mutations in the gene promoter. 507 

 508 
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Table 1. Characteristics of study participants in SATSA (n=375 unique individuals). 

Longitudinal  
wave 

Year of sample 
collection 

Number of 
Participants 

(new recruits) 

Female 
Proportion 

Age 
mean (SD) 

1 1992-1994 232 58% 68.5 (9.1) 

2 1999-2001 239 (101) 63% 71.1 (10.1) 

3 2002-2004 186 (25) 54% 72.1 (9.1) 

4 2008-2010 183 (14) 61% 76.2 (8.5) 

5 2010-2012 154 (3) 66% 77.0 (8.4) 

SATSA: The Swedish Adoption/Twin Study of Aging 

 

Table 2. The association between number of epigenetic mutations (log10-transformed) and age from 

mixed models with confounders. 

 Effect sizes; ( p-values ) 

Number of 

epigenetic 

mutations 

Age 

(year) 

Sex (Female 

to male) 

CD19+ B 

cells 

(proportion) 

1st genetic 

principal 

component 

Sample 

quality* 
Cancer 

diagnosis 

Total 

epigenetic 

mutations 

8.29e-03 

(1.22e-13) 

0.0722 

(6.33e-03) 

4.21 

(5.06e-23) 

0.445 

(0.0413) 

0.369 

(1.48e-117) 

0.0697 

(0.0139) 

Frequent 

epigenetic 

mutations 

6.03e-03 

(2.17e-19) 

-0.0180 

(0.33) 

1.76 

(1.37e-12) 

0.595 

(1.28e-04) 

0.0573 

(5.84e-13) 

0.0478 

(0.0164) 

Frequent high 

methylation 

outliers 

6.81e-03 

(2.09e-17) 

-0.0314 

(0.16) 

2.09 

(2.25e-12) 

0.750 

(7.65e-05) 

0.0512 

(3.58e-08) 

0.0602 

(0.0130) 

Frequent low 

methylation 

outliers 

2.82e-03 

(1.14e-05) 

0.0340 

(0.057) 

0.474 

(0.046) 

0.0186 

(0.92) 

0.0888 

(8.09e-30) 

-6.99e-03 

(0.71) 

* Sample quality was indicated by the log10-transfromed number of CpGs with a detection p-value over 

0.01. 
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Table 3. The results of the scaled number of shared epigenetic mutations calculated from different sets 

of CpGs in association with age, sex, twin zygosity and zygosity-age interaction.  

 Covariates Estimate Standard Error P-value 

All CpGs 

(390,894) 

Age 0.019 8.59e-3 0.026 

Sex 0.208 0.107 0.055 

Zygosity (DZ) -1.078 0.105 3.41e-18 

Zygosity (DZ)×Age -0.012 0.011 0.284 

Non-cis-meQTL 

CpGs (370,234) 

Age 0.025 9.17e-3 5.98e-03 

Sex 0.183 0.116 0.117 

Zygosity (DZ) -0.855 0.114 1.05e-11 

Zygosity (DZ)×Age -0.013 0.012 0.263 

Cis-meQTL CpGs 

(20,660) 

Age 2.86e-4 7.61e-3 0.969 

Sex 0.194 0.107 0.071 

Zygosity (DZ) -1.461 1.105 8.34e-28 

Zygosity (DZ)×Age -3.77e-3 9.64e-3 0.696 

meQTL: methylation quantitative trait loci 

Table 4. Results from t-tests comparing methylation levels in samples with epigenetic mutations to 

normal samples using data from the 450k array and pyrosequencing. 

Data 
Number of samples Mean difference  

(Methylation level, 

%) 

p-value 

Normal Mutation 

cg05270750, 450k-chip 
81 12 

13.39 4.34e-6 

cg05270750, Pyroseq 10.79 2.01e-3 

cg17338133, 450k-chip 
76 17 

13.11 6.39e-8 

cg17338133, Pyroseq 9.35 0.02 

cg25351353, 450k-chip 
67 26 

14.58 7.93e-17 

cg25351353, Pyroseq 12.70 9.20e-8 

cg05124918, 450k-chip 
63 30 

21.87 3.22e-20 

cg05124918, Pyroseq 11.08 3.76e-07 
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