


Figure 7: Immunostaining of gill �laments and number of mitoses per total number of nu-
clei. Top row: example of one control, middle row: swimmer. Staining of the nuclei in blue (DAPI),
endothelium in green (eGFP) and mitoses in magenta (BrdU). The gills of swimmers contained signif-
icantly more mitoses normalised to the total number of cells (p=0.0074). Images to the right (marked
as combined) show the overlay. Scale bar: 0.1 mm. Graph: the number of mitoses per total number of
nuclei in immunostained gill tips was counted (n=6 for each group). After 3 weeks of training, the trained
fish show a significantly higher number of dividing cells in their gills, compared to controls (p=0.0074).
**p<0.01, lines within the plots show the quartiles of the respective distributions.

we explain by the increased body mass of the swimmers. A positive correlation between body weight and389

oxygen consumption has already been shown in humans as well (Kappagoda et al., 1979). The swimmers390

used around 3% more oxygen than before the training, which would not per se be a relevant difference,391

but at the same time, the control group consumed 24% less oxygen during the second measurement392

than they did during the first one. We believe this drop of oxygen consumption in the control group393

to be due to the observed calmer behaviour of the fish the second time they were in the respirometry394

chamber: stress is known to be associated with an increased oxygen consumption (Woodward and Smith,395

1985) (Boesgaard et al., 1993).396

Micro-computed tomography of whole gills scanned in situ showed that they were significantly larger397

(+12%) than control gills, and that they were less compact (filling factor -8%), which facilitates the398

water flow through the organ and thus gas exchange. The unexpectedly high variability of the gill399

volumes was likely due to different distributions of the grey values among the scans and thus different400

threshold values for the volume calculation. The Otsu method was nevertheless preferred to calculate401

the threshold as an objective and reproducible method for data with bi-modal distribution, in contrast402
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to manual thresholding. SEM images revealed that the primary filaments were longer (+6.1%) and the403

secondary filament per primary filament count was higher (+7.7%). These data together indicate a404

marked increase in the gas exchange surface.405

Previous studies have shown that the gill surface of other fish species may increase when oxygen supply406

becomes temporarily or permanently limited. Permanent exposure to lower oxygen concentrations and407

different swimming behaviour is also responsible for a higher volume of the gill cavity and a greater408

respiratory surface area in fish living in the littoral benthic zone (close to the coast and the ground, with409

low oxygen concentration), compared to fish living in the open sea. This was revealed in two sympatric410

morphs of Salvelinus alpinus (Arctic charr) (Jenjan et al., 2017). In Carassius auratus (Goldfish), hy-411

poxia or endurance swimming induced a marked increase in lamellar surface too (+71% after 48h under412

hypoxia or continuous swimming) (Fu et al., 2011). Since oxygen solubility in water drops with higher413

temperatures, gill remodelling has also been observed in response to an elevated water temperature (Sollid414

and Nilsson, 2006) (Nilsson, 2007).415

Detailed images of the morphology of the filament tips suggested that new secondary filaments might416

grow from the tips by a process we called filament budding. We expected to find more mitoses in filament417

tips of trained fish, and since we observed the steepest improvement of swimming performance during418

the first 3 weeks, we quantified mitotic events in this period. As expected, the percentage of nuclei of419

newly divided cells in gill tips marked by BrdU staining was significantly higher in swimmers (+60%).420

This is in line with the previously reported fast response of the gills to external stimuli that we stated421

above. The 48 h of constant swimming they performed, corresponds to 8 days of our training regime,422

i.e. half of the 3-week-protocol (Fu et al., 2011).423

Opposite effect, i.e. a reduced proliferation rate and increased apoptosis has been reported previously424

in Carassius carassius (Crucian carp) after exposure to hypoxia (14 days of 6-8% oxygen saturation) (Sol-425

lid, 2003). Although the adaptation led to +50% increased tolerance to hypoxia and documented changes426

in the lamellar surface exposed to water, strangely, the secondary lamellae were not visible at all in SEM427

micrographs of control fish. Another group reported hypoxia-induced gill surface modification (van der428

Meer et al., 2005). Our data recapitulated neither of these phenomena. A possible explanation for this429

could be that severe hypoxia might induce a pathological phenotype while exercise has beneficial effects.430

Endurance-training-related adaptations of the cardiovascular system and the internal oxygen transport431

of different vertebrate species are similar. We showed that the gas exchange is optimised in exercising432

fish: could it be that the adult mammalian lung may adapt too?433

As stated in the introduction, swimming correlated with improved lung parameters in several stud-434

ies (Baxter-Jones and Helms, 1996) (Armour et al., 1993) (Courteix et al., 1997). However, the men-435

tioned differences have been reported in the growth phase of adolescents, and human lung continues436

to grow until adulthood (Herring et al., 2014). Adaptation possibilities of adult lung tissue remain a437

controversially discussed topic. Several reasons might account for those divergent study results. Unlike438

gills, lungs are closed in the thoracic cavity and there simply might not be enough space for extra growth:439

re-initiation of growth of adult human lungs has so far only been proven after lung injury or disease with440

a loss of tissue, but not upon exercise. Another reason for missing adaptation of the lungs could be that441

the human pathway of oxygen (even in swimmers) has a different ‘bottleneck’ and that the diffusion442

capacity of the lung is simply not the limiting factor in the supply of O2. Weibel et al. (1992) have443

already suggested this. They concluded that, due to its limited malleability, the lung needs to have444

excess capacity in order to allow changes in the subsequent steps of the respiratory pathway and to react445

to different PO2 levels in the environmental air (e.g. in high altitude) (Weibel et al., 1992).446

Further research with mammalian models will be necessary to answer those questions and to gain a more447

profound insight into the adaptive changes possible in adult lungs.448

Conclusion449

We brought evidence that adult zebrafish gills adapt to endurance exercise, namely with an increase in450

primary filament length (+6.1%), number of secondary filaments per primary filament (+7.7%), and total451

gill volume (+11.8%). We proposed that gill filaments may re-initiate their growth by a process we call452
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‘gill filament budding’. We found probable stages of this process in SEM images and we proved increased453

number of mitoses in gill filament tips, too (+60%). These morphological adaptations likely enabled454

better gas transfer: trained fish consumed more oxygen than controls when swimming at moderate455

speed (+30%), and the critical speed at which fish could swim increased by 36%. We noticed increase456

in body mass too, in line with previous studies with zebrafish. Here we show the first evidence of the457

morphological adaptation of respiratory organ of adult animals to a physiological stimulus. Whether458

mammalian lung can regrow after exercise too, remains to be investigated.459
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