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Abstract

Knowledge of global biodiversity remains limited by geographic and taxonomic sampling biases. The
scarcity of species data restricts our understanding of the underlying environmental factors shaping
distributions, and the ability to draw comparisons among species. Species distribution models (SDMs)
were developed in the early 2000s to address this issue. Although SDMs based on single layered
Neural Networks have been experimented with in the past, these performed poorly. However, the
past two decades have seen a strong increase in the use of Deep Learning (DL) approaches, such as
Deep Neural Networks (DNNs). Despite the large improvement in predictive capacity DNNs provide
over shallow networks, to our knowledge these have not yet been applied to SDM. The aim of this
research was to provide a proof of concept of a DL-SDM1. We used a pre-existing dataset of the
world’s ungulates and abiotic environmental predictors that had recently been used in MaxEnt SDM,
to allow for a direct comparison of performance between both methods. Our DL-SDM consisted
of a binary classification DNN containing 4 hidden layers and drop-out regularization between each
layer. Performance of the DL-SDM was similar to MaxEnt for species with relatively large sample
sizes and worse for species with relatively low sample sizes. Increasing the number of occurrences
further improved DL-SDM performance for species that already had relatively high sample sizes. We
then tried to further improve performance by altering the sampling procedure of negative instances
and increasing the number of environmental predictors, including species interactions. This led to
a large increase in model performance across the range of sample sizes in the species datasets. We
conclude that DL-SDMs provide a suitable alternative to traditional SDMs such as MaxEnt and have
the advantage of being both able to directly include species interactions, as well as being able to handle
correlated input features. Further improvements to the model would include increasing its scalability
by turning it into a multi-classification model, as well as developing a more user friendly DL-SDM
Python package.

1All data and code are publicly available on the project’s online github repository: https://github.com/naturalis/
trait-geo-diverse-dl
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1 Introduction

1.1 Background

Biodiversity is in strong decline across the globe (1, 2 ). The main drivers are the loss and degradation
of natural habitats through human activities (3 ). Loss of biodiversity negatively affects ecosystem
functioning (4 ), and its conservation is therefore of high priority. However, knowledge of global bio-
diversity is still limited (5 ). This is partly due to the observation that the vast majority of known
species occur in restricted ranges and low abundances (6, 7 ). Furthermore, data from areas with some
of the highest biodiversity, such as the tropics, is relatively sparse (8, 9 ). Species distribution models
(SDMs), which were initially developed in the early 2000s (10, 11 ), provide a partial solution to the
scarcity of species data. SDMs relate patterns in the occurrence data to a selection of environmental
predictors and use this information to predict the probability of presence outside of sampled areas
(12 ). Predictions based on limited or geographically skewed input data, among other things, have
implications for the quality and interpretation of model output (13, 14 ), and SDMs are subject to
continuous improvement (12 ).

The MaxEnt software package (15, 16 ) is currently one of the most popular SDMs with > 1000 appli-
cations published since its introduction (17 ). The approach was originally developed to estimate the
density of presences across the landscape (15 ). In the absence of knowledge on absolute population
sizes, it provides a relative occurrence rate (ROR) per grid cell as output (18 ). However, for many
species the available records cannot be seen as a random sample from the landscape, and the output
will therefore not meet the assumptions for density estimation (17 ). Alternatively, using MaxEnt
to predict the probability of presence in a cell requires a logistic transformation of the ROR (16 ).
However, this transformation has also been criticized (17, 19 ). It includes a parameter τ, representing
the background probability of presence for ’average ’presence localities. The value of τ has a large
influence on the predicted output probabilities, but is arbitrarily set, rather than being fitted from the
data (20 ). Considering the challenges in model interpretation when estimating density or probability
of presence, MaxEnt is often used in a qualitative way by interpreting the output as an index of habitat
suitability (21, 22 ).

In this research we propose an alternative approach for constructing SDMs, based on Deep Learning
(DL). The past two decades have seen a strong increase in the use of Deep Learning (DL) (23 ), which
has been attributed mainly to increased chip processing abilities, lower hardware costs and advances
in machine learning algorithms (24, 25 ). DL is a subfield of machine learning that focuses on learning
high-level abstractions in data (25 ). This is achieved by using a hierarchical architecture consisting
of multiple interconnected layers, which in in turn contain multiple artificial neurons. A common
type of DL is the application of Deep Neural Networks (DNNs). DNNs contain >2 layers and three
basic computations are performed in each of them (Fig.1). (1) The neurons in a given layer receive
input values from each of the neurons in the preceding layer. For the neurons in the first layer this
means that they receive the raw values for each of the input variables. Each of these input values
are multiplied by a specific weight, obtained through optimization, (2) the weighted input values are
subsequently summed, and (3) the weighted sum is transformed using a non-linear activation function,
which is selected from a set of candidate function by comparing the network’s performance using each
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of them. The transformed output value is passed on as input to the neurons in the next layer (26 ).
Thus, what is learned by the network is the optimal set of weights for all the connections between
neurons in adjoining layers, maximizing network performance. Each individual neuron is able to focus
on a specific pattern in the data. For example, a neuron in the first layer might put most weight on all
variables related to seasonality, and another neuron in the first layer assigns most weight to variables
related to terrain and vegetation. A neuron in the second layer might then put most weight on the
outputs of these particular two neurons in the first layer and thereby model the abstract concept of
”seasonal lowland forest”. For classification purposes, the number of neurons in the final layer equals
the number of classes to predict.The output of the neurons in the final layer are passed through a
softmax function (27 ), which transforms them into probabilities that sum to 1 (eqn. 1). Although
shallow networks containing a single hidden layer have been available in SDMs (28, 29 ), these typically
ranked at the bottom in terms of performance (30, 31 ). Harris (32 ), used a two-layer network for
SDM and already noticed a large increase in performance compared to single layered models. Current
methods will allow us to create much deeper models still and further improve performance.

Figure 1: Single Layer Neural Network (left) and Deep Neural Network (right), where the value in the
hidden layer z equals the weighted sums of the inputs plus a bias term, which are transformed using a
non-linear activation function g. From MIT (33 ).

p̂k = σ(s(x))k =
exp(sk(x))∑K
j=1 exp(sj(x))

Equation 1. Softmax function. Where K is the number of classes, s(x) is a vector containing the scores of
each class for instance x and σ(s(x))k is the estimated probability that instance x belongs to class k given the
scores of each class for that instance. From Géron (26 ).

Several arguments can be made for developing DL-SDMs as an alternative to MaxEnt-SDMs. Firstly,
there is the clarity in the interpretation of network’s output. The output will be two probabilities for
each location, a probability for that location of belonging to class 1: species occurs, and a probability
of belonging to class 0: species does not occur. A second argument, more interesting from an ecological
point of view, is the possibility of taking into account the presence of other species as environmental
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predictors in DL-SDMs. This allows for the direct inclusion of biotic interactions that is not possi-
ble in MaxEnt. Researchers now often use a two-tiered approach, first running MaxEnt, and then
separately modelling the output including co-occurrence of other species (34, 35 ). Including biotic
interactions considerably improves model performance (35 ). Finally, a further incentive for developing
DL-SDMs is their scalability. In MaxEnt-SDMs each species to be modelled requires the selection of
a separate set of appropriate and uncorrelated input variables (36, 37 ). Given appropriate model
structure, DL-SDMs can take the same complete set of (correlated) input features for each species.
Next to this, there is also the potential of multi-classification in DL-SDM in which the model outputs
the probability of presence for all species in a single instance. This would increase scalability as the
network weights only need to be trained once, rather than separately for each species. Furthermore,
these pretrained weights could be transferred to a new species dataset and retrained, likely reaching
an optimal solution faster than starting from the default random initialization.

1.2 Aims of the study

The aims of this exploratory research are to (1) provide a proof of concept of DL-SDM, (2) compare
performance of DL-SDM to MaxEnt-SDM and (3) to provide recommendations on the large scale
practical implementation of DL-SDMs.

1.3 Research questions

Based on the aims of the research, the following research questions were defined:

1. What input data types are required for a DL-SDM?

2. Which evaluation methods are most suitable for a DL-SDM?

3. What type of DL-SDM architecture yields the best output?

4. How does the DL-SDM output compare to MaxEnt-SDM output?

5. How can DL-SDMs be implemented on a large scale?
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2 Methods

2.1 Software

All source code for this research was written using Jupyter Notebook (38 ), based on a Python 3.6
kernel (39 ). The code, together with the input and output data is publicly available via github and
can be found at: https://github.com/naturalis/trait-geo-diverse-dl.

2.2 Data preparation

The research project was structured in three separate stages. Firstly, a pilot model was made utilizing
the same input species, occurrences and environmental predictors as recently used by Hendrix & Vos
to model the niches of the world’s ungulates with MaxEnt (40 ). This choice was made to allow for a
qualitative visual comparison of the results of the DL-SDM with MaxEnt-SDM. In the second stage,
the number of occurrences in the pilot model was extended. This stage was used to gain deeper
insight in the number of occurrences required for credible modelling performance for DL-SDM and
potential improvements through changes in model architecture. Finally, in the third stage additional
environmental predictors were included to assess their impact on model performance and potential
improvements in model performance by changing model architecture.

2.2.1 Pilot study

We used the occurrence data of 154 ungulate species and raster datasets for 41 abiotic environmental
predictors relating to climate, topography and soil characteristics from the online repository of Hen-
drix & Vos (40 ). The occurrence data originated from the Global Biodiversity Information Facility
(GBIF) website (41 ) and ranged between 10 - 882 observations per species (mean: 191 ± 234 sd).
The climatic raster data were sourced from the widely used BIOCLIM and ENVIREM datasets (42,
43 ). The soil characteristics rasters were sourced from the Land-Atmosphere Interaction Research
Group, and topography rasters from the Harmonized World Soil database (44 ). All environmental
rasters were transformed to a 5 minute spatial resolution. A full list of the variable descriptions of
each raster can be found in Appendix A.

Starting with a csv file with filtered occurrences for a given species, the goal is to generate a dataframe
including labeled positive and negative occurrence examples and the environmental variable values at
these locations. This dataframe will form the input for the DNN. As no hard data on species absences
exists, typically pseudo-absences are used instead (45 ). The steps taken to generate this dataframe
are visualised in Figure 3 and detailed below. The code is provided in the Stacking environmental
rasters and Species and global prediction dataframes notebooks in the pilot study folder in the reposi-
tory. To generate pseudo-absences, circular buffers with 1000km radius were constructed around each
occurrence point. These buffers were merged into a single ’multipolygon’ shapefile. The environmental
variable rasters were first stacked into a single multi-band raster and then clipped based on the extent
of the multipolygon shapefile. A random selection of pseudo-absence locations was generated within
the raster clip based on two constraints: (1) points were not allowed to be located within the sea
and (2) points were not allowed to be located within raster cells with occurrences. For species with
< 1000 occurrences, 1000 random locations were generated. For species with >1000 occurrences, the
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number of random locations was set equal to the number of occurrences. The resulting selection of
pseudo-absence points and their longitude and latitude values were added to the csv file with filtered
occurrences. Next, the environmental variable values for all locations were added to this dataframe.
Each band in the stacked raster clip represented one of the 41 environmental variables. For all oc-
currence and pseudo-absence points, the cell number in which they were located was determined. By
going iteratively through the raster bands, the cell values for all variables were extracted and added
to the dataframe. The environmental variable values were scaled by subtracting the band mean and
dividing by the standard deviation. This formed the dataset on which to train and test the DNN. To
produce global predictions of species distributions after model training and testing, a separate dataset
was made containing the scaled environmental variable values of all terrestrial cells in the stacked
world raster map.

Figure 2: Workflow for preparing clean dataframe for DNN training and testing

2.2.2 Extended observations

In contrast to the pilot model, occurrence data was directly sourced from an SQL relational database
containing all GBIF occurrences for the world’s ungulate species. These raw occurrences were first
sorted on taxonomy and then filtered based on multiple criteria (Fig. 4), the code for which can be
found in the Filter GBIF records from SQL Database notebook in the data extended folder in the
repository. As a first filtering step, only occurrence records with at least two decimal values for lon-
gitude and latitude and records representing a unique longitude-latitude combination were included.
Next, it was determined whether each occurrence was located within the species IUCN range by uti-
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lizing the publicly available IUCN species distribution range shapefiles (46 ). Finally, only records
collected after 1900 and species with > 10 records after filtering were included. The total number of
ungulate species included was 124, and the occurrences per species ranged between 10 - 58329 (mean:
1401 ± 5798 sd). The subsequent process of generating pseudo-absences and extracting environmental
values was the same as in the pilot project.

Figure 3: Workflow for filtering occurences from SQL database.

2.2.3 Extended observations and environmental variables

The same set of occurrence data was used as in the extended observation models. However, rather
than generating pseudo-absence locations from within the buffers generated around each occurrence
location, as in Hendrix & Vos (40 ), these were now sampled randomly from the entire world. This
was done to increase the range of environmental variable values the model was exposed to during
training on pseudo-absences and improve predictive capabilities at the global scale. For species with
> 2000 occurrences, 2000 random locations were generated, and for species with more occurrences the
number of random locations was set equal to the number of occurrences. Next to this, multiple biotic
and abiotic variables were added to the environmental predictor dataset. These variables consisted
of the occurrences of the other ungulate species in the dataset, as well as maps from the Atlas of
World Conservation that represented: the world’s ecoregions, levels of human appropriation, human
accessibility, habitat fragmentation, mammal species richness and plant species richness (47, 48 ). The
code for processing, rasterizing and stacking these various additional environmental layers is listed in
the Environmental Raster Layers notebook in the data GIS extended folder in the repository. The
final stacked environmental raster contained 186 bands. A description for each variable is provided in
Appendix B.
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2.3 Data Analysis

2.3.1 Model architecture and training

We first applied combinations between various learning rates, regularization functions, activation func-
tions and optimization algorithms to a trial dataset of Capreolus capreolus to guide model construction
(Table 1). The model structure was kept fixed with two hidden layers containing 50 and 25 neurons,
a batch size of 100, and 500 epochs for training. In terms of model performance. we looked at the
average loss, accuracy and AUC value for each of these hyperparameters (Table 2). The outcomes
indicated the best performances were obtained using L2 or no regularization, a ReLu activation func-
tion, RMSProp or Adam optimization and a relatively high learning rate (0.001 or 0.0001). After this
more systematic evaluation we attempted to further improve model performance by (1) adjusting the
number of layers, (2) using drop-out as an alternative regularization method and (3) adjusting batch
size and number of epochs. The final architecture of the pilot model consisted of four hidden layers
with drop-out in between each layer (Fig. 5). We used Python’s Keras module to build the DNN (49 )
and trained the model using a batch size of 75 for 125 epochs, with a learning rate of 0.001 and using
Adam optimization. As many datasets were imbalanced, with considerably more pseudo-absences
than presence-locations, datasets were randomly shuffled, then split into training (85%) and test sets
(15%) using a stratified approach. Furthermore, a balanced batch generator was used during training
(50 ).

Table 1: Combinations between multiple hyperparameters used to guide model construction (n = 360 runs).
See glossary for definitions of hyperparameters.

Learning rate Regularization Activation Optimization

0.001 L1 ReLu Nesterov
0.0001 L2 Sigmoid Adagrad
0.00001 None RMSProp

Adam

Table 2: Model performance on Capreolus capreolus trial dataset with various hyperparameter combinations
(mean ± sd, n = 360 runs). See glossary for definitions of performance metrics.

Hyperparameter Average Loss Average accuracy Average AUC

L1 2.38 ± 1.76 0.65 ± 0.13 0.70 ± 0.17
L2 0.89 ± 0.38 0.73 ± 0.11 0.81 ± 0.11
None 0.57 ± 0.24 0.74 ± 0.12 0.81 ± 0.14
ReLu 1.26 ± 1.31 0.77 ± 0.10 0.83 ± 0.12
Sigmoid 1.30 ± 1.31 0.65 ± 0.13 0.71 ± 0.15
Nesterov 1.46 ± 1.43 0.70 ± 0.12 0.78 ± 0.12
Adagrad 1.85 ± 1.65 0.63 ± 0.14 0.68 ± 0.18
RMSProp 0.90 ± 0.89 0.76 ± 0.11 0.82 ± 0.12
Adam 0.91 ± 0.86 0.75 ± 0.11 0.81 ± 0.13
LR:0.001 0.67 ± 0.34 0.77 ± 0.11 0.82 ± 0.14
LR:0.0001 1.19 ± 1.24 0.72 ± 0.12 0.79 ± 0.13
LR:0.00001 1.98 ± 1.62 0.64 ± 0.13 0.71 ± 0.16
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Figure 4: Left: pilot model architecture. Right: visualization of network connections in pilot model.

The architecture for the model with extended observations was kept the same as the pilot model, as
adding layers or altering drop-out rates did not seem to improve performance in the trial dataset. For
the model with extended observations and variables, the number of layers and drop-out rates was kept
the same, but the number of neurons in each hidden layer was increased to 250, 200, 150 and 100
neurons respectively, and the number of epochs was increased to 250 (Fig. 6). The code for training
the models can be found in the Train DNN notebooks.

Figure 5: Left: model architecture extended observations and variables. Right: visualization of network
connections in the model, the actual model contained twice as many neurons in the input and hidden layers.
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2.3.2 Model evaluation

Evaluation of the models was the same for the pilot, extended observations, and extended observations
and variable models. The DNN was run five times for each species. During each run, the test loss,
accuracy and AUC value were stored and 95% lower and upper confidence bounds around the AUC
value were estimated using a bootstrapping procedure with 1000 repetitions. The average test loss,
accuracy, AUC and associated 95% confidence intervals over the five runs were written to a text file.
The model weights of the run with the highest AUC value were saved as a .h5 file, to later reconstruct
it for making predictions of the species global distribution. We used the DeepExplainer function from
the SHAP package developed by Lundberg (51 ) to calculate feature importance by approximating
Shapley values (52, 53 ). The approach computes the contribution of a target feature to a model pre-
diction by rerunning the prediction using all possible non-target feature combinations and again for
these combinations now including the target feature. It then takes the average difference in predicted
outcomes. As DNNs’ fixed network structure means they cannot actually exclude a feature, excluded
features take on a reference value instead (54 ).
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3 Results

3.1 Pilot study

The DNN pilot model showed increasing performance and decreasing variation in performance with
higher availability of occurrence samples (Fig 6). Compared to the MaxEnt model used by Hendrix &
Vos (40 ), the pilot DNN model performed considerably worse when assessed over all species, with a
large standard deviation, indicating high among species variation (Table 3). However, the difference
in performance between the pilot DNN model and the MaxEnt model was relatively low if only species
> 100 samples were taken into account. The predicted global distributions for a species with high,
intermediate and low number of occurrence samples using both modelling approaches can be found in
Figure 7. Associated variable importance for each of the individual models can be found in Appendix
C.

Figure 6: DNN pilot model performance. Left: change in model AUC with increasing occurrence samples.
Right: Change in the width of the confidence interval around the model’s AUC value based on a
bootstrapping procedure with 1000 repetitions. A LOESS smoother with a default span of 0.8 and 95%
confidence intervals is fitted as a trendline in both graphs.

Table 3: Model performance for all species (n=153) and subset of species > 100 occurrences (n=65) for
Pilot DNN in comparison to MaxEnt study (40 ).

All species Avg. test loss Avg. accuracy Avg. AUC

Pilot DNN 0.62 ± 0.33 63.49 ± 25.24 69.73 ± 21.70
MaxEnt(40 ) - - 92.83 ± 4.98
% diff. DNN,Maxent - - -23.11 ± 22.07

> 100 occurrences Avg. test loss Avg. accuracy Avg. AUC

Pilot DNN 0.44 ± 0.36 83.96 ± 13.16 90.11 ± 9.82
MaxEnt (40 ) - - 92.17 ± 5.27
% diff. DNN,Maxent - - -2.06 ± 9.17
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(a) Alces alces, DNN pilot (n=739, AUC=94.12). (b) Alces alces, MaxEnt (n=739, AUC=88.11).

(c) Ceratotherium simum, DNN pilot (n=263, AUC=95.70). (d) Ceratotherium simum, MaxEnt (n=263, AUC=96.29).

(e) Vicugna vicugna, DNN pilot (n=12, AUC=58.80). (f) Vicugna vicugna, MaxEnt (n=12, AUC=95.67).

Figure 7: Global prediction maps for species with high, intermediate and low sample size compared between
DNN pilot (left) and MaxEnt (right) SDM.
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3.2 Extended observations

Including additional observations had mixed effects on model performance. Only for species with &
500 observations, was there a clear improvement in terms of reduced test loss and increased AUC
values (Table 4, Fig.8). This is also reflected in the changes in the predicted global distributions
(Fig.10.a,c,e). There was a large restriction in the predicted distribution of Alces alces, with 9966
occurrences, but not for the Ceratotherium simum and Vicugna vicugna, despite increases from 263
to 418 and from 12 to 61 occurrences respectively.

Figure 8: DNN extended observations model performance. Left: change in model AUC with increasing
occurrence samples. Right: Change in the width of the confidence interval around the model’s AUC value
based on a bootstrapping procedure with 1000 repetitions. A LOESS smoother with a default span of 0.8 and
95% confidence intervals is fitted as a trendline in both graphs.

Table 4: Model performance for all species (n=120) and subset of species > 500 occurrences (n=19) for
Extended observations model in comparison to Pilot model.

All species Avg. test loss Avg. accuracy Avg. AUC

Extended obs. model 0.58 ± 0.35 66.70 ± 25.88 71.91 ± 23.42
Pilot model 0.60 ± 0.34 65.88 ± 25.34 71.75 ± 22.38
% diff. Extended,Pilot -0.02 ± 0.28 0.82 ± 20.50 0.16 ± 16.04

> 500 occurrences Avg. test loss Avg. accuracy Avg. AUC

Extended model 0.22 ± 0.09 91.57 ± 4.05 96.77 ± 2.11
Pilot model 0.33 ± 0.23 88.20 ± 7.04 93.37 ± 5.15
% diff. Extended,Pilot -0.11 ± 0.18 3.36 ± 4.40 3.40 ± 3.69

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744441doi: bioRxiv preprint 

https://doi.org/10.1101/744441
http://creativecommons.org/licenses/by/4.0/


3.3 Extended observations and environmental variables

The inclusion of additional environmental variables and sampling pseudo-absences globally reduced
the variation in AUC values and associated confidence intervals for species with sample sizes between
∼ 100 and 500 samples compared to the extended model (Fig.9). For species with > 500 observations,
model loss, accuracy and AUC scores were all improved and there was relatively low variation in these
metrics between species (Table 5). Although there was still considerable variation in performance
measured across all species, the performance and predicted distribution of several species with < 500
occurrences did improve considerably, as can be seen in Figure 10.b,d,f .

Figure 9: DNN extended observations and variables performance. Left: change in model AUC with
increasing occurrence samples. Right: Change in the width of the confidence interval around the model’s AUC
value based on a bootstrapping procedure with 1000 repetitions. A LOESS smoother with a default span of
0.8 and 95% confidence intervals is fitted as a trendline in both graphs.

Table 5: Model performance for all species (n=124) and subset of species > 500 occurrences (n=35) for
Extended observations & variables model in comparison to Extended observations model.

All species Avg. test loss Avg. accuracy Avg. AUC

Extended ov model 0.68 ± 0.89 76.10 ± 24.32 81.39 ± 23.59
Extended model 0.58 ± 0.35 66.99 ± 25.71 72.20 ± 23.36
% diff. Extended ov, Extended 0.11 ± 0.74 9.10 ± 21.83 9.19 ± 16.22

> 500 occurrences Avg. test loss Avg. accuracy Avg. AUC

Extended ov model 0.10 ± 0.06 98.26 ± 1.04 99.74 ± 0.24
Extended model 0.21 ± 0.09 92.61 ± 4.03 97.06 ± 2.12
% diff. Extended ov, Extended -0.11 ± 0.07 5.65 ± 3.40 2.69 ± 1.98
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(a) Alces alces, DNN extended (n=9966, AUC=98.80). (b) Alces alces, DNN extended ov (n=9966, AUC=99.64).

(c) Ceratotherium simum, DNN extended (n=418,
AUC=92.74).

(d) Ceratotherium simum, DNN extended ov (n=418,
AUC=99.77).

(e) Vicugna vicugna, DNN extended (n=61, AUC=40.18). (f) Vicugna vicugna, DNN extended ov (n=61, AUC=99.99).

Figure 10: Global prediction maps for species with high, intermediate and low sample size compared
between DNN extended observations (left) and DNN extended observations and variables (right) SDM.

Of the added environmental variables in the model, co-occurrence with another species was the most
important feature for both Alces alces and Ceratotherium simum (Fig. 11). In the model for Vicugna
vicugna, on the other hand, the most important features came from the same subset of abiotic variables
as in the extended model, suggesting that the global pseudo-absence sampling strategy is responsible
for the large improvement in model performance for this species. Three out of the five highest ranked
features for Ceratotherium simum did not show a clear relationship between intermediate to high
feature values and the impact on the model’s predicted probability of occurrence. Dependency plots
indicated interaction effects occurring with other features (Fig. 12).
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(a) Alces alces (b) Ceratotherium simum

(c) Vicugna vicugna

Figure 11: Feature importance for the extended ov models. Each dot represents an individual sample from
the test dataset. Dot color indicates the value of the environmental predictor.The position on the x-axis
indicates the impact on the predicted probability of occurrence.
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(a) Interaction between mean temperature of
warmest quarter and climatic moisture index

(b) Interaction between mammal species richness
and seasonality of potential evapotranspiration

(c) Interaction between potential
evapotranspiration of driest quarter and minimum
temperature of warmest month

Figure 12: Feature dependencies for the Ceratotherium simum extended ov model. The impact of the target
feature on the model’s predicted probability of occurrence is set against the target feature values. The second
y-axis indicates the interaction effect occurring with a second feature.

The predicted probability of occurrence of Ceratotherium simum increases when going from low to
intermediate temperature values in the warmest quarter and plateaus for high values. However, at
intermediate levels (0 - 1), having conditions that are neither very arid nor moist (-1.0 - 0) increase the
predicted probability of occurrence, whereas high moisture does not (Fig.12a). Reversing the scaling
of the data shows that this corresponds to a combination of temperatures between around 21.1 - 39.3
◦C in the warmest quarter and moisture index levels of 53 - 55. Increased mammal species richness
increases the predicted probability of occurrence. At high levels of mammal species richness (1.0 - 2.3;
94 - 227 spec.), having a low to intermediate seasonality in potential evapotranspiration (-1.5 - 0; 5.9
- 73.0 mm) further increases the predicted probability of occurrence (Fig.12b). Finally, both relatively
low and high potential evapotranspiration in the driest quarter lower the predicted probability of oc-
currence. In between (0.0 - 1.5; 0.0 - 240.6mm), having intermediate to high values for the minimum
temperature of the warmest month (0.0 - 1.0; 13.9 - 22.2 ◦C) increased the predicted probability of
occurrence (Fig.12c).
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4 Discussion

In this research we aimed to apply a Deep Learning approach to Species Distribution Modelling (DL-
SDM). We also compared its performance to the well-established MaxEnt SDM on a limited dataset
of the world’s ungulates.

Relationship DNN and MaxEnt
Although the mechanics are still the subject of active research and debate (55, 56 ), the internal
processes within a DNN share a similarity with the MaxEnt approach in that information flowing
through the network converges to a maximum entropy solution (57, 58 ). In MaxEnt, this solution can
be described as the distribution that minimizes the distance from the uninformed prior distribution
of the ’background’ feature set, but maintains the maximum amount of information contained in the
distribution of the target feature set, i.e. has the same feature characteristics (mean, variance) as the
feature set associated with the occurrence samples (20 ). Research by Schwarz & Tishby shows that
going successively through each layer in a DNN, there is a trade-off between compression, or efficient
representation of the information contained in the input features, and maintaining the predictive ca-
pabilities of the network (57 ) (Appendix E.1). The generalization capacity derived from this process
does not occur in single-layered networks, and might partly explain their poor performance in SDM
(30, 31 ). However, these findings are still debated and the process was not observed in research by
Saxe (55 ) in networks utilizing ReLu activation functions (Appendix E.2). This is the most commonly
used type of activation function and was also used in the networks in this research.

Model comparison
Our model comparison based on a limited dataset of the world’s ungulates showed the DNN model per-
forming worse for species with low and intermediate sample size and similar for species with a large
sample size. DNNs typically require a large amount of training data to achieve high performance,
which is related to to the large amount of parameters that need to be optimized (59 ). In this respect,
the MaxEnt model is much less complex and it might explain why it performs better for species with
few occurrence samples. However, sample size was not the only important determinant. The results
of the extended ov model showed the selection of pseudo-absences was responsible for the large im-
provement in the global predicted distribution of Vicugna vicugna. By sampling negative labels only
from within the IUCN range of the species in the pilot and extended model, these overfitted on the
peculiarities of environmental conditions and generalized poorly when exposed to different conditions
in other regions of the world. This also shows that if ’pseudo-absences’ are not selected appropriately,
an evaluation metric like the AUC value can be misleading. Both the MaxEnt model of the Vicugna
vicugna and the DNN extended model of Ceratotherium simum achieved a high AUC, but their global
predicted distribution showed poor generalization.

DL-SDM improvement
One way to improve performance of the network model on small species datasets, is to apply transfer
learning (60 ). Rather than learning the network weights starting from some random initialization, it is
often beneficial for small datasets to use an existing model whose weights were pretrained for a similar
classification task. This model can then be retrained on the small dataset, starting from the pretrained
weights (61 ). This is a strategy that is often utilized in image recognition studies (62 –64 ), where
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well-known existing networks trained on thousands or millions of images such as Alexnet are retrained
on the limited dataset available in the study. For DL-SDM, this could mean first training the model
on an ecologically similar species with a large sample size and then apply transfer learning to retrain
it on the target species with a small sample size. Alternatively, a single, deeper multi-classification
model could be created that outputs the probability of presence for all species in a single instance.
This model would then still need to be trained using resampling strategies to increase performance
for species with few occurrences (65 ).

Modelling shifting distributions
The DL-SDM in the current research was used to predict the distribution of the world’s ungulate
species based on occurrence samples that were collected between 1900 and the present. Recently,
there has been an increasing interest in modelling how species distributions might shift in the future
following climate change (66 –68 ). This could be modelled in DL-SDM by exposing a pretrained ver-
sion of the current model to an adjusted set of environmental data, but the model would not be able
to include species co-occurrences, as the distribution of the other species would likely change as well.
Whether this is problematic would depend on the organism being modelled, for many of the ungulates
in this research co-occurrences were shown to be important features, whereas one might expect plant
distribution to be modelled accurately using only abiotic features.

The multi-classification model suggested earlier, which takes the occurrences of all species as inputs
and also outputs the predicted occurrences of each species, could provide an approximation in two
steps. In the first step the pretrained model is exposed to a new feature set including the adjusted
abiotic environmental conditions, but the same set of species occurrences. The result can be framed
as ”the predicted distribution of species X if only climatic conditions change and the distribution of
other species remains the same”. In the second step this pretrained model is then exposed again to
the feature set with changed climatic conditions, but the species occurrences are replaced with the
newly predicted distributions of all species. However, as the new distributions have arisen from a
static process, which assumed the distribution of all other species remained the same, this would still
provide a very rough approximation.

An alternative solution would be to create a dynamic version of the multi-classification model in the
form of a Recurrent Neural Network (RNN) (27 ). RNNs are a type of neural network suitable for
modelling sequential data. They have been very successful in language processing (69, 70 ), but are
also used to approximate dynamic processes in climate modelling in computationally efficient ways
(71 ). In an ecological setting, Lee & Donghyun (72 ) created RNN models to predict algal blooms in
South Korean river systems. For DL-SDM, a dataset could be created that starts from current abiotic
conditions, where at each time-step conditions are slightly changed in line with a certain climate sce-
nario until reaching the predicted conditions in, for example, 2050. The co-occurrence features should
be updated during each time step. At the first time step the current distributions of all species are
used. The model then outputs the newly predicted distribution for all species under this small change
in environmental conditions. In the next step, the co-occurrence feature values should be replaced by
the newly predicted distribution values and so on until the end of the sequence. A potential downside
to this approach would be that the RNN would initially have to be trained on a historic time-series
dataset as well. This requires an explicit temporal link between the occurrence samples and environ-
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mental feature values that might be difficult to establish.

Other applications
Another potential application of DL-SDMs is to combine them with image recognition techniques for
automated species identification. Tools based on Convolutional Neural Networks (CNNs) are being
developed to aid in species identification both in the field (73 ) and in museum collections (74 ). DL-
SDM could provide an additional measure of certainty to a proposed identification by the CNN, by
returning the probability that the species actually occurs at the locality the specimen was collected.
If the process can be linked to a taxonomic relational database, another closely related species with a
higher probability of occurrence at the specimen’s locality might then be proposed to the user.

Conclusions

In this report we provided a proof of concept of DL-SDM using both a limited and an extended dataset
of occurrences of the world’s ungulates. The required input consists of a selection of rasterized abiotic
and biotic environmental predictor variables of the same spatial resolution. Notably, co-occurrences
with other species proved an important environmental predictor for many of the ungulate species.
Our final model required relatively few hidden layers (4) to gain good performance, in combination
with a high number of neurons per layer (250, 200, 150, 100) and intermediate levels of drop-out reg-
ularization between layers (0.3, 0.5, 0.3, 0.5). Using a small dataset of the world’s ungulates and only
abiotic predictors, the DL-SDM performed similar to the MaxEnt model of Hendrix & Vos for species
with relatively high numbers of occurrences, and worse for species with low numbers of occurrences.
Increasing the sample size, including species co-occurrences and improving pseudo-absence sampling
resulted in large improvements in model performance and gave realistic distributions for species across
a range of occurrence sample sizes. Implementing DL-SDMs on a larger scale will likely require the
model to be transformed to a single multi-classification model.

4.1 Recommendations

To further explore the potential of DL-SDM, we recommend to (1) apply and adjust the current model
to other groups of organisms, for example plants (2) to construct a single large multi-classification
model for all species and compare it’s performance against the single species models in this research.
(3) construct a temporal version of the model using a RNN framework to allow for modelling distri-
bution shifts, for example under climate-change.
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7 Glossary

1. Accuracy. A metric for evaluating classification models, representing the fraction of predictions the
model predicted correctly. In the binary classification example in this research, accuracy can be expressed
as:

TP + TN

TP + TN + FP + FN

• TP = True Positive, a positive example correctly predicted positive.

• TN = True Negative, a negative example correctly predicted negative.

• FP = False Positive, a negative example falsely predicted as positive.

• FN = False Negative, a positive example falsely predicted as negative.

2. Area Under the ROC Curve (AUC). The ROC curve plots the True Positive Rate (TPR) against the
False Positive Rate (FPR) of the model predictions at different classification thresholds (75 ). The AUC
value is a measure of the area under the ROC curve and indicates the quality of the model’s predictions
integrated across all classification thresholds. Further definitions and examples are provided below.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

• Classification threshold. The model outputs the predicted probabilities of belonging to class 0 and
1. The classification threshold is the threshold value the output probability needs to have in order
to be labeled as belonging to class 0 or class 1. Threshold values are problem dependent, i.e. how
important the correct labeling of positive and negative examples is. A high threshold value might
seem like a good option. However, increasing the threshold will both reduce false positive and true
positive rates. That is, both negative examples with a relatively high output probability and positive
examples with a relatively low output probability will not be labeled positive. This will therefore
not be a good option if it is very important to correctly label all positive examples and there is a
low cost to wrongly labeling negative examples.

• ROC and AUC. Example adapted from Park et al. (76 ). The figure shows four ROC curves. A
perfect classification model (A) has an AUC value of 1. It always predicts the correct label. The
diagonal line (D) represents a classification model no better at predicting labels than chance, it has
an AUC value of 0.5. Between these extremes are curve B and C, with intermediate abilities to
distinguish between different classes.
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3. Batch size. The number of training examples the model works through before updating its internal
parameters. In the case of DNNs, this refers to the updating of the network weights.

• Balanced batch generator. In an imbalanced dataset there are more samples of certain classes than
others. This can have a negative effect on the predictive capabilities of a model, as during training it
can be exposed to many batches that do not contain samples from the minority class. The model will
still learn to achieve a high accuracy, but does this by simply classifying each sample as belonging
to the majority class. A balanced batch generator resamples the dataset, usually by undersampling
the majority class, to reduce the class imbalance in the batches passed to the model during training
(50 ).

4. Epochs. The number of complete passes the model makes through the entire training dataset.

5. Learning rate. First read loss function. Optimization algorithms find the optimal set of parameter
values required to minimize the loss function. As reviewing the change in model loss for each potential
parameter value is inefficient, a step size is defined: the learning rate, which the optimizer uses to de-
termine the next set of candidate weights to evaluate. As seen in the left figure below of a simplified
loss landscape from Baughman & Liu (77 ), using a learning rate that is too low will result in very slow
convergence and risks getting stuck in local minima, while a learning rate that is too high will overshoot
the global minimum. The right figure from Li et al. (78 ) better illustrates the complex loss landscape of
neural networks.

6. Loss function. In training the deep neural network, we are trying to minimize errors in classification.
The loss function is used to evaluate the error value for a candidate set of network weights and bias
terms identified by the optimization algorithm. An often used loss function for classification models is
the cross-entropy function.

• Cross entropy. Measures the performance of a classification model that outputs a probability value
between 0 and 1. If there are only two classes as in the current research, the cross-entropy function
equals the log-loss function (26 ), expressed for a single training instance as:

l(θ) =

{
-log(p̂) if y = 1
-log(1 - p̂) if y = 0

}
Where l(θ) is the estimated loss for the candidate set of weights and bias terms θ. The function is
averaged over all training instances to estimate the cost function for the whole training set.

J(θ) = − 1

m

m∑
i=1

[
y(i)log(p̂(i)) + (1− y(i))log(1− p̂(i))

]
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As explained by Géron (26 ), -log(x) increases as x aproaches 0 and decreases as x approaches 1.
Therefore the cost will be high if the model estimates a probability close to 0 for a positive instance
and low if it estimates a probability close to 1.

7. Non-linear activation function. Functions used to introduce non-linearity into the network. As each
neuron in each layer computes a weighted sum of its inputs, the output of a network would remain a
linear function, irrespective of how many layers are added, if no non-linear activation function is applied.

• ReLU activation. Short for Rectified Linear Unit, ReLU is the most commonly used activation
function. It takes the weighted sum z of the inputs of each neuron. If z is equal to 0, the output of
the neuron will be 0, if z is larger than 0, the output of the neuron is simply the weighted sum z, as
seen in the figure from Sharma (79 ) below.

ReLU(z) = max(0, z)

• Sigmoid activation. Long the default activation function for neural-networks, it has now started to
fall out of favour to the ReLU function. This is because for deeper networks, there is a vanishing
gradient problem illustrated in the figure below the equation, from Arunava (80 ). As the input values
for the sigmoid function become larger or smaller, the derivative of the function becomes close to
zero. Starting from the last layer in the network, optimization algorithms computes the gradient of
the loss function for each parameter in the network and uses these to update the parameters based
on the learning rate. This process is called backpropagation. If a sigmoid activation function is
used, the gradients get increasingly small as the algorithm goes to the lower layers in the network,
meaning the lower connection weights remain unchanged and the model cannot converge to a good
solution (26 ).

Φ(z) =
1

1 + e−z

8. Optimization algorithms. Used to find the optimal set of parameter values (weights) in the network
that minimize the loss function.
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• Gradient descent optimization. The most common optimization algorithm used. Given a loss func-
tion l evaluated for a set of weights and bias terms θ, gradient descent adjusts θ using the following
rule:

θt+1 = θt − η∇l(θt)

Where ∇l(θ) is the gradient of the loss function. This gives the direction in parameter space to
increase the loss. Instead, gradient descent moves in the opposite direction (-∇l(θ)) based on the
step size or learning rate η (81 ).

• Gradient descent with momentum. The Gradient descent algorithm was improved by including the
concept of momentum, that can speed up movement along directions of strong improvement and
better avoid local minima. This was achieved by introducing two additional parameters v and µ
(82, 83 ). Where v is velocity, the exponential moving average of current and past gradients up to
time step t, and µ is the momentum coefficient, between 0 and 1, that restricts the velocity. The
updated rule becomes:

vt+1 = µvt − η∇l(θt)

θt+1 = θt + vt+1

• Nesterov optimization. Variant of Gradient Descent with momentum that can speed up training and
improve convergence. It measures the gradient of the cost function slightly ahead in the direction of
the momentum (26 ). Notation wise, this difference is expressed in the update of the velocity vector
v (83 ):

vt+1 = µvt − η∇l(θt + µvt)

θt+1 = θt + vt+1

• Adagrad optimization. An optimizer providing an adaptive learning rate. Whereas the previous
optimization algorithms used a single learning rate η for the set of parameters θ, Adagrad uses
different learning rates for every parameter at every time step (84 ). The update rule for a single
parameter can be expressed as :

θt+1,i = θt,i −
η√

Gt,ii + ε
∇l(θt,i)

Gt,ii, is a matrix containing the sum of the squares of the gradients of parameter θi up to the current
time step and ε is a smoothing term, typically 10−10, to prevent division by zero (85 ). For example,
if three steps have been taken so far for parameter θ1 , then the notation becomes:

θ3+1,1 = θ3,1 −
η√(

∇l(θ1,1)2 +∇l(θ2,1)2 +∇l(θ3,1)2
)∇l(θ3,1)

As with increasing time steps the sum of the gradients in the denominator also increases, the learning
can become infinitesimally small over time and stop before the global optimum is reached (85 ).

• RMSProp optimization. Designed to handle the problem of Adagrad’s increasingly small learning
rates. It only accumulates the gradients from the most recent iterations. In the expression, the
diagonal matrix Gt is replaced by an exponentially decaying average over the past squared gradients
(85 ). The parameter β is the decay rate, often set to 0.9 (26 ).
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E
[
∇l(θ)2

]
t

= βE
[
∇l(θ)2

]
t−1 + (1− β)∇l(θ)2t

θt+1 = θt −
η√

E
[
∇l(θ)2

]
t

+ ε
∇l(θt)

• Adam optimization. An optimizer combining the concepts of momentum and RMSProp. It stores
an exponentially decaying average of both past gradients mt and of past squared gradients vt (85,
86 ).

mt = β1mt1 + (1− β1)∇l(θ)t

vt = β2mt1 + (1− β2)∇l(θ)2t
β1 represents the momentum decay and is usually set to 0.9, whereas the scaling decay β2 is usually
set to 0.99 (26 ). However, with these values vt and mt are biased towards zero during the first few
time steps (86 ). Therefore bias corrected values are used instead in the Adam update rule:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√
v̂t + ε

m̂t

9. Regularization. Introduces a penalty term in the model’s loss function that penalizes model complexity
to prevent overfitting.

• L1 regularization. Regularization term encouraging feature sparsity by setting the weights of the
least important features to zero if parameter α is sufficiently large (87 ). The regularization part of
the loss function can be expressed as:

α
n∑

i=1

| θi |

• L2 regularization. Regularization term that encourages weight values close to zero and the mean
of the weights towards zero with a gaussian distribution. L2 regularization penalizes the squared
values of the weights.

α
n∑

i=1

θ2i

• Drop-out regularization. The approach randomly sets the activation of a collection of neurons to
zero during training, dropping all their connections in the network during a single pass through the
network and weight updating (88 ). This prevents neurons in the network from over-specializing
on a specific feature in the training dataset, which results in poor model generalization. Typically
drop-out rates between 0.1 and 0.5 are used. An example representation can be seen in the figure
below from MIT (33 ).
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10. Shapley values. The approach has its origin in game theory and calculates the fair contribution of
players to the outcome of a game with a collective pay-off (52 ).

φi =
∑
S⊂Fi

|S|!(|F | − |S| − 1)!

|F |!

[
fS∪{i}(xS∪{i})− fs(xS)

]

Where φi is the contribution of player i. The order in which the players took turns can affect their contri-
bution. To objectively assess the contribution of a single player therefore requires taking into account the
possible sequences in which the game could have been played. This is addressed in the equation by using
subsets, S, of the total set of players, F, excluding i. For each subset, the nominator in the equation takes
all possible sequences, |S|!, in which the players could have played. If player i plays after this subset,
then there are (|F | − |S| − 1) remaining players after i and there are (|F | − |S| − 1)! possible sequences
in which they could have played. The total number of potential sequences considering all players that
were in the game is given by |F |! in the denominator. Thus, the fraction in the equation represents the
proportion of the total number of sequences accounted for by the subset. It functions as a weight for the
outcome of the second part of the equation, which computes the difference in the pay-off between the
subset including player i and excluding player i (89 ).

For determining variable importance, the equation is altered only slightly:

φi(f, x) =
∑
z′⊂x′

|z|!(|M | − |z′| − 1)!

|M |!

[
fx(z′)− fx(z′i)

]

Where M is a vector of the full set of variables excluding the target feature, and z’ is the variable vector
with a subset of features set to a reference value (53 ).
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A Environmental variables pilot model

Bioclim code Represented variable
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
ENVIREM code Represented variable
annualPET Annual potential evapotranspiration
aridityIndexThornthwaite Thornthwaite aridity index
climaticMoistureIndex Metric of relative wetness and aridity
continentality Average temp. of warmest and coldest month
embergerQ Emberger’s pluviothermic quotient
growingDegDays0 Sum of months with temperatures greater than 0 degrees
growingDegDays5 Sum of months with temperatures greater than 5 degrees
maxTempColdestMonth Maximum temp. of the coldest month
minTempWarmestMonth Minimum temp. of the warmest month
monthCountByTemp10 Sum of months with temperatures greater than 10 degrees
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B Environmental variables extended ov model

Ecoregion variables
Boreal Forests and Taiga
Deserts and Xeric Shrublands
Flooded Grasslands and Savannas
Inland Water
Mangroves
Meditteranean Forests, Woodlands and Scrubs
Montane Grasslands and Shrublands
Rock and Ice
Temperature Broadleaf and Mixed Forests
Temperature Conifer Forests
Temperate Grasslands, Savannas and Shurblands
Tropical and Subtropical Coniferous Forests
Tropical and Subtropical Dry Broadleaf Forests
Tropical and Subtropical Grasslands, Savannas and Shrublands
Tropical and Subtropical Moist Broadleaf Forests
Tundra
Ecoregion attribute variables
Habitat fragmentation
Human accessibility
Human appropriation
Mammal species richness
Plant species richness

Species occurrence variables
Aepyceros melampus Equus zebra Pelea capreolus
Alcelaphus buselaphus Eudorcas rufifrons Phacochoerus aethiopicus
Alces alces Eudorcas thomsonii Phacochoerus africanus
Antidorcas marsupialis Gazella bennettii Philantomba maxwellii
Antilocapra americana Gazella dorcas Philantomba monticola
Antilope cervicapra Gazella gazella Potamochoerus larvatus
Axis axis Gazella subgutturosa Potamochoerus porcus
Axis porcinus Giraffa camelopardalis Procapra picticaudata
Bison bison Hippopotamus amphibius Pseudois nayaur
Bison bonasus Hippotragus equinus Pudu puda
Blastocerus dichotomus Hippotragus niger Rangifer tarandus
Bos javanicus Hydropotes inermis Raphicerus campestris
Boselaphus tragocamelus Hyemoschus aquaticus Raphicerus melanotis
Capra ibex Hylochoerus meinertzhageni Raphicerusfsharpei
Capra nubiana Kobus ellipsiprymnus Redunca arundinum
Capra pyrenaica Kobus kob Redunca fulvorufula
Capra sibirica Kobus leche Redunca redunca
Capreolus capreolus Kobus megaceros Rhinoceros unicornis
Capreolus pygargus Kobus vardonii Rupicapra pyrenaica
Capricornis crispus Litocranius walleri Rupicapra rupicapra

Continued on next page
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Species occurrence variables
Capricornis swinhoei Madoqua guentheri Rusa unicolor
Catagonus wagneri Madoqua kirkii Sus barbatus
Cephalophus dorsalis Mazama americana Sus scrofa
Cephalophus jentinki Mazama gouazoubira Sylvicapra grimmia
Cephalophus natalensis Mazama nana Syncerus caffer
Cephalophus niger Mazama pandora Tapirus terrestris
Cephalophus nigrifrons Mazama temama Tayassu pecari
Cephalophus rufilatus Muntiacus reevesi Tragelaphus angasii
Cephalophus silvicultor Nanger granti Tragelaphus buxtoni
Cephalophus zebra Nanger soemmerringii Tragelaphus eurycerus
Ceratotherium simum Neotragus batesi Tragelaphus imberbis
Cervus elaphus Neotragus pygmaeus Tragelaphus oryx
Cervus nippon Odocoileus hemionus Tragelaphus scriptus
Connochaetes gnou Odocoileus virginianus Tragelaphus spekii
Connochaetes taurinus Oreamnos americanus Tragelaphus strepsiceros
Dama dama Oreotragus oreotragus Tragulus kanchil
Damaliscus lunatus Oryx beisa Tragulus napu
Damaliscus pygargus Oryx gazella Vicugna vicugna
Diceros bicornis Ourebia ourebi
Equus grevyi Ovibos moschatus
Equus hemionus Ovis canadensis
Equus kiang Ovis dalli
Equus quagga Pecari tajacu
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C Feature importance

1. Feature importance of DNN pilot and MaxEnt models for top: Alces alces, centre:Ceratotherium simum,
bottom: Vicugna vicugna.
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2. Feature importance of DNN extended model for top: Alces alces, centre: Ceratotherium simum and bottom:
Vicugna vicugna.
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D Occurrence maps pilot and extended models
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E Information trade-off DNN

1. Graph from Wolchover (90 ) based on research by Schwartz & Tishby (57 ), showing the internal trade-off in
DNN between efficient representation of information from input features and maintaining predictive capabilities
during training.
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2. Graph from Saxe (55 ), with left graph representing a replication from the study of Schwartz & Tishby and
right a replication using ReLu activation functions instead of tanh and sigmoid. The mutual information now
increases linearly in most layers except for the final layer, and there is no clear trade-off observed.

40

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744441doi: bioRxiv preprint 

https://doi.org/10.1101/744441
http://creativecommons.org/licenses/by/4.0/

