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Abstract

Background: Due to the recent advances in sequencing technologies and species
tree estimation methods capable of taking gene tree discordance into account,
notable progress has been achieved in constructing large scale phylogenetic trees
from genome wide data. However, substantial challenges remain in leveraging this
huge amount of molecular data. One of the foremost among these challenges is
the need for efficient tools that can handle missing data. Popular distance-based
methods such as neighbor joining and UPGMA require that the input distance
matrix does not contain any missing values.

Results: We introduce two highly accurate machine learning based distance
imputation techniques. One of our approaches is based on matrix factorization,
and the other one is an autoencoder based deep learning technique. We evaluate
these two techniques on a collection of simulated and biological datasets, and
show that our techniques match or improve upon the best alternate techniques for
distance imputation. Moreover, our proposed techniques can handle substantial
amount of missing data, to the extent where the best alternate methods fail.

Conclusions: This study shows for the first time the power and feasibility of
applying deep learning techniques for imputing distance matrices. The
autoencoder based deep learning technique is highly accurate and scalable to
large dataset. We have made these techniques freely available as a cross-platform
software (available at
https://github.com/Ananya-Bhattacharjee/ImputeDistances).

Keywords: Phylogenetic trees; Missing data; Imputation; Deep learning; Matrix
factorization; Autoencoder

Background
Phylogenetic trees, also known as evolutionary trees, represent the evolutionary

history of a group of entities (i.e., species, genes, etc.). Phylogenetic trees provide

insights into basic biology, including how life evolved, the mechanisms of evolution

and how it modifies function and structure etc. One of the ambitious goals of modern

science is to construct the “Tree of Life” – the relationships of all organisms on earth.

Central to assembling this tree of life is the ability to efficiently analyze the vast

amount of genomic data available these days due to the rapid growth rate of newly

sequenced genomes.

The field of phylogenetics has experienced tremendous advancements over the

last few decades in terms of estimating gene trees and species trees. Sophisticated
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and highly accurate statistical methods for reconstructing phylogenetic trees mostly

depend on probabilistic models of sequence evolution, and estimate trees using max-

imum likelihood or Markov Chain Monte Carlo (MCMC) methods (see [1] for ex-

ample). Various coalescent-based species tree methods with statistical guarantees of

returning the true tree with high probability (as the number of genes increases) have

been developed, and are increasingly popular [2–11]. However, these methods are

not scalable enough to be used with phylogenomic datasets that contain hundreds

or thousands of genes and taxa [12,13]. Therefore, developing fast and less computa-

tionally demanding, yet reasonably accurate methods remains as one of the foremost

challenges in large-scale phylogenomic analyses. Distance-based methods represent

an attractive class of methods for large-scale analyses due to their computational ef-

ficiency and ease of use. Several studies [10,11,14–18] have provided support for the

considerably good accuracy of distance-based methods, although these methods are

generally not as accurate as the computationally demanding Bayesian or likelihood

based methods. Distance-based methods can provide reasonably good trees to be

used as guide trees (also known as starting trees) for other sophisticated methods

as well as for divide-and-conquer based boosting methods [13, 19–23]. Moreover,

under various challenging model conditions, distance-based methods become the

only viable option for constructing phylogenetic trees. Whole genome sequences are

one such case where traditional approach of multiple sequence alignments may not

work [24]. Auch et al. [25] proposed a distance-based method to infer phylogeny from

whole genome sequences and discussed the potential risks associated with other ap-

proaches. Gao et al. [26] also introduced a composite vector approach for whole

genome data where distances are computed based on the sharing of oligopeptides.

For various practical reasons as discussed above, distance based method has been

one of the most popular and widely used techniques, and notable progress have been

made in this particular area of phylogenetics [1,15,16,18,27–29]. Recent works like

[30] have made substantial progress towards attaining better accuracy, at least for

particular datasets. These improved methods can also be used to obtain information

from large-scale single nucleotide polymorphism (SNP) dataset [31].

Missing data is considered as one of the biggest challenges in phylogenomics [32–

34]. Missing data can arise from a combination of reasons including data generation

protocols, failure of an experimental assay, approaches to taxon and gene sampling,

and gene birth and loss [31,35]. The presence of taxa comprising substantial amount

of missing (unknown) nucleotides may significantly deteriorate the accuracy of the

phylogenetic analysis [34,36,37], and can affect branch length estimations in tradi-

tional Bayesian methods [38]. Sometimes, presence of missing data can impact the

whole arena of phylogenetics, as many studies willingly avoid working with missing

data and simply conduct experiments on the available complete dataset [33]. Several

paleontology-oriented studies have reported that incomplete taxa can frequently re-

sult in poorly resolved phylogenetic relationships [39, 40], and reduces the chance

to rebuild the true phylogenetic tree [36].

Several widely-used distance-based methods, including Neighbor Joining [15], UP-

GMA [27], and BioNJ [16] cannot handle missing data since they require that the

distance matrices do not contain and missing entries. However, only a few studies

have addressed the imputation of distance values [31, 41]. These works mainly rely
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on two approaches - direct and indirect. Direct approaches are used by those which

try to construct a tree directly from a partially filled distance matrix [1,42]. Indirect

approaches, on the other hand, estimate the missing cells at first and then construct

phylogenetic tree based on the complete matrix [43,44]. Some studies like [37] have

tried to combine the advantages of both approaches. Recent work like LASSO [31],

which uses an algorithm similar to UPGMA, tries to exploit the redundancy in a

distance matrix. This method, requiring the assumption of a molecular clock, has

been shown to be relatively less accurate by Xia et al. [41], as significant differences

were observed between the original trees and the trees reconstructed by LASSO

from incomplete distance matrices. Xia et al. [41] proposed a least square method

with multivariate optimization which was shown to achieve high accuracy, even

when 10% of the total entries in a distance matrix are missing. However, although

this method does not require any molecular clock, it can not determine missing

distances when there are sister species with missing distances. Moreover, as we will

show in this study, this method is not suitable for distance matrices with substantial

amount of missing entries.

In this paper, we propose two statistical and machine learning based approaches

to impute missing entries in distant matrices, which do not require any particular

assumptions (e.g., molecular clock) and can handle large numbers of missing values.

Our techniques are based on matrix factorization [45] and autoencoder (an unsu-

pervised artificial neural network to learn the underlying representation (encoding)

of data) [46]. We report, on an extensive evaluation study using a collection of real

biological and simulated dataset, the performance of our methods in comparison

with the method proposed by Xia et al. [41] (implemented in the DAMBE software

package [47,48]) and Kettleborough et al. [31] (implemented in the LASSO software

package [49]). Experimental results suggest that our methods are more accurate and

robust than DAMBE and LASSO under most of the model conditions, and can han-

dle significantly more amount of missing values. This is the only known study that

has adapted and leveraged the power of machine learning and deep learning frame-

work in imputing missing values in the context of phylogenetic analyses, and offers

the ability to handle large amount of missing values.

Methods
Matrix Factorization (MF)

Matrix factorization (MF) has become popular since 2006, when one group of com-

petitors for Netflix Prize that year used the technique [45,50]. Usually being applied

in recommender systems [51], this method is used to discover latent features between

two interacting entities. Matrix factorization is actually a class of collaborative fil-

tering algorithms [52], which predict users’ future interest by analyzing their past

behavior.

Intuitively, there should be some latent features behind how a certain user rates an

item. For example, movie ratings by users generally rely on many features including

genre, actors, etc. If a certain individual gives high ratings to action movies, we can

expect him to do the same to another action movie not rated by him already.

Discovering the latent features will thus help predict users’ future preferences.

We adapt this idea to our problem of missing entries in distance matrices. If the

distance between two taxa A and B is not known, we can predict the distance by
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analyzing their distances with other taxa using the concept of matrix factorization

(with appropriate customization).

Let S be a set of N OTUs (Operational Taxonomic Units). Let, R be an |N |×|N |
distance matrix comprising the distances between any two OTUs. If we want to find

K latent features of distances, we need to find two matrices X and Y , where the

dimensions of X and Y are |N |×K. The product of X and Y T will then approximate

R as follows.

R ≈ X × Y T = R̂

However, as matrix R (and R̂) has the property where rij = rji (and r̂ij = r̂ji),

we only consider the lower triangular portion of the matrix. We impute the distance

r̂ij between two OTUs as follows.

r̂ij =
∑K

k=1 xikykj

We initialize X and Y with some random values and try to determine the error

between R and the product of P and Q. Then we update those matrices accordingly.

We considered squared error as the errors can be both positive and negative. We

also add a regularization parameter β to avoid overfitting. Thus, we calculate the

error as follows.

e2ij = (rij − r̂ij)2 +
β

2

K∑
k=1

(||X||2 + ||Y ||2)

= (rij −
K∑

k=1

xikykj)
2 +

β

2

K∑
k=1

(||X||2 + ||Y ||2)

(1)

We then obtain the gradient at current values by differentiating Eqn. 1 with

respect to xik and ykj separately. We use the following update rules.

x′ik = xik + α
∂

∂xik
e2ij = xik + α(2eijykj − βxik) (2)

y′kj = ykj + α
∂

∂ykj
e2ij = ykj + α(2eijxik − βykj) (3)

In Equations 2 and 3, α is a constant which determines the rate to approach

minimum error. We perform the above steps iteratively until the total error E

(=
∑
eij ) converges to a pre-specified threshold value (10−6) or 10,000 iterations

take place.

Matrix Factorization has previously been used in imputing missing data in various

domains of bioinformatics, including analyzing scRNA-seq with missing data [53],

handling missing data in genome-wide association studies (GWAS) [54], and iden-

tifying cancerous genes [55]. In this study, we successfully adapted this idea for

imputing missing entries in a distance matrix for phylogenetic estimation.
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Autoencoder (AE)

Autoencoder (AE) is a type of artificial neural network that learns to copy its input

to its output. This is achieved by learning efficient data codings in an unsupervised

manner to recreate the input. An autoencoder first compresses the input into a

latent space representation and then reconstructs the output from that represen-

tation. It tries to learn a function g(f(x)) ≈ x, where f(x) encodes the input and

g(f(x)) reconstructs the input using decoder. Figure 1 shows a general overview of

autoencoders.

Autoencoder has found various uses in integrative analysis of biomedical big data.

Its property of having the ability to reduce dimension and extract non-linear features

[56] have been leveraged by many studies. In one oncology study, autoencoders have

been able to extract cellular features, which can correlate with drug sensitivity

involved with cancer cell lines [57]. Autoencoder was also used to discover two

liver cancer sub-types that had distinguishable chances of survival [58]. Moreover,

some recent successful data imputation methods have been developed based on

autoencoders [59–61]. Autoimpute [59] can be an example which imputes single cell

RNA-seq gene expression. Autoencoder-based methods such as [60] and [61] have

surpassed older machine learning techniques on various real life datasets.

In this study, we developed an undercomplete autoencoder [46] to predict the

missing values in distance matrix. The goal of an underdeveloped autoencoder is

to learn the most salient features of data by putting a constraint on the amount of

information that can flow through the network. There is no need for regularization

because they perform maximization of the probability of the data and does not

involve copying of the input to the output.

Our architecture has been inspired by an open source library, FancyImpute [62].

The model has 3 hidden layers with ReLU (Rectified Linear Unit) activation func-

tions [63]. The dropout rate is set to 0.75, which appears to work better than other

values. Sigmoid function [64] is used as the activation function for output layer.

The usual mean squared error (MSE) has been considered for the reconstruction

error function. Other than using the predictions provided by the neural network,

we have used some predefined weight to update the missing values. A schematic of

our model is shown in Fig. 2.

Results
We compared our methods with two of the most accurate alternate methods: 1) the

imputation method proposed by Xia et al. which is implemented in the software

package DAMBE [47, 48], 2) the method proposed by Kettleborough et al. [31],

which is implemented in the LASSO software package [49]. In this paper, we refer

by DAMBE the imputation method proposed by Xia et al. [41].

We used a collection of previously studied simulated and biological datasets to

evaluate the performance of these methods. We compared the estimated species

trees to the model species tree (for the simulated datasets) or to the trees estimated

on the full data without any missing entries (for the biological datasets), to evaluate

the accuracy of various imputation techniques. We have used normalized Robinson-

Foulds (RF) distance [65] to measure the tree error. The RF distance between two

trees is the sum of the bipartitions (splits) induced by one tree but not by the other,
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and vice versa. Normalized RF distance (RF rate) is obtained by dividing the RF

distance by the maximum possible RF distance.

Similar to previous studies [41], we generated missing entries in two ways: i) mod-

ifying the input sequences in a way that results into missing entries in the distance

matrix, and ii) directly deleting entries from a given distance matrix. In a complete

distance matrix of n taxa, there are n(n−1)
2 distances since the distance between

two entities is symmetric. Similar to previous studies [31,41], we randomly remove

some entries to create partial distance matrices. We can create partial distances

by modifying sequence data as well [41] (see the next sub-section on datasets). We

have used FastME [18,29] to construct trees from complete distance matrices.

Datasets

We have used a set of mitochondrial COI and CytB sequences from 10 Hawaiian

katydid species in the genus Banza along with four outgroup species. This dataset,

comprising 24 operational taxonomic units (OTUs) and 10 genes which evolved

under the HKY85 model [66], was previously used in [41]. In order to evaluate the

relative performance, we followed exactly the same process used by Xia et al. [41]

for modifying the sequences to create missing entries in distance matrices. However,

Xia et al. only generated 30 missing entries in the matrix, whereas we analyzed a

wide range of missing entries (10 ∼ 140).

We now explain how missing values were introduced by modifying the sequences

both in [41] and this study. A set of mitochondrial COI and CytB sequences was

used for the complete dataset of 24 OTUs. If we remove COI sequence from a

taxon A and CytB sequence from another taxon B, then (A, B) pair does not

share any homologous sites which results into a missing entry in the corresponding

distance matrix. Thus, if we remove COI sequence from n1 taxa and remove CytB

sequence from a different set of n2 taxa, we will have n1 × n2 missing entries in

the distance matrix. From the sequences, we created incomplete matrices based

on the MLCompositeTN93 (TN93) model [67]. TN93 model holds the assumption

of a complex but specific model of nucleotide substitution. The distance formula

is derived under the homogeneity assumption, which means that the pattern of

nucleotide substitution has not changed in the evolutionary history of the observed

sequences [68, 69]. We used MEGA-X [69–71] to introduce missing entries in the

distance matrices.

We used another set of simulated dataset based on a biological dataset (37-taxon

mammalian dataset [72]) that was generated and subsequently analyzed in prior

studies [9,13,73,74]. This dataset was generated under the multi-species coalescent

model [75] with various model conditions reflecting varying amounts of gene tree

discordance resulting from the incomplete lineage sorting (ILS) [76]. This collection

of dataset was simulated by taking the species tree estimated by MP-EST [7] on the

biological dataset studied in Song et al. [72]. This species tree had branch lengths

in coalescent units, that were scaled (multiplying or dividing by two) to vary the

amount of ILS (shorter branch lengths result into more ILS). The basic model

condition with moderate amount of ILS is referred to as 1X and the model conditions

with higher and lower amounts of ILS are denoted by 0.5X and 2X, respectively. For

each model condition, we used 10 replicates of data each containing 37 sequences.
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In addition to the TN93 model used in previous studies [41], we also applied the

LogDet method [77] to observe how they affect the imputation process. LogDet is

often considered superior as it does not associate itself with the assumptions held

by TN93, although it may overestimate distances in certain cases [68]. We analyzed

a range of missing entries: 36 (6×6), 100 (10×10), 225 (15×15), and 342 (19×18).

We also analyzed three distance matrices which were computed from aligned se-

quences (from Carnivores, Baculovirus, and mtDNAPri3F84SE) and were used in

previous studies [78,79]. The numbers of taxa in these matrices ranges from 7 to 10.

Various numbers of distance values were randomly removed to introduce missing

data.

Results on Sequence Input

Table 1 shows the results on 24 OTUs for a wide range of missing entries (10 ∼
140). For this particular dataset, MF showed superior performance on small to

moderate numbers of missing entries (0 ∼ 40), LASSO matched or improved upon

the other methods for moderate to high numbers of missing entriess (50 ∼ 110), and

AE outperformed others in the presence of higher amounts of missing data (110 ∼
140).

For 30 missing entries (which was the case analyzed in [41]), MF recovered 81%

of the true bipartitions, whereas DAMBE and LASSO recovered 76% and 67% bi-

partitions respectively. Fig. 3 illustrates the differences among the trees constructed

by various methods with 30 missing values. MF estimated tree is more closer to the

tree estimated on the full dataset compared to DAMBE and AE up to 40 missing

entries. Notably, with 10 missing entries, MF was able to reconstruct the correct tree

whereas DAMBE and AE incurred 5% and 10% errors, respectively. However, as

we increase the number of missing entries, DAMBE started to outperform MF, and

AE started to outperform both DAMBE and MF. Moreover, for moderate and high

numbers of missing taxa (50 ∼ 110), LASSO showed the best performance in recov-

ering true bipartitions, although sometimes MF and AE were equally good. When

one-third of the entries in the distance matrix are missing, LASSO, MF, and AE

recovered almost 48% bipartitions, whereas DAMBE recovered 43% bipartitions.

Another important point is that DAMBE can not impute distances when more

than 50% of the total entries are missing. LASSO’s performance is not promising

in this case either, because LASSO can not construct a tree on the full set of taxa,

resulting in an incomplete tree. Therefore, we could not consider the trees produced

by LASSO when more than 50% of the entries are missing. On the other hand, both

MF and AE were able to reconstruct around 25% of the true bipartitions even when

more than 50% of the entries are missing. Although, more than 50% missing entries

in a distance matrix may not be a very common model condition, the ability to

handle arbitrarily large amounts of missing data advances the state-of-the-art in

imputation techniques. The trees generated by MF and AE on dataset with higher

amounts of missing data can be used as starting trees for further improvements.

Results on 37-taxon simulated dataset with varying amounts of ILS, two differ-

ent evolution models and varying numbers of missing entries, are demonstrated in

Tables 2, 3, and 4. MF and AE are comparable or better than DAMBE in most of

the case. One noticeable aspect in these tables is that, unlike the 24 OTUs dataset,
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LASSO performed very poorly in all cases, providing the worst recovery rate of

true bipartitions. As DAMBE and LASSO can not handle distance matrices with

more than 50% missing entries, only MF and AE were able to run on the distance

matrices with 342 missing entries, albeit the RF rates are very high (due to the

lack of sufficient phylogenetic information present in the highly incomplete distance

matrix). MF could not recover any internal branches on the 1X dataset with 50%

missing entries. AE, on the other hand, was able to reconstruct around 15% bipar-

titions. Another observation, within the scope of the experiments performed in this

study, is that the amounts of ILS do not have any significant impact on the per-

formance of these imputation techniques. However, more experiments and analyses

are required to further investigate the impact of ILS on the tree estimation from

incomplete distance matrices.

We also analyzed the impact of two widely used sequence evolution models (TN93

and LogDet) on the performance of the proposed imputation techniques. MF per-

formed poorly on LogDet model compared to the TN93 model, as 17 out of 24

cases have LogDet producing a greater RF rate than TN93. AE, on the other hand,

shows similar (on 1X model) or slightly better (on 0.5X and 2X models) perfor-

mance under LogDet construction. DAMBE achieved performance improvement

under LogDet construction only for the 0.5X model condition (Table 3) and the

opposite trend is observed for the 1X and 2X model conditions (Table 2 and 4),

albeit the differences are very small. Although LASSO performed poorly on these

dataset, LogDet model helped it achieve a slightly better performance than TN93.

Results on Distance Matrix Input

We analyzed three separate distance matrices which were computed from the gene

sequences from Carnivores, Baculovirus and mtDNAPri3F84SE, and were analyzed

in previous studies [41]. We show the results in Tables 5, 6, and 7. For the car-

nivores dataset (Table 5), LASSO and AE produced the best results except for

one case with 15 missing entries where DAMBE was better than others. Even with

more than 50% missing entries, AE was able to reconstruct 30% of the true bipar-

titions. The performance of MF was worse than LASSO, AE, and DAMBE on this

particular dataset. On the Baculovirus dataset, DAMBE achieved the lowest RF

rates for relatively lower numbers of missing entries. However, as we increase the

amount of missing entries, MF and AE starts to outperform other methods. On the

mtDNAPri3F84SE dataset, the performances of these methods were mixed, and

no method consistently outperformed the others. However, DAMBE and LASSO

achieved better performance than MF and AE. Notably, AE was able to reconstruct

35% and 50% true bipartitions on Baculovirus and mtDNAPri3F84SE dataset even

when more than 50% of the distance values were missing.

Running Time

We performed the experiments on a computer with i5-3230M, 2.6 GHz CPU with 12

GB RAM. Among these four methods, MF was the slowest method. The running

time of MF on the 24-taxon dataset ranges between 7 ∼ 15 minutes for various

numbers of missing entries. DAMBE takes only a few seconds with 10 missing

entries, but as we increase the number of missing entries to 130, the running time
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of DAMBE increases to 2 minutes. AE was faster, requiring only around 30 seconds

for this dataset. LASSO was the fastest, taking only a second. Notably, unlike MF

and DAMBE, the running times of AE and LASSO do not change as we increase

the number of missing entries.

For the 37-taxon dataset, MF takes around 30 minutes while DAMBE takes 12

∼ 15 minutes. AE is faster than MF and DAMBE, taking only around 45 seconds.

LASSO was the fastest method which took only a second. For the relatively smaller

matrices presented in Sec. , DAMBE is very fast, and finished in a second. MF took

around 45 seconds, and AE took 20 seconds. Overall, the running time of LASSO

and AE are better than others and are less sensitive to the numbers of taxa and

the numbers of missing entries.

Discussion
We extensively evaluated our proposed methods on a collection of real and simulated

dataset. Previous studies like [41] and [31] have limited their evaluation studies to

only one or two datasets with limited numbers of taxa. Moreover, previous studies

also limit their results to 10% missing entries. We tried to address these issues

by testing our methods as well as the previous ones on five different datasets with

different challenging model conditions and applied various missingness mechanisms.

We have tested our methods for a wide range of missing entries. We also worked on

a 37-taxon mammalian dataset, whereas previous comparative studies were limited

to 26 taxa. Furthermore, we analyzed the impact of varying amounts of ILS on the

performance of various imputation techniques.

In general, MF and AE seem to be robust across various dataset and model con-

ditions. DAMBE was comparable to MF and AE when the numbers of missing

entries were relatively small. However, in general, DAMBE does not perform well

with moderate to high numbers of missing entries. Although LASSO was previously

shown to be less accurate than DAMBE in [41], we observed mixed performance,

and found LASSO performing better than DAMBE in several cases. For lower num-

bers of taxa, LASSO works very well, even when 25-45% entries are missing. But

on the 37-taxon dataset, LASSO consistently performed poorly compared to other

methods. Our proposed methods did not show any such indication of obvious poor

performance in any particular dataset. Even on the model conditions where LASSO

and DAMBE achieved better performance, MF and AE achieved competitive accu-

racy. MF works especially well when the number of missing entries is small. AE, on

the other hand, shows good performance overall, and does particularly well when

50% or more distances are missing.

Another important aspect is both DAMBE and LASSO failed to handle distance

matrices with more than 50% missing entries. But our methods have no such lim-

itation. More often than not, sequence data contain substantial amounts of miss-

ing information, resulting into distance matrices with lots of missing entries. We

understand that, in the presence of a substantial number of missing entries in a

distance matrix, researchers will tend to approach the trees with extreme care.

However, the ability to construct trees in the presence of arbitrarily large num-

bers of missing entries will help us estimate starting trees on extremely challenging

model conditions with high levels of missing entries. These starting/guide trees can
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be improved with further analysis (for example, divide-and-conquer based boosting

techniques [13,19–22]).

Although we investigated a collection of dataset under various practical model

conditions (more than the number of model conditions analyzed in previous stud-

ies), this study can be expanded in several directions. Future works will need to

investigate how to help the researchers choose the right imputation approaches for

various model conditions. This study investigated relatively long sequences (1500 ∼
2600 bp); subsequent studies should investigate the relative performance of methods

on very short sequences. This study analyzed small to moderate sized dataset (7

∼ 37 taxa). Larger dataset with hundreds of taxa need to be analyzed, especially

to demonstrate the power of machine learning techniques in leveraging the latent

features of phylogenetic data. We leave these as future works.

Conclusions
In this study we have presented two imputation techniques, inspired from matrix

factorization and deep learning architecture, to reconstruct phylogenetic trees from

partial distance matrices. Experimental results using both simulated and real biolog-

ical dataset show that our models match or improve upon alternate best techniques

under varying model conditions (numbers of taxa, sequence lengths, gene tree dis-

cordance, DNA sequence evolution models, etc.), and missingness mechanisms.

Estimating phylogenetic trees in the presence of missing data is sufficiently com-

plex and hence existing methods cannot fully comprehend or predict the relation-

ships among the taxa from partial distance matrices. Thus the goal here should be

the creation of an appropriate model to capture the underlying data distribution;

the model should account for as much phylogenetic data as possible to impute the

missing entries. This view emphasizes the importance of machine learning (ML)

for distance matrix imputation. Moreover, we aimed for developing appropriate

unsupervised models. Unsupervised learning approaches have advantages over su-

pervised methods particularly when the data are heterogeneous, which are often so

with various phylogenetic dataset and therefore the supervised models trained on

distance matrices on a particular set of taxa may not be generalizable to impute

missing entries in the distance matrices on other set of taxa.

We have shown that MF and AE can handle very high amount of missing data.

Unlike other methods [31], our proposed methods do not require the molecular

clock assumption. Moreover, deep architecture like autoencoders are able to auto-

matically learn latent representations and complex inter-variable associations, which

is not possible using other methods. Our autoencoder based method is also scal-

able to large datasets. Considering the rapidly increasing growth of phylogenomic

dataset, and the prevalence of accompanying missing data, the timing of our pro-

posed approaches seems appropriate. Thus, given the demonstrated potential in tree

reconstruction in the face of missing data, we believe that our proposed techniques

represent a major step towards solving real world instances in phylogenomics.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2020. ; https://doi.org/10.1101/744789doi: bioRxiv preprint 

https://doi.org/10.1101/744789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bhattacharjee and Bayzid Page 11 of 18

Figures

Figure 1: General overview of an autoencoder.
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Figure 2: A schematic of our proposed autoencoder model. The X’s in the

dropout layers symbolically denote that their weights will be set to zero.
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Figure 3: Phylogenetic trees estimated on the full and incomplete dataset (30

missing entries) with 24 OTUs from 10 Hawaiian katydid species. (a) Tree

estimated from the full data (complete distance matrix), (b) - (e) trees

reconstructed from incomplete distance matrix by DAMBE, LASSO, MF, and

AE, respectively. Red rectangles highlight the inconsistencies with the tree on

the full dataset.
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Table 1: RF rates of different methods on the 24 taxa dataset with varying numbers

of missing entries. The best RF rates for various model conditions are shown in

boldface.
#Taxa #Entries #Missing RF Rate

Entries DAMBE LASSO MF AE
10 0.0476 0.2857 0 0.0952
20 0.1429 0.3333 0.1905 0.2381
30 0.2381 0.3333 0.1905 0.2381
40 0.2857 0.3333 0.2857 0.3333
50 0.3333 0.1905 0.4286 0.3333
60 0.2857 0.2381 0.3333 0.381
70 0.4286 0.2857 0.5714 0.381

24 276 80 0.4762 0.381 0.6667 0.381
90 0.5714 0.5238 0.5238 0.5238
100 0.5714 0.5714 0.7143 0.6190
110 0.7143 0.6190 0.8571 0.6190
120 0.8095 0.7619 0.8571 0.7143
130 0.8571 0.7619 0.8095 0.7619
140 N/A N/A 0.7619 0.7619

Table 2: Average RF rates of different methods on the 37-taxon, 1X dataset (moder-

ate amount of ILS) for varying numbers of missing entries and two different sequence

evolution models. We show the average RF rates over 10 replicates. The best RF

rates for various model conditions are shown in boldface.
#Taxa #Entries Scaling Model #Missing Average RF Rate

Entries DAMBE LASSO MF AE
36 0.4059 0.7206 0.3294 0.4088
100 0.4765 0.7206 0.4647 0.4588

TN93 225 0.7176 0.7794 0.6235 0.7029
37 666 1X 342 N/A N/A 0.9882 0.8559

36 0.4147 0.7088 0.35 0.4029
100 0.4853 0.7176 0.5029 0.4588

LogDet 225 0.7205 0.7617 0.6559 0.7235
342 N/A N/A 1 0.8618

Tables

Table 3: Average RF rates of different methods on the 37-taxon, 0.5X dataset (high

ILS) for varying numbers of missing entries and two different sequence evolution

models. We show the average RF rates over 10 replicates. The best RF rates for

various model conditions are shown in boldface.
#Taxa #Entries Scaling Model #Missing Average RF Rate

Entries DAMBE LASSO MF AE
36 0.4529 0.6941 0.3471 0.4294
100 0.4912 0.7206 0.5029 0.5353

TN93 225 0.6618 0.7588 0.6235 0.7147
37 666 0.5X 342 N/A N/A 0.9971 0.8412

36 0.45 0.6824 0.35 0.4176
100 0.4853 0.7059 0.5236 0.5147

LogDet 225 0.6441 0.7588 0.6559 0.7029
342 N/A N/A 0.9853 0.8412
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Table 4: Average RF rates of different methods on the 37-taxon, 2X dataset (low

ILS) for varying numbers of missing entries and two different sequence evolution

models. We show the average RF rates over 10 replicates. The best RF rates for

various model conditions are shown in boldface.
#Taxa #Entries Scaling Model #Missing Average RF Rate

Entries DAMBE LASSO MF AE
36 0.4324 0.6765 0.3559 0.4176
100 0.5 0.6882 0.5206 0.5

TN93 225 0.6559 0.7294 0.7088 0.6941
37 666 2X 342 N/A N/A 0.9853 0.85

36 0.4382 0.6294 0.3559 0.4006
100 0.5088 0.6588 0.5382 0.5206

LogDet 225 0.6647 0.7324 0.7 0.6853
342 N/A N/A 0.9941 0.8559

Table 5: RF rates of different methods on the Carnivores dataset. The best RF rates

for various model conditions are shown in boldface.
#Taxa #Entries #Missing RF Rate

Entries DAMBE LASSO MF AE
5 0.5714 0.1429 0.4286 0.4286
10 0.4286 0.1429 0.7143 0.1429

10 45 15 0 0.2857 0.7143 0.5714
20 0.8571 0.1429 0.5714 0.5714
25 N/A N/A 0.8571 0.7143

Table 6: RF rates of different methods on the Baculovirus dataset. The best RF

rates for various model conditions are shown in boldface.
#Taxa #Entries #Missing RF Rate

Entries DAMBE LASSO MF AE
4 0 0.1667 0.1667 0.1667
8 0.1667 0.1667 0.5 0.3333

9 36 12 0.6667 0.6667 0.5 0.6667
16 0.8333 0.6667 0.6667 0.5
20 N/A N/A 0.8333 0.6667

Table 7: RF rates of different methods on the mtDNAPri3F84SE dataset. The best

RF rates for various model conditions are shown in boldface.
#Taxa #Entries #Missing RF Rate

Entries DAMBE LASSO MF AE
2 0 0 0 0
5 0.5 0.25 0.5 0.75

7 21 7 0 0.25 0.75 0.25
10 0.75 0.25 0.75 0.75
12 N/A N/A 0.75 0.5
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