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Key Message 

High tumor mutation burden is found in 5% of all breast cancers and is more common in metastatic 

tumors. While different mutational signatures are present in hypermutated tumors, APOBEC activity is 

the most common dominant process. Preliminary data suggest that those tumors are more likely to benefit 

from PD-1 inhibitors. 
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Abstract 

Background: High tumor mutation burden (TMB) has been associated with benefit to immunotherapy in 

multiple tumor types. However, the prevalence of hypermutated breast cancer is not well described. The 

aim of this study is to evaluate frequency, mutational patterns, and genomic profile of hypermutated breast 

cancer. 

 
Patients and Methods: We used de-identified data from individuals with primary or metastatic breast cancer 

from six different publicly available genomic studies. The prevalence of hypermutated breast cancer was 

determined among 3969 patients’ samples that underwent whole exome sequencing or gene panel 

sequencing. Samples were classified as having high TMB if they had ≥10 mutations per megabase 

(mut/Mb). An additional 8 patients were identified from a Dana-Farber Cancer Institute cohort for inclusion 

in the hypermutated cohort. Among patients with high TMB, the mutational patterns, and genomic profile 

were determined. A subset of patients was treated with regimens containing PD-1 inhibitors.  

 
Results: The median TMB was 2.63 mut/Mb. Median TMB significantly varied according to tumor subtype 

(HR-/HER2- > HER2+ > HR+/HER2-, p < 0.05) and sample type (metastatic > primary, p 2.2x10-16). 

Hypermutated tumors were found in 198 patients (5%), with an enrichment in metastatic versus primary 

tumors (8.4% versus 2.9%, p = 6.5 x 10-14). APOBEC activity (59.2%), followed by mismatch repair 

deficiency (MMRd; 36.4%), were the most common mutational processes among hypermutated tumors. 

Three patients with hypermutated breast cancer—including two with a dominant APOBEC activity 

signature and one with a dominant MMRd signature—treated with pembrolizumab-based therapies derived 

an objective and durable response to therapy. 

 
Conclusion: Hypermutation occurs in 5% of all breast cancers, with an enrichment in metastatic tumors. 

Different mutational signatures are present in this population, with APOBEC activity being the most 

common dominant process. Preliminary data suggest that hypermutated breast cancers are more likely to 

benefit from PD-1 inhibitors. 
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Introduction 

Despite the success of immune checkpoint inhibitors (ICI) across several tumor types, to date, only a 

small fraction of patients with metastatic breast cancer (MBC) have shown benefit to PD-1/PD-L1 

inhibitors given as monotherapy 1–6.  Thus, clinical trials have been launched to evaluate the efficacy of the 

combination of PD-1 axis inhibitors with other agents, including chemotherapy in breast cancer. 

  

Recently, based on data from IMPASSION130, the US Food and Drug Administration (FDA) granted 

accelerated approval for the combination of atezolizumab plus nab-paclitaxel for the treatment of patients 

with metastatic triple-negative breast cancer (mTNBC) of tumors with 1% PD-L1 expression on immune 

cells in the tumor microenvironment7. However, other predictive biomarkers may help to increase the 

number of patients with breast cancer who are likely to benefit from ICI, including those with hormone 

receptor (HR)-positive disease. 

  

It has been recognized that somatic mutations are the main source of tumor-specific antigens, or simply, 

neoantigens. Preclinical and clinical studies have shown that neoantigens are key targets of antitumor 

immunity. 8,9,10,11 In this context, high tumor mutational burden (TMB) is associated with high neoantigen 

burden, high T-cell infiltration, and high response rates to immune checkpoint inhibitors across different 

tumor types. 12–21 The objectives of this study are to evaluate the prevalence of hypermutation in breast 

tumors and determine the associated pathological characteristics, mutational signatures and genomic 

profiles. To do so, we analyzed publicly available genomic sequencing data from tumor samples from 

3969 patients with breast cancer. We also present several patients with hypermutated breast cancer who 

were treated with PD-1/PD-L1 inhibitor-based regimens and achieved prolonged clinical benefit. 

 

Methods 

Patients and Samples 

For the initial analysis, we evaluated de-identified genomic data from 3969 individuals with breast cancer 

from six different studies (Table 1). Whole exome sequencing (WES) data was obtained from The Cancer 

Genome Atlas breast cancer cohort (TCGA-BRCA) (http://gdac.broadinstitute.org/), The Metastatic 

Breast Cancer Project (MBCProject, April 2018) (https://www.mbcproject.org/data-release) and France 

study22, all publicly available on cbioportal.org (downloaded in May 2018). Gene panel sequencing data 

was obtained from the Dana-Farber Cancer Institute-OncoPanel (DFCI-OncoPanel), Memorial Sloan 

Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) and Vanderbilt-

Ingram Cancer Center (VICC), all found in the public release of AACR Project GENIE23, version 4.0, 
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downloaded via Sage Synapse (http://synapse.org/genie). For individuals with multiple samples, sample 

with the highest TMB was chosen, hence using one sample per patient. 

  

For the subsequent hypermutated cohort analysis, we also included 8 additional patients (from a cohort of 

222 patients) from our ongoing study of estrogen receptor (ER)-positive metastatic breast cancer in the 

Center for Cancer Precision Medicine at Dana-Farber Cancer Institute (DFCI-CCPM).24 Prior to any study 

procedures, all patients provided written informed consent to whole exome sequencing of tumor and 

normal DNA, as approved by the Dana-Farber/Harvard Cancer Center Institutional Review Board 

(DF/HCC Protocol 05-246). Metastatic core biopsies were obtained from patients and samples were 

immediately snap frozen in optimal cutting temperature and stored in -80°C. Archived Formalin-Fixed 

Paraffin-Embedded (FFPE) blocks of primary tumor samples were also obtained.  

 

Assessment of TMB 

TMB (mutation per megabase) was calculated as the total number of mutations detected for a given sample 

divided by the length of the total genomic target region captured with the exome or gene panel assay. The 

gene panels included had ≥ 1 Mb of target region captured. The TMB calculated from the specific gene 

panels selected for this analysis have previously been shown to have good correlation with TMB calculated 

from WES. 25–27  The overall TMB distribution was used to identify the threshold for hypermutated tumors, 

using the following formula: median (TMB) + 2 × IQR(TMB), where IQR is the interquartile range. The 

calculated cutoff value was 9.44, which was rounded off to 10. Samples with TMB of ≥10 were classified 

as hypermutated. 

 

  

Clinical annotations statistical analysis 

TMB was correlated with available clinical annotations (sample type, receptor subtype and histology). 

These annotations were extracted from patient and tumor sample level clinical data from these studies. 

These annotations reflect the tumor characteristic at the time of tumor biopsy. Tumor biopsies from the 

TCGA-BRCA study were annotated as primary. In the France Study 2016, all tumor biopsies were 

designated as metastatic. In the MBCProject, tumor biopsies from the breast were designated as primary, 

except if there were clear clinical annotations that the breast biopsy was obtained in the metastatic setting, 

in which case they were designated as metastatic.  Tumour biopsies from anatomic sites other than the 

breast in the MBCproject were designated as metastatic.  For rest of the cohorts (obtained from AACR 

Project GENIE) , tumor biopsies from the breast were designated as primary and biopsies from anatomic 
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sites other than breast were designated as metastatic.  Patients with complete clinical annotations were 

considered for statistical analysis. Wilcoxon test was used to calculate significance for differences in 

TMB across various clinical annotations. A p value of < 0.05 was considered to be statistically 

significant.  

 

Immune cytolytic score calculation 

Using RNA-sequencing data from the TCGA-BRCA dataset, we calculated the immune cytolytic activity 

defined as the geometric mean of expression values (RPKM) for the GZMA and PRF1 genes. 12 

  

Neoantigen Prediction Analysis 

Among the datasets mentioned above, we used the MBCProject for neoantigen prediction analysis since 

we had access to germline WES data. Using the Topiary tool (https://github.com/hammerlab/topiary), 

the mutated DNA sequences from WES were computationally translated into corresponding mutated 

peptide sequences. Patient specific human leukocyte antigen alleles were determined using Polysolver.28 

NetMHC (v4.0)29 was used in order to predict MHC class I binding affinity for 8 to 11mer peptide 

sequences containing the mutated amino acid. Candidate neoantigens of mutated peptides were selected 

based on the following filters: binding affinity IC50 of ≤ 500nM to one (or more) of the patient-specific 

HLA alleles and percentile rank cutoff of ≤ 2.0. 

 

Mutational Signature Analysis 

Contributions of different mutation signatures were identified for each sample according to distribution of 

the six substitution classes (C>A, C>G, C>T, T>A, T>C, T>G) and the bases immediately 5ʹ and 3ʹ of the 

mutated base, producing 96 possible mutation subtypes. The extracted signatures were compared against 

the known and validated 30 COSMIC signatures.30 A sample was determined to have a dominant signature 

based on the maximum signature score attributable to that sample. We discuss four main signature 

categories here: homologous recombination deficiency-related (signature 3); activity of Apolipoprotein B 

mRNA Editing Catalytic Polypeptide-like (APOBEC) family (signatures 2 and 13); mismatch repair 

deficiency (MMRd; signatures 6, 15 and 20); and altered activity of POLE (signature 10). 

The analysis was performed using maftools package in R.31  

Mutation Enrichment Analysis 

Mutation rates for each gene and its differences were calculated for each patient. We restricted the 

analysis to known cancer driver genes as described in COSMIC Cancer Gene Consensus32 and PathCards33. 
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Fisher’s exact test was used to calculate significance. Multiple test correction was done using the 

p.adjust() function with false discovery rate method in R. 

  

Results 

Hypermutation across breast cancers 

Genomic and clinical data from three WES studies (France Study 2016, MBCProject, and TCGA-BRCA) 

and three targeted panel studies (DFCI-ONCOPANEL, MSK-IMPACT and VICC) were combined to 

perform analysis on a total of 3969 patients with breast cancer. The frequency of hypermutation in breast 

cancers from each dataset (Figure 1A) varied from 2.3% (MSK-IMPACT468) to 14.0% (DFCI-

OncoPanel). The median TMB across the entire cohort was 2.63, with a range of 0.2–290.8 (Figure 1B). 

Overall, 5% (198 cases) of breast cancers analyzed were hypermutated based on the calculated cutoff of 

10 mutations/megabase (see methods). 

  

Metastatic tumors (see Methods), had a higher median TMB compared to primary tumors (3.8 vs 2.0, p 

<2.2 x 10-16) (Figure 1C). There was no significant correlation between TMB and age at diagnosis (R2 = 

0.13, p = 3.6 x10-5) (Supplementary Figure 1A) and no significant difference in TMB across histology 

types (p = 0.074) (Supplementary Figure 1B). Triple-negative breast cancers (TNBC) had significantly 

higher median TMB (1.8) compared to HR-positive cancers (1.1, p = 2.8 x 10-8) or HER2-positive cancers 

(1.3, p = 0.003) (Supplementary Figure 1C). 

  

Among hypermutated cases, the median TMB was 14.46. We analyzed the hypermutated tumors 

according to clinical and pathological characteristics (Supplementary Table 1). The frequency of 

hypermutated breast cancer was higher for metastatic samples as compared to primary samples (8.4% vs 

2.9%, Fisher’s exact, p = 6.529 x 10-14).  Additionally, 8.7% of invasive lobular carcinomas were 

hypermutated as compared to 4.0% of invasive ductal carcinomas, but this difference in prevalence was 

not statistically significant (p = 0.074). However, among the metastatic samples, we observed a 

significant enrichment of hypermutation in metastatic ILC (17.0%) as compared to metastatic IDC tumors 

(7.8%) (Fisher’s exact, p= 0.001782). The prevalence of hypermutated breast cancer was similar among 

different disease receptor subtypes (3.7-3.9%).  
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To compare the differences in mutation rate between distant metastatic biopsies, primary biopsies from 

patients who eventually developed metastases, and primary biopsies from patients who did not develop 

metastases, we performed several exploratory comparisons, though the numbers of samples used for these 

comparisons was small. The frequency of hypermutation in distant metastatic tumors biopsies (France 

Study 2016 and MBCProject; 4 out of 123)  was similar when compared to primary tumors (TCGA-

BRCA, 25 out of 977)( 3.1% vs 2.6% , Fisher’s exact, p=0.7). The frequency of hypermutation among 

primary tumors which eventually became metastatic (MBCProject; 3 out of 126) was similar to that of 

primary tumors overall, most of which did not recur (TCGA-BRCA,N=25), (2.4% vs 2.6%, Fisher’s exact 

p=1).   

Hypermutated breast cancers have a higher cytolytic score and higher neoantigen burden 

We evaluated whether hypermutation correlates with an increased immune cytolytic activity, which has 

been used as a surrogate of tumor-infiltrating lymphocytes (TILs)12. Using RNA sequencing data available 

in the TCGA-BRCA dataset (N =974), we observed that hypermutated breast tumors (N = 25) had higher 

cytolytic activity compared to non-hypermutated breast tumors (p 0.0048; Supplementary Figure 2A). 

  

Neoantigen burden was evaluated in tumor samples from the MBCProject (N = 157), in which we were 

able to analyze both germline and tumor WES data. The 4 hypermutated breast cancers in this cohort had 

a higher neoantigen burden compared to the 153 non-hypermutated tumors (Supplementary Figure 2B).  

Together. this data suggests that hypermutated breast cancers may have increased T-cell infiltration. 

  

APOBEC is the dominant mutational process among hypermutated breast cancers 

We next investigated the potential drivers of hypermutation in breast cancer by assessing the mutational 

signatures present in these hypermutated tumors (Figure 2). Mutational processes causing cancer can arise 

due to intrinsic dysfunction (defective DNA replication, enzymatic modification of DNA and defective 

DNA repair) or extrinsic factors (exposure to ultraviolet light, mutagens or tobacco smoke). These 

mutational processes generate unique patterns of mutation types, which are termed as mutational 

signatures. We found that most hypermutated breast cancers (59.2%) have a dominant APOBEC activity 

signature (signature 2 and 13). APOBEC signature has been attributed to the activity of the 

AID/APOBEC family of cytidine deaminases converting cytosine to uracil. When dysregulated, this 

family of enzymes can be a major source of mutations in several cancers, including non-small cell lung 

cancer and bladder cancer.34 
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In another 36.4% of the hypermutated breast cancers, we found dominant signature signifying mismatch 

repair deficiency (MMRd) (signature 6, 15 and 20). MMRd leads to hypermutation and this signature is 

associated with high numbers of small insertions and deletions at mono/polynucleotide repeats regions. 

  

Other patients exhibited different dominant mutational signatures: ~1.0% were found with a signature of 

homologous recombination deficiency (signature 3). Signature 3 is known to be strongly associated with 

BRCA1/2 mutations in breast cancer. This signature is characterized by the presence of larger deletions 

with overlapping microhomology at breakpoint junctions.  Furthermore, 3.4% patients presented with a 

dominant signature associated with the altered activity of error prone DNA polymerase epsilon (POLE) 

(signature 10) (Figure 2A and 2B). Signature 10 is known to cause ultra-hypermutation in small 

proportion of tumors in colorectal and uterine cancer. 30 The median TMB was higher for samples with 

dominant APOBEC and homologous recombination deficiency signatures (17.1 and 59.4, respectively), 

followed by tumors with dominant POLE and MMRd signatures (12.2 and 12.9, respectively, Figure 2C). 

Genomic landscape of APOBEC high and low hypermutated breast cancers 

Given the high proportion of hypermutated breast cancers with dominant APOBEC signatures, we sought 

to determine if there were any differences in the genomic landscape between hypermutated tumors that 

had a dominant APOBEC signature versus hypermutated tumors without a dominant APOBEC signature 

(Figure 2D). PIK3CA was found to be mutated in 68.6% of hypermutated tumors with dominant 

APOBEC signature versus 37.6% of hypermutated tumors without dominant APOBEC signature (p 

1.63x10-5, q 0.015). The proportion of PIK3CA mutations in the helical domain were enriched within 

hypermutated tumors with dominant APOBEC signature (47.3% vs 25.0%; p 0.01; Figure 2E) and 

mutations in the kinase domain were enriched in hypermutated tumors without a dominant APOBEC 

signature (p 0.19). Detailed PIK3CA alterations counts in different gene domains in hypermutated tumors 

are presented in Supplementary Table 2. 

  

Response to anti-PD-1/PD-L1 based therapies in hypermutated breast cancer 

Prior studies have demonstrated a correlation between hypermutation and response to immune checkpoint 

inhibitors. 35–37 However, at present immune checkpoint inhibitors are only approved for breast cancers with 

MMR deficiency.  We hypothesized that hypermutated breast cancers may respond to immune checkpoint 

inhibitors regardless of the underlying mutational signature.  To test this, we examined the treatment 
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histories of 222 patients with metastatic breast cancer from our prospective metastatic biopsy cohort at 

DFCI 24.  We identified 8 pts (3.6%) with hypermutated breast cancer, of whom four had received 

treatment with anti-PD-1/PD-L1 based therapies. Notably, three of these patients achieved an objective 

response to therapy and prolonged progression-free interval (Figure 3). Detailed prior systemic treatment 

details for these three patients are presented in Supplementary Table 3.  Response to therapy was not able 

to be assessed in the fourth patient who received immune checkpoint inhibitor therapy, as this patient had 

central nervous system metastasis, including leptomeningeal disease, and died two weeks after starting 

therapy with an anti-PD-1 antibody.  Analysis of mutational signatures in the metastatic biopsies 

demonstrated dominant APOBEC activity signatures in two patients and a dominant MMRd signature in 

the third one.  

 

Discussion 

To our knowledge, this work represents the largest study evaluating the prevalence and the mutational 

drivers of hypermutated breast cancers. Using large scale sequencing data from six different breast cancer 

cohorts with a total of 3969 patients, we found that the prevalence of hypermutation in breast tumors was 

5%. Notably, the prevalence of hypermutation was significantly higher in metastatic tumors than in 

primary tumors (8.4% vs 2.9%, Fisher’s exact, p = 6.529 x 10-14) and particularly in metastatic ILC versus 

metastatic IDC (17.0% versus 7.8%,  Fisher’s exact, p= 0.001782). Analysis of a subset of these tumors 

demonstrated that hypermutated tumors had a higher neoantigen burden and a higher cytolytic score 

compared to non-hypermutated tumors. APOBEC activity was found to be the most common dominant 

mutational process associated with hypermutation in breast cancer, present in more than half of the 

hypermutated tumors.  A dominant MMRd signature was present in an additional 36% of hypermutated 

breast cancers. Finally, we presented the histories of three patients with hypermutated breast cancer – 2 

with a dominant APOBEC activity signature and 1 with a dominant MMRd signature – who achieved 

objective and durable responses following pembrolizumab-based regimens. 

  

Our study found that 5% of patients  had hypermutated tumors with 8.4% of metastatic lesions being 

hypermutated versus 2.9% of primary tumors. It is not clear why there is an enrichment of hypermutated 

breast tumors in metastatic samples. It is possible that this hypermutated phenotype is acquired during 

tumor evolution and could be associated with resistance to prior systemic therapy or with the 

development of metastases. In fact, mutational signature 13 that is associated with APOBEC activity and 
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hypermutation is observed late in breast cancer evolution. 38–40 Another possibility could be that 

hypermutation is also enriched in primaries that ultimately become metastatic and thus may be a poor 

prognostic factor. However, using an exploratory analysis in a subset of samples, we did not find 

significant enrichment of hypermutation in primary tumors of patients which ultimately became 

metastatic (MBCProject) when compared to primary tumors in general, most of which did not recur 

(TCGA-BRCA) (2.4% vs 2.6%, Fisher's exact test, p = 1). The frequency of hypermutation was also 

similar in distant metastatic biopsies (France Study 2016 and MBCProject) when compared to primary 

tumors (TCGA-BRCA) (3.1 % vs 2.6%, Fisher’s exact test p = 0.7). Additional studies with sufficient 

sample size evaluating hypermutated metastatic biopsies paired with corresponding primaries from the 

same individuals will be necessary to further clarify this issue. 

  

Data from IMPASSION130 established PD-L1 expression on immune cells as a predictive biomarker of 

benefit to atezolizumab plus chemotherapy in mTNBC7. However, there are still controversies 

surrounding the broad utility of PD-L1 expression for selecting patients for immunotherapy.  Some of the 

concerns include that fact that PD-L1 is a dynamic marker, with varying expression over time.  

Additionally, data suggests discordance amongst pathologists in determining PD-L1 positivity.  Perhaps 

more importantly some patients who test positive for PD-L1 may not respond to the therapy, and some 

patients who test negative may still respond41. Altogether, this has led to the investigation of additional 

biomarkers to predict benefit or resistance to immunotherapy. Across different tumor types, high TMB 

has been associated with improved clinical benefit to ICI. 14,15,19,20,35–37 Notably, it has been shown that TMB and 

PD-L1 expression are independently predictive markers of response to ICI and have low correlation 

across multiple tumors 35. 

  

A better understanding of the forces driving hypermutation in breast cancers may be clinically relevant. 

The FDA granted accelerated approval for pembrolizumab in any MMRd tumors, and for the combination 

of nivolumab plus ipilimumab to treat refractory MMRd colorectal cancers. Given that MMR defects are 

one of the most important mechanisms associated with hypermutation, we investigated whether these 

hypermutated breast tumors were also associated with MMRd. Our study showed that while 36.4% of 

these hypermutated tumors have a dominant MMRd signature, the vast majority (59.2%) presented with a 

dominant APOBEC mutational signature. Importantly, this suggests that most hypermutated breast 

tumors will be missed if we only search for markers of MMRd or microsatellite instability. 
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Further studies should be done to confirm whether high TMB is predictive of benefit to immunotherapy 

in solid tumors independent of the mutational driver. While this is not yet known, in non-small cell lung 

cancer, APOBEC mutational signature was shown to be specifically enriched in patients with durable 

clinical benefit after immunotherapy. 40 Additionally, APOBEC upregulation correlates with high levels of 

PD-L1 expression. 42 Recently, Goodman et al. suggested that PDL1 amplification correlates with 

improved responses to ICI. 43 Therefore, it is conceivable that such genomic alteration works as a 

mechanism of immune escape from an endogenous immune response in tumors with APOBEC 

dysregulation. In addition, and in agreement with other studies, 44,45 we found a relationship between 

APOBEC-induced mutagenesis and PIK3CA mutations, especially with mutations in the helical domain 

(Figure 2E). Miao et al. reported that PIK3CA mutations were associated with complete or partial 

response to immune checkpoint therapy in microsatellite-stable solid tumors.46 

  

Notably, in our DFCI metastatic HR-positive breast cancer cohort, four patients with hypermutated 

tumors have received ICI-based therapies. Three patients achieved objective and durable responses: one 

received pembrolizumab given as monotherapy as part of the trial NCT02447003; one received the 

combination of pembrolizumab plus eribulin as part of the NCT02513472; and one received 

pembrolizumab plus nab-paclitaxel outside of a clinical trial. Interestingly, two of them had dominant 

APOBEC activity signatures while the other had a dominant MMRd signature. To better evaluate whether 

hypermutated breast cancers are responsive to immunotherapy, we launched a multicenter, single arm 

trial (NIMBUS), phase II trial of nivolumab plus ipilimumab in metastatic hypermutated HER2-negative 

breast cancers (NCT03789110). Patients are eligible for this trial if they have metastatic HER2-negative 

breast cancer with >= 10 mut/Mb as assessed by larger targeted panels (>300 genes) and have not been 

treated with more than three prior lines of systemic therapy in the metastatic setting. 

  

Given that more than 250,000 women and men are diagnosed with breast cancer in the U.S. every year, a 

frequency of 5% means that over 13,000 patients with hypermutated breast cancer being diagnosed 

annually just in the United States. This number suggests that hypermutated breast cancers are more 

prevalent other cancer subtypes such as non-small cell lung cancers with ALK-rearrangements or ROS1 

translocation, in which targeted therapy is successfully applied. Furthermore, enrichment in the frequency 

of hypermutation among metastatic ILC is notable and brings up the question whether all ILC should be 

investigated for hypermutation. 
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Strengths and Limitations 

 

The strengths of this study include the large sample size, the inclusion of subsets of patients with WES 

and RNA sequencing, the substantial number of patients with metastatic biopsies, and the mutational 

signature analysis.  However, our study has some limitations. First, clinical annotation data was 

unavailable in some studies, especially regarding receptor subtypes. There might be differences in 

definition of clinical annotations (e.g. metastasis vs primary) across different cohorts. While GENIE study 

defines metastasis vs. primary based on the site of acquisition of the tumor tissue, studies like the 

MBCProject define it based on the stage of disease (primary or metastatic) when the tumor tissue was 

acquired. Second, we performed a combined analysis of different datasets and batch effect and cohort bias 

are possible. Although previous studies have indicated a high concordance between findings of similar 

studies using different technological tools 47, we acknowledge the caveats of comparing TMB using 

different platforms .  TMB is influenced by tumor purity, ploidy, sequencing depth of coverage, and 

analysis methodologies. Since we are using publicly available data that has already been analyzed, we 

were not able to reanalyze and recalculate TMB it for each of the data sets in a standardized manner.  

  

In addition, the definition of high TMB is still not optimized across cancer subtypes  19,48, including breast 

cancer. The cutoff used to define hypermutation is consistent with the one used in large pan-cancer 

analysis conducted by Campbell et al.25,26  Our study used a combination of targeted gene panel and WES 

to determine the TMB cutoff, majority of samples coming from targeted gene panels. Although gene 

panels tend to estimate higher mutation burden, we selected larger gene panels which are known to have 

good correlation with WES with respect to TMB calculation. 25–27 There are multiple ongoing initiatives to 

standardize TMB assessment, and further work is necessary to establish the best cutoff for using TMB as 

a predictive biomarker of response to immunotherapy. 49,50 

  

Conclusion 

Our data suggest 5% of breast cancer have a high TMB, with an enrichment in metastatic tumors. These 

tumors are associated with a higher neoantigen burden and are more T-cell infiltrated. Furthermore, 

different mutational signatures are present in this population, with APOBEC activity being the most 

common dominant mutational process. Preliminary data suggest that hypermutated breast cancers are 

more likely to benefit from ICI supporting the conduct of the ongoing NIMBUS trial. 
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Table 1 – Characteristics of different breast cancer datasets and frequency of hypermutation. 

 
FF: Frozen; FFPE: Formalin fixed paraffin embedded; N: number. 
#Provisional, April 2018; +Lefebvre et al. Plos Med 2016; *Whole exome sequencing. 
 
 

Dataset Patients Type of tissue 
Site of tissue 

Genes sequenced (N) Frequency of hypermutated  
tumors (%) Primary Samples  

(N (%)) 
Metastatic Samples  

(N (%)) 
Unspecified or NA Samples  

(N (%)) 
France 2016+ 213 FF 0 (0.0) 213 (100.0) 0 (0.0) ~20,000* 4.2 

MBCProject April 2018# 126 FFPE 100 (79.4) 18 (14.3) 8 (6.3) ~20,000* 3.2 

TCGA-BRCA Cell. 2015 977 FF 977 (100.0) 0 (0.0) 0 (0.0) ~20,000* 2.6 

GENIE-DFCI-ONCOPANEL-3 301 FFPE 176 (58.5) 116 (38.5) 9 (3.0) 447 14.0 

GENIE-MSK IMPACT410 1009 FFPE 388 (38.5) 621 (61.5) 0 (0.0) 410 7.3 

GENIE-MSK IMPACT468 1071 FFPE 696 (65.0) 375 (35.0) 0 (0.0) 468 2.3 

GENIE-VICC-01-T5A 92 FFPE 46 (50.0) 46 (50.0) 0 (0.0) 322 7.6 

GENIE-VICC-01-T7 180 FFPE 72 (40.0) 107 (59.4)  1 (0.4) 429 6.7 

Total 3969 
 

2455 (61.9) 1496 (37.7) 18 (0.04)   5.0 
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Figure 1 – Tumor Mutation Burden across 3969 primary and metastatic breast cancers.
(A) TMB (y-axis) distribution for each dataset (x-axis) used in the analysis. Sample points above the black dotted line 
at 10 mutations/megabase represents the hypermutated tumors. Percentage of hypermutation is indicated for each 
dataset. Datasets marked with * on x-axis used whole exome sequencing; the remaining datasets used several-hun-
dred gene targeted sequencing panels. Numbers in parentheses represents the total number of patients included in 
this analysis from each dataset. (B) Histogram indicating the mutation burden across 3969 samples. Red dotted line 
indicates median TMB and black dotted line indicates the cutoff chosen to define hypermutation. (C) Boxplot 
representing median TMB for metastatic tumors versus primary tumors.  
Abbreviations: TMB: tumor mutational burden.
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Figure 2. Mutational signatures prevalent in hypermutated 
breast cancer.
(A) Signature score proportions (x-axis) for each of the 206 
hypermutated patients (y-axis). Light blue represents APOBEC 
activity; blue represents DNA mismatch repair deficiency ; light 
orange represents homologous recombination deficiency; green 
represents POLE signature (B) Each bar represents the percent-
age of patients across four dominant signatures sub groups. 
59.2% of patients have dominant APOBEC signature. (C) TMB 
(y-axis log scale) distribution across four dominant signatures 
detected. (D) Volcano plot indicating mutational rate differences 
(x-axis) for each gene (represented as a dot). Red colored dot are 
genes having higher mutation rate in dominant APOBEC hymer-
mutated tumors.  Green colored dot are genes having higher 
mutation rate in non-dominant APOBEC hymermutated tumors. 
PIK3CA is significantly enriched in the APOBEC high hymermutat-
ed tumors. Y-axis represents negative log scale of P value. (E) 
PIK3CA alteration proportions for helical and kinase domain in 
dominant APOBEC hypermutated tumors (red) and non-dominant 
APOBEC hypermutated tumors (blue).
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Figure 3. Details of the treatment received in the metastatic setting of patients with advanced breast cancer included in DFCI 
biobank cohort and treated with pembrolizumab-based therapy.

APOBEC: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 ; Bx: biopsy; Dx: diagnosis; ER: estrogen receptor; IHC: 
immunohistochemistry; MMRd: mismatch repair deficiency ; PR progesterone receptor; TMB: tumor mutational burden. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745265doi: bioRxiv preprint 

https://doi.org/10.1101/745265


 
 

14 

References  

1.  Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in Patients With Advanced Triple-Negative 
Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34(21):2460-2467. 

2.  Adams S, Loi S, Toppmeyer D, et al. Phase 2 study of pembrolizumab as first-line therapy for PD-
L1–positive metastatic triple-negative breast cancer (mTNBC): Preliminary data from KEYNOTE-
086 cohort B. Journal of Clinical Oncology. 2017;35(15_suppl):1088-1088. 
doi:10.1200/jco.2017.35.15_suppl.1088 

3.  Adams S, Schmid P, Rugo HS, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for 
previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. 
Journal of Clinical Oncology. 2017;35(15_suppl):1008-1008. 
doi:10.1200/jco.2017.35.15_suppl.1008 

4.  Loi S, Giobbe-Hurder A, Gombos A, et al. Abstract GS2-06: Phase Ib/II study evaluating safety and 
efficacy of pembrolizumab and trastuzumab in patients with trastuzumab-resistant HER2-positive 
metastatic breast cancer: Results from the PANACEA (IBCSG 45-13/BIG 4-13/KEYNOTE-014) 
study. Cancer Research. 2018;78(4 Supplement):GS2-GS06. doi:10.1158/1538-7445.sabcs17-gs2-
06 

5.  Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally 
advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res 
Treat. 2018;167(3):671-686. 

6.  Rugo HS, Delord J-P, Im S-A, et al. Safety and Antitumor Activity of Pembrolizumab in Patients 
with Estrogen Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced 
Breast Cancer. Clinical Cancer Research. 2018;24(12):2804-2811. doi:10.1158/1078-0432.ccr-17-
3452 

7.  Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative 
Breast Cancer. New England Journal of Medicine. 2018;379(22):2108-2121. 
doi:10.1056/nejmoa1809615 

8.  Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent 
mechanism of cancer immunoediting. Nature. 2012;482(7385):400-404. doi:10.1038/nature10755 

9.  DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. Expression of tumour-specific antigens 
underlies cancer immunoediting. Nature. 2012;482(7385):405-409. doi:10.1038/nature10803 

10.  Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis 
correlate with increased patient survival. Genome Research. 2014;24(5):743-750. 
doi:10.1101/gr.165985.113 

11.  Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic 
immune responses to cancer. Nature. 2015;520(7549):692-696. doi:10.1038/nature14426 

12.  Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors 
associated with local immune cytolytic activity. Cell. 2015;160(1-2):48-61. 

13.  Giannakis M, Mu XJ, Shukla SA, et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745265doi: bioRxiv preprint 

https://doi.org/10.1101/745265


 
 

15 

Carcinoma. Cell Rep. 2016;17(4):1206. 

14.  Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in 
melanoma. N Engl J Med. 2014;371(23):2189-2199. 

15.  Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines 
sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-128. 

16.  Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in 
metastatic melanoma. Science. 2015;350(6257):207-211. 

17.  Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New 
England Journal of Medicine. 2015;372(26):2509-2520. doi:10.1056/nejmoa1500596 

18.  Carbone DP, Reck M, Paz-Ares L, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-
Cell Lung Cancer. N Engl J Med. 2017;376(25):2415-2426. 

19.  Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. Nivolumab plus Ipilimumab in Lung Cancer with a 
High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093-2104. 

20.  Hellmann MD, Callahan MK, Awad MM, et al. Tumor Mutational Burden and Efficacy of 
Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer 
Cell. 2018;33(5):853-861.e4. doi:10.1016/j.ccell.2018.04.001 

21.  Campesato LF, Barroso-Sousa R, Jimenez L, et al. Comprehensive cancer-gene panels can be used 
to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. 
Oncotarget. 2015;6(33):34221-34227. 

22.  Lefebvre C, Bachelot T, Filleron T, et al. Mutational Profile of Metastatic Breast Cancers: A 
Retrospective Analysis. PLoS Med. 2016;13(12):e1002201. 

23.  AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through 
an International Consortium. Cancer Discov. 2017;7(8):818-831. 

24.  Cohen O, Kim D, Oh C, et al. Abstract S1-01: Whole exome and transcriptome sequencing of 
resistant ER metastatic breast cancer. Cancer Research. 2017;77(4 Supplement):S1-01. 
doi:10.1158/1538-7445.sabcs16-s1-01 

25.  Campbell BB, Light N, Fabrizio D, et al. Comprehensive Analysis of Hypermutation in Human 
Cancer. Cell. 2017;171(5):1042-1056.e10. doi:10.1016/j.cell.2017.09.048 

26.  Garofalo A, Sholl L, Reardon B, et al. The impact of tumor profiling approaches and genomic data 
strategies for cancer precision medicine. Genome Med. 2016;8(1):79. 

27.  Rizvi H, Sanchez-Vega F, La K, et al. Molecular Determinants of Response to Anti-Programmed 
Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-
Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J Clin Oncol. 
2018;36(7):633-641. 

28.  Shukla SA, Rooney MS, Rajasagi M, et al. Comprehensive analysis of cancer-associated somatic 
mutations in class I HLA genes. Nature Biotechnology. 2015;33(11):1152-1158. 
doi:10.1038/nbt.3344 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745265doi: bioRxiv preprint 

https://doi.org/10.1101/745265


 
 

16 

29.  Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to 
the MHC class I system. Bioinformatics. 2016;32(4):511-517. doi:10.1093/bioinformatics/btv639 

30.  Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering Signatures of 
Mutational Processes Operative in Human Cancer. Cell Reports. 2013;3(1):246-259. 
doi:10.1016/j.celrep.2012.12.008 

31.  Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive 
analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747-1756. 

32.  Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene 
Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696-
705. 

33.  Belinky F, Nativ N, Stelzer G, et al. PathCards: multi-source consolidation of human biological 
pathways. Database . 2015;2015. doi:10.1093/database/bav006 

34.  Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC cytidine deaminase mutagenesis 
pattern is widespread in human cancers. Nat Genet. 2013;45(9):970-976. 

35.  Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-
based immunotherapy. Science. 2018;362(6411). doi:10.1126/science.aar3593 

36.  Ott PA, Bang Y-J, Piha-Paul SA, et al. T-Cell-Inflamed Gene-Expression Profile, Programmed 
Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With 
Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318-327. 

37.  Samstein RM, Lee C-H, Shoushtari AN, et al. Tumor mutational load predicts survival after 
immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202-206. 

38.  Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of 21 breast cancers. Cell. 
2012;149(5):994-1007. 

39.  Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-
genome sequences. Nature. 2016;534(7605):47-54. 

40.  Wang S, Jia M, He Z, Liu X-S. APOBEC3B and APOBEC mutational signature as potential 
predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene. 
2018;37(29):3924-3936. 

41.  Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med. 
2016;213(13):2835-2840. 

42.  Boichard A, Tsigelny IF, Kurzrock R. High expression of PD-1 ligands is associated with mutational 
signature and APOBEC3 alterations. Oncoimmunology. 2017;6(3):e1284719. 

43.  Goodman AM, Piccioni D, Kato S, et al. Prevalence of PDL1 Amplification and Preliminary 
Response to Immune Checkpoint Blockade in Solid Tumors. JAMA Oncol. 2018;4(9):1237-1244. 

44.  McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of 
actionable driver events and the timing of mutational processes in cancer evolution. Science 
Translational Medicine. 2015;7(283):283ra54-ra283ra54. doi:10.1126/scitranslmed.aaa1408 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745265doi: bioRxiv preprint 

https://doi.org/10.1101/745265


 
 

17 

45.  Temko D, Tomlinson IPM, Severini S, Schuster-Böckler B, Graham TA. The effects of mutational 
processes and selection on driver mutations across cancer types. Nat Commun. 2018;9(1):1857. 

46.  Miao D, Margolis CA, Vokes NI, et al. Genomic correlates of response to immune checkpoint 
blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50(9):1271-1281. 

47.  Van Allen EM, Robinson D, Morrissey C, et al. A comparative assessment of clinical whole exome 
and transcriptome profiling across sequencing centers: implications for precision cancer medicine. 
Oncotarget. 2016;7(33). doi:10.18632/oncotarget.9184 

48.  Legrand FA, Gandara DR, Mariathasan S, et al. Association of high tissue TMB and atezolizumab 
efficacy across multiple tumor types. Journal of Clinical Oncology. 2018;36(15_suppl):12000-
12000. doi:10.1200/jco.2018.36.15_suppl.12000 

49.  Stenzinger A, Allen JD, Maas J, et al. Tumor mutational burden standardization initiatives: 
Recommendations for consistent tumor mutational burden assessment in clinical samples to guide 
immunotherapy treatment decisions. Genes, Chromosomes and Cancer. 2019. 
doi:10.1002/gcc.22733 

50.  Chan TA, Yarchoan M, Jaffee E, et al. Development of tumor mutation burden as an immunotherapy 
biomarker: utility for the oncology clinic. Annals of Oncology. 2019;30(1):44-56. 
doi:10.1093/annonc/mdy495 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745265doi: bioRxiv preprint 

https://doi.org/10.1101/745265

	HighTMB_BreastCancer_Manuscript
	TMB Paper Table 1 052219 copy
	TMB Paper Figure 1 052219 copy
	TMB Paper Figure 2 052219 copy
	TMB Paper Figure 3 052219 copy



