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Abstract 

In recent years, cellular life science research has experienced a significant shift, moving away 

from conducting bulk cell interrogation towards single-cell analysis. It is only through single 

cell analysis that a complete understanding of cellular heterogeneity, and the interplay 

between various cell types that are fundamental to specific biological phenotypes, can be 

achieved. Single-cell assays at the protein level have been predominantly limited to targeted, 

antibody-based methods. However, here we present an experimental and computational 

pipeline, which establishes a comprehensive single-cell mass spectrometry-based proteomics 

workflow. 

By exploiting a leukemia culture system, containing functionally-defined leukemic stem 

cells, progenitors and terminally differentiated blasts, we demonstrate that our workflow is 

able to explore the cellular heterogeneity within this aberrant developmental hierarchy. We 

show our approach is capable to quantifying hundreds of proteins across hundreds of single 

cells using limited instrument time. Furthermore, we developed a computational pipeline 

(SCeptre), that effectively clusters the data and permits the extraction of cell-specific proteins 

and functional pathways. This proof-of-concept work lays the foundation for future global 

single-cell proteomics studies. 
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Introduction 

In recent years, single-cell molecular approaches such as RNAseq (sc-RNAseq) have 

revolutionized our understanding of molecular cell biology (Treutlein et al, 2014; Islam et al, 

2014; Poulin et al, 2016; Trapnell, 2015; Paul et al, 2015). Gaining single-cell resolution of 

what occurs at the molecular level within single cells is of the utmost importance, particularly 

within in cancer biology, where it has long been known that tumors consist of a multitude of 

cell types, all acting in concert. (Levitin et al, 2018; Jerby-Arnon et al, 2018; Rodriguez-

Meira et al, 2019; Nam et al, 2019; van Galen et al, 2019) Similarly, in complex biological 

organs such as the hematopoietic system, it is the complex interplay of various cell types and 

differentiation stages which defines a healthy or malignant state (Bonnet & Dick, 1997; 

Mercier & Scadden, 2015; Kreso & Dick, 2014; Bahr et al, 2018; Notta et al, 2016; Shlush et 

al, 2017; Lauridsen et al, 2018; Lapidot et al, 1994). Thus, technologies which are unable to 

resolve the molecular landscapes at single-cell resolution, like the more traditional Mass 

Spectrometry (MS) based proteomics approaches that typically require an input of hundreds 

of thousands of cells, are not sufficient to gain an understanding of cellular heterogeneity and 

of underlying signaling networks within individual cell types. Due to technical and practical 

limitations in terms of instrument sensitivity and experimental workflows thus far, single-cell 

MS (scMS) has been elusive, leading to an initial focus on sc-RNAseq based approaches. 

While RNA-based methods have been informative about the RNA landscapes in a plethora of 

biological systems and have demonstrated high clinical relevance(Eppert et al, 2011; 

Duployez et al, 2019; Ng et al, 2016), their accuracy has proven limitation when used as a 

proxy for protein levels (Vogel & Marcotte, 2012; Khan et al, 2013). Therefore, to gain a 

thorough understanding of what occurs in a cell at the protein level, on a global scale, MS-

based approaches are the sole way to accomplish this. Being the cellular workhorses, there is 

much knowledge to be gained from mechanisms occurring at the protein level, either through 

enzyme activity, post-translational modifications or protein degradation/proteolysis; hence 

the great need for protein level approaches at the single-cell level.  

 

A few years ago, a novel type of flow cytometry was established; by combining traditional 

flow cytometry workflows with mass spectrometry, a new analysis method termed Mass 

Cytometry was developed, more commonly referred to as CyTOF (Newell et al, 2012; 

Bodenmiller et al, 2012). This allows the simultaneous readout of tens of markers 

simultaneously, allowing single-cell analysis of pre-defined sets of proteins or post-

translational modifications (PTMs). This method, however, relies heavily on previously 
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validated reagents and antibody panels, and is thereby inherently limited in terms of 

proteome coverage and which cellular signaling networks can be interrogated. Thus, while 

CyTOF represents a dramatic leap forward in terms of quantitative, protein-level analysis of 

single cells, there are a few inherent limitations that have prevented the technology from 

gaining universal recognition as a protein-level alternative to sc-RNAseq. 

 

In this work, we have established a novel experimental workflow that allows the global 

characterization of single cell proteomes without the need for antibodies, and we conducted a 

proof-of-concept study in a primary Acute Myeloid Leukemia (AML) hierarchy, consisting 

of leukemic stem cells (LSC), progenitors and blasts (Lechman et al, 2016). This primary 

culture system, termed ‘8227’, was derived from an AML sample where the patient had 

relapsed after treatment. By culturing under serum-free, growth-factor supplemented 

conditions, the hierarchical nature of AML is maintained, with LSC at the apex, 

differentiating to progenitors and terminally differentiated blasts; most traditional AML cell 

lines lack such a hierarchical structure. Blasts (characterized as CD34-) are the dominant 

population in the culture, but in vivo and in vitro long-term maintenance relies on the LSC 

(CD34+CD38-) and progenitor (CD34+CD38+) cells, thereby closely mimicking the in vivo 

hierarchical nature of primary AML (Fig. 1A). In order to successfully eradicate an AML in 

patients, we must not only target the blasts, but also the LSC in order to prevent relapse. 

However, due to their low abundance, studying LSC from a molecular perspective is 

challenging and has been limited to bulk-sorted approaches thus far (Raffel et al, 2017). The 

8227 culture system provides us with an ideal proof-of-concept system, as the functional 

heterogeneity within this culture system has previously been evaluated and is readily isolated 

through FACS sorting (based on classical CD34/CD38 stem cell markers) (Lechman et al, 

2016; Kaufmann et al, 2019). Modeling these functional differences using our molecular data 

would provide proof-of-principle that our workflow is able to distinguish differentiation 

stages in a complex cellular hierarchy.  

 

Our approach builds on a series of recent developments in the low-input proteomics field 

(Kulak et al, 2014; Lechman et al, 2016; Schoof et al, 2016; Wojtowicz et al, 2016; 

Klimmeck et al, 2012; Cabezas-Wallscheid et al, 2014), and focuses on minimizing sample 

loss throughout the experimental protocol. Subsequently, by utilizing a ‘booster’ channel to 

provide additional peptide copies (and thus, ions for MS identification), combined with 

Tandem Mass Tag (TMT) labeling, we are able to derive quantitative information about 
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protein levels in 10 single cells per MS injection. A similar approach has recently been 

published (Budnik et al, 2018), also utilizing the TMT technology, but which does not 

employ FACS sorting to isolate the cells of interest, has not demonstrated the ability to 

differentiate between various cell types or differentiation stages originating from the same 

starting population, and has not applied state-of-the-art computational single-cell analysis. In 

order for scMS to be a viable alternative to sc-RNAseq, it needs to 1) be able to match the 

throughput capacity, 2) cover the same order of magnitude in terms of number of unique 

proteins detected and 3) be easily implementable in a wide range of cellular assays. 

Therefore, we opted to use a 96-well plate format, into which cells can be sorted by standard 

FACS sorting, thereby providing medium-high throughput, omitting the requirement for 

expensive consumables, and being amenable to automated liquid-handling systems. This type 

of experimental workflow puts our method in line with sc-RNAseq workflows in terms of 

throughput and ease of implementation. Maximizing proteome coverage was addressed by 

optimized experimental workflows and utilizing the latest generation of MS instruments. In 

order to be able to draw conclusions about single cell molecular phenotypes, it is imperative 

to be able to quantify hundreds of unique proteins, which was a vital criterium of our 

proposed workflow. Finally, in order to utilize the scMS data to its full potential, we adopted 

the latest algorithms from the sc-RNAseq field, and implemented them on our protein-level 

data. Thus, this work represents a proof-of-concept demonstration of the method and a data 

resource of a leukemia hierarchy, while additionally providing the community with a 

universally deployable software package that allows researchers from any field to analyze 

their own single-cell proteomics or other expression data. 

 

Results 

Challenges to overcome 

One of the main technical challenges in conducting single-cell proteomics using MS, is the 

inherent sensitivity issue of MS instruments requiring enough ion (i.e. peptide) copies to 

successfully sequence, and thereby identify, the peptide. Depending on instrument type, this 

threshold rests anywhere between 10,000 – 100,000 ions and defines the lower limit of 

detection. To overcome this limitation, we utilized the main strength of TMT technology, 

namely the possibility to multiplex samples, while still being able to resolve sample-specific 

quantitative protein levels. Moreover, to boost the number of ions available for MS 

identification even further, we deploy a ‘booster’ sample, consisting of 500 cells, and 

dedicate a single TMT channel to that. The current iteration of the TMT technology has 
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eleven channels available, thus meaning that a single TMT sample can contain up to ten 

single cells plus the booster channel(s) (Fig. 1B). By multiplexing samples, the MS 

instrument has the ion equivalent of peptide copies from 510 cells available in total, leading 

to the successful identification and quantitation of a representative subset of the cellular 

proteome. For the experiments described below, we created single cell TMT pools for bulk 

cells (live cells covering the entire culture), blasts, progenitors and LSC, as we are able to 

FACS sort these populations according to the sorting scheme in Fig. 1B. 

 

An additional challenge is the sample loss associated with the upstream experimental 

workflow, where proteins and peptides bind non-specifically to the plastic surfaces of the 

tubes they are contained in. When starting with extremely limited material such as single 

cells, minimizing these non-specific sample losses is of utmost importance. From our pilot 

experiments, we found that using Eppendorf LoBind technology was very effective at 

minimizing these losses and hence all our experiments are done in LoBind PCR plates and 

microtubes. To assist with minimizing sample loss, we follow and further adapted the iST 

approach (Kulak et al, 2014), by processing samples all in a single reaction chamber. Cells 

are FACS-sorted directly into a LoBind 96-well PCR plate, the lysis is done directly after 

sorting, and the solubilized proteins are digested and TMT-labelled in the same well, thereby 

minimizing transfer-associated sample loss. After acidification, the single cell peptide 

samples are pooled with their respective booster channel, and desalted using StageTip 

technology (Rappsilber et al, 2007). 

 

The final and biggest technical challenge restricting single-cell proteomics is closely related 

with impediments in the sc-RNAseq field, namely the computational analysis and resolving 

the individual cell-types based on the available molecular data. To overcome this challenge, 

we adapted several of the latest state-of-the-art algorithms from the sc-RNAseq field, and 

tailored them to be amenable for our MS data (Fig. 1C). The resulting computational pipeline 

was termed ‘SCeptre’ (Single Cell proteomics readout of expression). Visualization of the 

data is facilitated through the use of SCANPY (Wolf et al, 2018), which allows one to adapt 

the embedding of choice (tSNE, UMAP, etc.) and explore the data visually. In order to 

account for experimental batch effects between sample injections and possible loss of protein 

groups between the same population, we rely on a proven technique from sc-RNAseq, where 

proteins most commonly expressed across all cells are used to compute an embedding of cells 

in order to see their relative positions in expression space. We use batch correction 
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(Haghverdi et al, 2018) on a reduced set of proteins commonly present in all populations 

(Step 1). The key parameter for defining this is “sigma”, which controls the percentage of 

proteins that are allowed to be missing in a given population. This can be adjusted for each 

dataset independently, in order to explore the most appropriate threshold levels for individual 

experimental setups. Once a set of common proteins is defined (Step 2), a feature engineering 

step is applied in the form of augmenting the data of protein expression with biological 

pathways (Step 3). In this proof-of-concept work, it was decided to use wiki pathways 

(Slenter et al, 2018), but other sources of pathway information or gene signatures can be used 

as well, as we have implemented support for the generic Gene Matrix Transposed (.gmt) 

pathway format widely used in the field(Subramanian et al, 2005). Next, we compute a 

correlation network for all features (protein and pathway expression, step 4). Features are set 

as nodes in the network and two nodes are linked together when they achieve a correlation 

coefficient across all cells in the dataset above a specified threshold. The complements larger 

than four nodes are then used to compute an “Eigenprotein” value from all proteins and 

pathways within that component for all cells (Step 5). Finally, the Eigenproteins (or so-called 

‘cliques’) are used to compute a UMAP (Uniform Manifold Approximation and Projection) 

embedding of all cells in the dataset (Step 6), which is the core of the visualizations shown in 

Figure 4. Combined, this workflow allows the determination of which proteins and pathways 

might play a role in defining the various cellular phenotypes. SCeptre is available as a docker 

image that contains all the processing steps and libraries readily available through an ipython 

notebook. 

 

Designing an optimal experimental workflow 

To determine the optimal experimental workflow, we explored various parameters to assess 

two key parameters for successful single-cell proteome analysis: 1) the choice of booster 

channel cells, and 2) instrument parameters. For the booster channel, in order to ensure the 

most accurate protein representation of the single cell proteomes within the booster channel, 

and exploit the nature of single-cell analyses to the fullest, it is imperative to choose the 

correct cell type, given the cell-specific protein expression levels that help distinguish cellular 

phenotype. To investigate the (dis)advantages of using various types of booster channel cells 

(bulk cells, differentiation stage specific and both), we repeated the experiments using the 

different types of booster channels and subsequently interpret the results. For the instrument 

parameters, we wished to investigate the pros and cons of conducting TMT quantitation at 

MS2 level or MS3 using the SPS TMT MS3 methodology (Ting et al, 2011; Hogrebe et al, 
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2018; McAlister et al, 2014); while the former method generally results in greater numbers of 

proteins identified, the quantitative accuracy tends to be affected by co-isolating peptides, 

which is resolved by the latter method, at the cost of sequencing speed, and consequently, 

number of protein identifications. Combined, these two types of investigations should 

provide us with a comprehensive catalogue on how to extract and utilize single cell 

proteomics data most effectively. 

 

Effect of the choice of Booster Channel cells 

To investigate the importance of the choice of booster cells, we set out to compare the results 

using 1) bulk, 2) differentiation stage specific, and 3) a combination of both bulk and 

differentiation stage specific booster channels (i.e. using two TMT booster channels). A brief 

overview of the result statistics can be found in Table 1, where it is clear that when using two 

types of booster channels simultaneously, the gain in extra ions for identification significantly 

increases the number of proteins identifiable in the single cells (2,138 proteins, compared to 

1,259 proteins in the bulk cell booster channel only). Likely, this increase in number of 

proteins identifiable is also due to the fact that differentiation stage specific proteins (such as 

CD34, which has elevated expression levels in progenitors and LSC) can be captured with the 

cell-specific booster channels, which would be lost in the population average provided by the 

bulk cell boosters. Moreover, comparison of PCA clustering of the three types of booster 

channels reveals that distinguishing various differentiation stages and accurately clustering 

them together becomes hampered when not using cell-specific boosters (Fig. 2A). Indeed, 

only when a cell-specific booster channel is used, do the blasts separate clearly from the 

progenitors and LSC, which is a key indicator of the ability to determine cellular phenotype 

from the molecular protein-level data. However, standard PCA analysis often falls short for 

interpreting single cell molecular analyses comprehensively; hence, we processed the data 

using SCeptre, in order to determine whether the single cell proteomics data would enable us 

to differentiate between the three differentiation stages, and whether specific cell clusters 

could be identified within the respective cell populations. As portrayed in Figure 2B, it is 

evident that, in fact, SCeptre is able to distinguish the various differentiation stages, 

irrespective of booster channel used, and clusters together single cells of the same 

differentiation stage in all three datasets. Especially the UMAP embedding is successful at 

highlighting the correct cell clusters, although tSNE is also able to generally cluster 

according to differentiation stage. As expected, bulk cells are generally placed between the 

blasts and progenitors/LSC, given that they consist of all three differentiation stages. The fact 
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that they are generally most closely located to the blasts can be explained by the fact that 

~90% of the 8227 cell culture system is made up of blast cells, which are therefore over-

represented in the bulk cell population, thereby rendering them molecularly most similar to 

the blasts. When taken together, these results strongly suggest that our experimental 

workflow is able to capture enough proteome depth to decipher cellular phenotype at the 

single cell level, and that SCeptre is able to resolve these cell populations from the protein 

expression data alone. 

 

Effect of MS Instrument Type 

To exploit the latest capabilities in resolving TMT co-isolation effects, we utilized the 

ThermoFisher Orbitrap Fusion instrument to analyse a subset of samples (40 single cells for 

each of the three differentiation stages and bulk cells, i.e. 160 single cells total, combined 

with a differentiation stage specific booster channel of 500 cells) using the TMT SPS MS3 

workflow(McAlister et al, 2014; Ting et al, 2011). We were interested in exploring whether 

the increased quantitative accuracy of such an instrument workflow would be beneficial for 

deciphering cellular phenotypes. Given the inherent lower proteome coverage with such an 

approach however, we also wanted to investigate whether the resulting proteome depth would 

still be sufficient for clustering the different differentiation stages correctly. When plotting 

this data using a standard PCA analysis (Fig. 2C), very little degree of separation between the 

different differentiation stages can be observed, and not as extensive as from our dataset 

using MS2-based quantitation. However, when analysing the same data using SCeptre (Fig. 

2D), it becomes clear that the protein-level data was in fact sufficient to cluster the 

differentiation stages correctly, with the single cells generally clustering together by 

differentiation stage, especially in the UMAP-embedded visualization of the data.  

 

Booster Channel control experiments 

Encouraged by our initial results of being able to cluster differentiation stages correctly, 

irrespective of which booster channel we used, we next set out to explore whether mixing 

single cells of different differentiation stages, combined with a booster channel of one 

differentiation stage only, would still allow us to resolve differentiation stages correctly. We 

hypothesize that if we are truly reading out single cell proteomes, irrespective of type of 

booster channel used, the booster channel of one differentiation stage should not influence 

the final clustering of the single cells from other differentiation stages that were analysed in 

unison. To this end, we sorted two 96-well plates according to Figure 3A, where for each 
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differentiation stage, we prepared two TMT pools with that specific differentiation stage as 

booster channel, while mixing in single cells of all three differentiation stages and bulk 

within the same TMT pool. Thus, in total, 16 single cells of each differentiation stage were 

analysed, in combination with a booster channel originating from each of the differentiation 

stages. Resulting samples were then analysed using both MS2 and MS3-level quantitation, 

and we tested whether the single cells clustered according to differentiation stage. Total 

proteome coverage was around 1,000 proteins across 72 cells (Fig. 3B).  When subjected to 

standard PCA analysis, there was no clustering according to differentiation stage (Fig. 3C); in 

fact, the single cells clustered almost exclusively according to the TMT pool they originated 

from. No significant difference was observed between MS2 and MS3-level quantitation, and 

even with the more accurate MS3 approach, no correct differentiation stage clustering was 

apparent. However, when analysed using SCeptre, single cells strikingly clustered perfectly 

according to differentiation stage, especially in the MS3 dataset (Fig. 3D). These results are 

highly critical, as they indicate we truly are measuring single cell proteomes as opposed to 

being significantly influenced by the booster channel contents; while differentiation stage 

specific booster samples are important for detecting cell-specific proteins, they are not 

imperative for being able to correctly cluster the differentiation stages using the protein-level 

information only. Moreover, these experiments also show that even using small cell numbers, 

with limited per-cell proteome coverage of several hundred proteins (Fig. 3D), we are still 

able to detect different differentiation stages and extract those proteins that may be key to 

their functional phenotypes. 

 

Eigenprotein Analysis of scMS data 

Having established that the molecular protein expression data from our experimental pipeline 

is of enough proteome depth and quantitative accuracy to correctly cluster differentiation 

stages, we next set out to improve the clustering ability even further, and try to decipher those 

proteins and functional pathways which may be fundamental to defining cellular phenotype. 

Being able to find cellular sub-clusters within a cell type of interest is of great benefit when 

trying to deduce cellular heterogeneity, as this may allow the determination of even purer cell 

populations within a previously deemed homogeneous cell type. To this end, we employed a 

concept from the RNAseq field, namely that of Eigenproteins. By combining protein 

expression patterns with protein interaction (i.e. pathway) information of those proteins, one 

can potentially derive functionally unique clusters within a cell type of interest, thereby 

spanning the bridge between protein expression and functional implications of those proteins. 
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This has been applied in the genomics field before (Han et al, 2017; Cheng et al, 2017; 

Agrahari et al, 2018), but to the best of our knowledge, has not been explored in the 

proteomics field thus far. By combining protein expression with protein interaction 

information, our pipeline generates so-called ‘cliques’, which are subsequently used to re-

cluster the single cells on an embedding of choice (UMAP or tSNE). 

To demonstrate the utility of the Eigenprotein approach, we focused on dataset number three 

(using differentiation stage specific booster channels), as it contains the largest number of 

cells and total number of proteins identified, and it should contain the differentiation stage 

specific proteins that would be lost when using bulk cells as booster channels. When 

supplementing the protein expression levels with protein interaction information, a different 

clustering patterns emerges (Fig. 4A), where cells of one differentiation stage are clustered in 

a more cloud-like fashion. In this analysis, a total of 54 cliques were identified 

(Supplementary Figure 1), which are sufficient and able to cluster the single cells according 

to differentiation stage. When looking at the UMAP representations of these Eigenprotein 

cliques (Fig. 4B), one can clearly distinguish differentiation stage specific clusters, 

suggesting that those cells are utilizing functional signalling pathways in a similar manner. 

These clusters can then be related back to the Eigenprotein differentiation stage clustering 

(Fig. 4A) to determine which specific differentiation stages are having those pathways up- or 

down-regulated. The pathways associated with the Eigenprotein cliques shown here 

(Eigenproteins 16, 26 and 22) correspond to “Wnt Signaling/Pluripotency”, “VEGF/Fas 

ligand/p38_MAPK signaling”, and “mir-124 predicted interactions with cell cycle and 

differentiation”; relating back to the differentiation stage clustering, it appears that these 

pathways are important for Progenitors/LSC, LSC and blasts respectively. For a complete 

overview of the Eigenprotein cliques identified in this dataset, they are all listed in 

Supplementary Table 1. This analysis workflow presents a meaningful way to explore the 

data, both visually and functionally, and to get insights into what functional pathways are 

active within the various differentiation stages, thereby providing input for downstream 

functional validation.  

 

Towards finding cell-specific proteins 

To further enhance the differentiation stage specific analysis, at the single-cell level, we 

wanted to be able to find those proteins whose expression levels most extensively define 

cellular phenotype. To this end, we deployed the “rank_genes” function from SCANPY 

(Wolf et al, 2018), which is integrated in SCeptre. This allows us to extract those proteins 
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that are ranked highest for defining a differentiation stage of interest, and plot them (Fig. 4C). 

For this illustration, the Wilcoxon-Rank-Sum statistical test was used. We then plotted the 

statistically significant proteins in a heatmap, illustrating the expression level of those 

proteins across the various cell populations, within each individual cell separately (Fig. 4D). 

In order to link these results back to our Eigenprotein embedding, the computational pipeline 

also enables the plotting of individual protein expression levels on any embedding of choice. 

To illustrate this more clearly, we plotted the top three proteins in the LSC population and the 

blast population in Figure 4E. From these results, we can find exactly those cells that show an 

increased or decreased expression level for the proteins of interest, and thereby interpret the 

statistical results in more detail. When looking at the targets highlighted by the Wilcoxon 

analysis, in the LSC population specifically, it is interesting to note that SWAP70 has 

previously been linked to AML development in a murine setting (Erkeland et al, 2004). 

Moreover, it is predicted to interact with NPM1 (Stelzer et al, 2016), which is frequently 

mutated in AML (McKerrell et al, 2015; Krönke et al, 2013). Combined with our single cell 

analysis potentially highlighting it as an LSC protein, seems to warrant future functional 

follow-up to investigate its exact role in disease development. The next target on the list, 

DDX46, has previously been shown to be required in hematopoietic stem cell activity in 

zebrafish (Hirabayashi et al, 2013). While it has not been shown in a leukemic context thus 

far, its role in hematopoietic stem cell differentiation, a process which has gone awry in 

AML, renders it a potentially highly interesting target. Together, these results indicate that 

the data is depicting several potentially relevant proteins for leukemia disease morphology, 

and that our experimental and computational pipeline is able to derive them effectively, from 

single cell proteomics data, something which is completely unprecedented. 

 

Discussion 

This work represents a proof-of-concept study, investigating whether current technology is 

able to conduct single-cell proteomics analysis on a bio-therapeutically relevant model 

system. By spending considerable effort not only on the sample preparation and data 

generation, but also on the subsequent data analysis efforts, we managed to establish a scMS 

workflow package which is able to 1) quantify thousands of unique proteins, 2) analyse 

hundreds of cells per day of instrument time, 3) visualize the data using the latest state-of-

the-art single cell computational algorithms, and 4) derive differentiation stage specific 

proteins which may pose as potential therapeutic targets or other functionally relevant 

candidates.  
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As single-cell approaches put significant strain on throughput requirements, we focused 

especially on having an experimental workflow that would allow easy preparation of large 

cell numbers. As is the case for any single cell analysis, the more cells that can be analysed, 

the more knowledge can be extracted about the model system under investigation. By using 

standard FACS sorting methodology, even for very low frequency cell populations, we are 

able to sort several 96-well plates per hour, including the eight booster channel samples per 

plate, consisting of 500 cells each.  Simultaneously, this allows for including index sorting in 

the experimental setup, thereby allowing a link to be drawn between fluorescent surface 

markers and expression levels of all detected proteins within the cells. Future experiments 

will focus on porting the workflow to a 384-well plate format, to further increase the 

throughput capacity, which will be very well matched with the newly released TMT 16-plex 

reagents. By simultaneously decreasing sample volumes, reaction kinetics should be 

improved, thereby potentially boosting proteome coverage as well. Similar approaches using 

nanofluidics have been shown very effective when analysing small sample amounts (Zhu et 

al, 2018), and it is likely that this platform would be beneficial to scMS as well; however, the 

expensive consumables associated with such an approach make large-scale investigations 

very costly, hence why 384-well plates may be an effective compromise.   

 

We demonstrated the utility of the booster channel, and that when paired with appropriate 

computational workflows, we are able to correctly cluster cells irrespective of which type of 

booster cells were used. Nevertheless, if possible, we would recommend the use of a cell-

specific booster channel, in order to detect the cell-specific proteins; in our case, we used 

CD34 as a trial candidate, as we know this should only be found at high abundance in the 

LSC/Progenitor cells. We were able to confirm this (Supplementary Figure 2), but more 

importantly, this protein was only detected when a cell-specific booster channel was used, 

thereby underlining the importance of using such a booster type. However, the fact that cells 

clustered correctly in all cases suggests that, e.g. in cases of very low abundant cell types, 

other cells could be used. This would be of great advantage in studies focused on very rare 

cell populations. With improvements at the MS instrument level, lower booster cell numbers 

(tens of cells rather than hundreds) would still be able to produce useful proteome depth, so 

in future studies, cell abundance should not be a limiting factor for scMS. Alternatively, it 

could be opted to deploy targeted peptide libraries as booster channel; by TMT-labeling those 

reference peptides, the MS instrument can be steered towards analysing a set of proteins of 
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interest, without needing additional cell numbers to provide the peptide copies. This will 

require further optimization, but in principle can be a powerful complementary booster 

method, especially in cases where cell-specific booster channels are difficult to generate, e.g. 

in the case of smaller multi-cellular organisms. Simultaneously, this can help ensure that 

proteins of interest will be quantified, compared to the partially stochastic nature of data-

dependent analysis workflows. While it remains to be tested, peptide libraries could 

theoretically even open up the possibility of studying PTMs such as phosphorylation events, 

and could thus be employed to study common cell processes such as cell cycle, kinase 

activity etc. 

 

Regarding the instrument parameters related to TMT quantitation, we did not observe a 

significant improvement when using MS3 level quantitation compared to MS2. This may be 

due to the fact that we analysed fewer cells, and due to slower cycle time, were able to 

quantify fewer proteins. It is likely that a newer generation of the ThermoFisher Tribrid 

instruments (such as the Orbitrap Eclipse) would offset this difference in number of proteins 

identified compared to MS2 quantitation. However, this lack of improvement, combined with 

the efficient clustering capabilities of MS2 level data, also suggests that the TMT co-isolation 

effect is not strong enough to negatively affect our readouts; nevertheless, alternative tagging 

technologies such as EASI-tags could be explored in future work to determine their 

compatibility with scMS (Winter et al, 2018). The suitability of TMT for this workflow is 

further supported by the fact that we can use the raw intensities as provided by Proteome 

Discoverer for our computational analyses, and are therefore not subject to normalization and 

correction effects that are sometimes opted to include when using TMT. This could 

potentially have implications for merging several experiments retrospectively, since using the 

raw intensities means that different datasets should be more compatible due to the lack of 

post-acquisition processing requirements.  

 

By porting several of the latest state-of-the-art algorithms developed in the more established 

sc-RNAseq field, we are able to utilize the knowledge that has been gained over the past 

years to our advantage. One of the main strengths of our computational pipeline is to 

significantly enhance the ability to cluster cell types according to different data types (e.g 

expression levels or Eigenprotein cliques), the subsequent visualization thereof and extraction 

of highly relevant proteins. As the main embeddings (tSNE and UMAP) commonly used in 

single-cell approaches each have their own (dis)advantages (Zhu et al, 2018), we opted to 
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give the user the opportunity to plot both and choose according to their experimental setting. 

When comparing the clustering based on expression levels only with the clustering based on 

the Eigenprotein integration, it becomes very clear why single-cell analysis is so important 

when trying to understand cellular phenotype; while specific protein expression patterns may 

not always be consistent amongst all the single cells of a differentiation stage, the pathway 

activity for a particular pathway often does seem to span across a large subset of that 

differentiation stage (Supplementary Figure 1), indicating that functionally, they are 

displaying a similar phenotype that would have gone unnoticed when using expression data 

only. It simultaneously translates protein expression levels to a more functional interpretation 

thereof, which can be powerful when trying to functionally validate certain observations. 

Furthermore, it allows detection of functionally similar cells across different cell types, which 

can be informative of which cellular pathways are shared between, and which ones are 

unique to a certain differentiation stage. This may not have been picked up by protein 

expression levels alone. 

 

In conclusion, this work presents the first time that a true, pure LSC proteome is published, 

while simultaneously being the first single-cell analysis of a leukemia hierarchy at the global 

proteome level. While it focuses on a single AML sample, it should nevertheless be a good 

foundation as a resource for follow-up studies, and paves the way for studying primary 

leukemias. Furthermore, by providing the community with the experimental protocols, 

combined with a powerful computational analysis pipeline, we strongly believe our scMS 

approach is now a real alternative to conducting sc-RNAseq analyses, especially in those 

cases where protein-level information is desirable. This opens up a plethora of research 

avenues, spanning across many biological fields, and proteome coverage will only improve 

as instrument sensitivity and experimental workflows develop even further, closing the gap 

between RNA-based and protein-based approaches. 
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Materials and Methods 

Cell Culture and FACS Sorting 

8227 cells were grown in StemSpan SFEM II media, supplemented with growth factors 

(Miltenyi Biotec, IL-3, IL-6 and G-CSF (10ng/mL), h-SCF and FLt3-L (50ng/mL), and TPO 

(25ng/mL) to support the hierarchical nature of the leukemia hierarchy captured within the 

cell culture system. On day 6, cells were harvested (8e6 cells total), washed, counted and 

resuspended in fresh StemSpan SFEM II media on ice at a cell density of 5e6 cells / ml. 

Staining was done for 30mins on ice, using a CD34 antibody (CD34-APC-Cy7, Biolegend, 

clone 581) at 1:100 (vol/vol) and CD38 antibody (CD38-PE, BD, clone HB7) at 1:50 

(vol/vol). Cells were washed with extra StemSpan SFEM II media, and subsequently 

underwent three washes with ice cold PBS to remove any remaining growth factors or other 

contaminants from the growth media. Cells were resuspended for FACS sorting in fresh, ice 

cold PBS at 2e6 cells / ml. Cell sorting was done on a FACSAria I or III instrument, 

controlled by the DIVA software package and operating with a 100um nozzle. Cells were 

sorted at single-cell resolution, into a 96-well Eppendorf LoBind PCR plate (Eppendorf AG) 

containing 40ul of 50mM HEPES pH 8.5. In each row, wells 1-10 were filled with single 

cells, and well 11 was filled with 500 cells for the booster channel. Directly after sorting, 

plates were briefly spun and then boiled at 95C for 5mins, followed by sonication in a 

waterbath sonicator (VWR) for 2 mins to complete the lysis. Plates were then stored at -80C 

until further sample preparation. 

 

Mass Spectrometry Sample Preparation 

After thawing, the lysates were treated with Benzonase (Sigma cat. nr. E1014), diluted to 

1:500 (vol/vol) for 1hr at 37C to digest any DNA that would interfere with downstream 

processing. Subsequently, 25ng of Trypsin (Sigma cat. nr. T6567) was added to the single 

cell samples, 50ng of Trypsin was added to the 500-cell booster channel samples, and the 
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plates were vortexed and kept at 37C overnight to complete the protein digestion. The next 

morning, peptides were labelled with TMT (tandem mass tag) reagents according to 

manufacturer’s instructions. Briefly, 85mM of each label was added to the single-cell 

samples, while the 500-cell booster channel samples were labelled with 170mM of reagent. 

The labelling reaction was quenched with 2.5% Hydroxylamine for 15mins, after which 

peptides were acidified to a final concentration of 1% TFA, and TMT pools were mixed from 

10 single cells + 1 booster channel to make up one 11-plex TMT sample each. The acidified 

TMT pools were subsequently desalted using in-house packed StageTips (Rappsilber et al, 

2007). For each sample, 2 discs of C18 material (3M Empore) were packed in a 200ul tip, 

and the C18 material activated with 40ul of 100% Methanol (HPLC grade, Sigma), then 40ul 

of 80% Acetonitrile, 0.1% formic acid. The tips were subsequently equilibrated 2x with 40ul 

of 1%TFA, 3% Acetonitrile, after which the samples were loaded using centrifugation at 

4,000x rpm. After washing the tips twice with 100ul of 0.1% formic acid, the peptides were 

eluted into clean 500ul Eppendorf tubes using 40% Acetonitrile, 0.1% formic acid. The 

eluted peptides were concentrated in an Eppendorf Speedvac, and re-constituted in 1% TFA, 

2% Acetonitrile, containing iRT peptides (Biognosys AG, Switzerland) for Mass 

Spectrometry (MS) analysis. 

 

Mass Spectrometry Data Collection 

Peptides were loaded onto a 2cm C18 trap column (ThermoFisher 164705), connected in-line 

to a 50cm C18 reverse-phase analytical column (Thermo EasySpray ES803) using 100% 

Buffer A (0.1% Formic acid in water) at 750bar, using either the Thermo EasyLC 1200, or 

the ThermoFisher Ultimate 3000 UHPLC system, and the column oven operating at 45°C. 

Peptides were eluted over a 100 or 140 minute gradient, ranging from 6 to 60% of 80% 

acetonitrile, 0.1% formic acid at 250 nl/min. 

 

For samples analysed using the MS2-level quantitation feature of TMT, the Q-Exactive HF-X 

instrument (ThermoFisher Scientific) was operated in DD-MS2 mode. The instrument was 

run with a top 16 method, collecting MS2 spectra at 45,000 resolution and a 1e5 AGC target. 

Ions were collected for 120ms, and isolated with an isolation width of 1.2 or 0.7 m/z. 

Precursors with a charge of 2-7 were included, and those that have been sequenced once were 

put on an exclusion list for up to 60 seconds. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/745679doi: bioRxiv preprint 

https://doi.org/10.1101/745679


 18 

For samples analysed using MS3-level SPS TMT quantitation (McAlister et al, 2014), the 

Orbitrap Fusion instrument (ThermoFisher Scientific) was operated in DD-MS3 mode. MS1 

scans were collected at 120,000 resolution, scanning from 375-1500 m/z, collecting ions for 

50ms or until the AGC target of 4e5 was reached. Precursors with a charge state of 2-7 were 

included for MS2 analysis, which were isolated with an isolation window of 0.7 m/z. Ions 

were collected for up to 50ms or until an AGC target value of 1e4 was reached, and 

fragmented using CID at 35% energy; these were then read out on the linear ion trap in rapid 

mode. Subsequently, up to 10 notches were selected for MS3 analysis, isolated with an m/z 

window of 2 m/z, and fragmented with HCD at 65% energy. Resulting fragments were read 

out in the Orbitrap at 50,000 resolution, with a maximum injection time of 105ms or until the 

AGC target value of 1e5 was reached. 

Mass Spectrometry Raw Data Analysis 

To translate .raw files into protein identifications and TMT reporter ion intensities, Proteome 

Discoverer 2.2 (ThermoFisher Scientific) was used with the built-in TMT Reporter ion 

quantification workflows. Default settings were applied, with Trypsin as enzyme specificity. 

Spectra were matched against the 9606 human database obtained from Uniprot. Dynamic 

modifications were set as Oxidation (M), and Acetyl on protein N-termini. Cysteine 

carbamidomethyl was set as a static modification, together with the TMT tag on both peptide 

N-termini and K residues. All results were filtered to a 1% FDR. The mass spectrometry data 

have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Perez-

Riverol et al, 2019) with the dataset identifier PXD015112. Reviewer account details: 

Username: reviewer87620@ebi.ac.uk, Password: 6BnVxQ9F. 

 

Computational Analysis of Single Cell Data 

The Proteome Discoverer output file is filtered for single cell data only (through removal of 

the booster channel samples), and the raw TMT reporter ion intensities are taken through a 

computational pipeline that aims at denoising the data and find meaningful cell clusters. The 

first step in the SCeptre pipeline is to find proteins that are in common with all the cell 

populations. We set a modular threshold s that controls the percentage of a given protein 

being present on average in each population. When the most common proteins are found, a 

non-parametric Bayesian batch correction method (Johnson et al, 2007) is used to account for 

the repeated injections over several TMT pools, for each of the cell populations. The final 

dataset of cells and batch corrected protein expression is then reported and taken forward for 
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further analysis. The next step consists of the computation of gene signature scores, for each 

individual cell. To this end, an average value of protein expression for each protein expressed 

in a given cell is reported. For the scope of this article, it was decided to use Wikipathways 

gene sets (Pico et al, 2008). The resulting augmented dataset with gene signature expression 

and protein expression is then subjected to a correlation analysis where the correlation 

coefficient of each cell against all other cells in the dataset is reported. This correlation 

matrix is then used to build a network of cells. Cells close to each other, e.g. with a 

correlation coefficient above a threshold of 0.6 are linked together. We then find sub-

components (cliques) in the network (Cazals & Karande, 2008), which groups proteins and 

gene signatures together, resulting in the definition of an Eigenprotein. To compute the 

Eigenprotein score, a principal component analysis is run using the proteins and gene 

signatures in the Eigenprotein on all cells of the dataset. The Eigenprotein score is the first 

principal component (PC1). Using the Eigenprotein score, an embedding of the cells in the 

dataset is created and used to report cell proximity in Eigenprotein space. The pipeline and all 

source code in Python is available as an iPython notebook run from a docker container 

(kuikuisven/sceptre).  
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Figure legends 

Figure 1 - A) Overview of a typical AML hierarchy, with LSC at the apex. B) Sorting 

scheme for sorting the bulk, blast, progenitor and LSC populations from the 8227 culture 

system, followed by the TMT labeling setup for single-cell proteomics, consisting of 9-10 

single cells and 1-2 booster channels. C) Overview of the SCeptre computational single cell 

MS pipeline. 

 

Figure 2 – A) Standard PCA clustering of the single cell proteomics data, when using 1) a 

bulk cell booster, 2) a bulk cell + cell-specific booster, or 3) a cell-specific only booster 

channel. B) Overview of the tSNE and UMAP clusterings of the bulk, blast, LSC and 

progenitor cells in the different datasets, combined with the number of proteins found in the 

specific cells as overlaid on the same computational embedding. C) Standard PCA clustering 

of the TMT SPS MS3 data. D) tSNE and UMAP clustering of the TMT SPS MS3 data, with 

the number of proteins found in the specific cells overlaid on the same computational 

embedding. 

 

Figure 3 - A) Sorting overview for the control TMT pools, where single cells of each 

differentiation stage were combined with a booster channel of one differentiation stage, until 

all possible combinations were met.  B) Total number of protein identifications for the 

control samples, using either MS2 and MS3 level TMT quantitation. C) Standard PCA 
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analysis of single cells, coloured either by cell differentiation stage or TMT pool. The TMT 

colour scheme highlights a significant batch effect where cells cluster mainly according to 

TMT pool rather than differentiation stage. D) SCeptre analysis of control samples, 

highlighting a clear clustering pattern according to cellular differentiation stage. Number of 

proteins identified in each cell is indicated in the accompanying plots, overlaid on the same 

tSNE/UMAP embedding as the original clustering. 

 

Figure 4 - A) UMAP clustering of the different differentiation stages when using protein 

expression values only, or when using the Eigenprotein information derived from pathway 

integration. B) The Eigenprotein cliques overlaid on the Eigenprotein-based UMAP 

embedding, highlighting a Progenitor/LSC, an LSC and a blast-specific Eigenprotein clique 

respectively. C) Wilcoxon-ranked-sum ranking of top proteins defining the three 

differentiation stages and bulk. D) Heatmap visualization of the top three proteins from the 

Wilcoxon-ranked-sum testing. E) Protein expression levels of top three LSC and Blast 

proteins, overlaid on the Eigenprotein UMAP embedding. 

 

Supplementary Figure 1 - Overview of all 54 Eigenprotein cliques identified by SCeptre, 

overlaid on the Eigenprotein UMAP embedding. 

 

Supplementary Figure 2 - UMAP embedding plot, highlighting the CD34 expression levels 

within the single cells (lower panels), compared to the UMAP cell differentiation clusters 

(upper panels). Values are plotted both on protein expression-based embedding, and 

Eigenprotein embedding. 
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Tables and their legends 

 

Dataset Booster Cells MS 

Instrument 

# of 

Cells 

# of 

Protein 

IDs 

Average # of Protein 

IDs p. cell (after batch 

correction) 

1 Bulk QExactive 

HFX (MS2) 

320 1,259 389  

(min: 24, max: 522) 

2 Bulk + Cell-specific QExactive 

HFX (MS2) 

320 2,138 994  

(min: 318, max: 1157) 

3 Cell-specific QExactive 

HFX (MS2) 

400 2,452 389  

(min: 143, max: 532) 

4 Cell-specific Orbitrap 

Fusion (MS3) 

160 1,216 259  

(min: 63, max: 375) 

Table 1 - Overview of Protein identification numbers across the various datasets 

 

Expanded View Figure legends 

 

Supplementary Table 1 – Overview of Eigenprotein cliques and the pathways and genes 

contained therein. 
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