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ABSTRACT 

The visual inspection of pluripotent stem cell colonies by microscopy is widely used as a 

primary method to assess the quality of the preparations and degree of pluripotency.  The 

lack of ground truth and the possible inconsistency of evaluations from multiple experts 

within and between stem cell laboratories are sources of uncertainty about the state of the 

cells, the reproducibility of preparations, and the efficiency of expansion protocols.  To 

examine how to evaluate the level of confidence one has in disparate rating from experts, 

we explored a statistical method for assessing the differences in ratings of pluripotent 

stem cells by two different experts. Two experts rated phase contrast microscope images 

of human embryonic stem cell (hESC) colonies on a scale of 1 (poor) to 5 (maximum 

pluripotency character) but agreed with one another only 48% of the time.  To assess 

whether experts used similar criteria to rate colonies, we developed custom image feature 

algorithms based on the stated visual criteria provided by the experts for selection of 

colonies. These features, plus others, were then used to develop pluripotency scoring 

algorithms trained to reflect ratings of both experts. We treated expert ratings as inexact 

indicators of a continuous pluripotency score and considered the inconsistency between 

expert ratings in developing our models. The model suggests that the two experts use 

somewhat different scales for discriminating between colony quality. Covariance analysis 

indicated that both experts use features that are not included in the model. Two image 

features, colony perimeter and a feature based on texture, were the most important for 

both experts for predicting the ratings. Interestingly, colony perimeter was not one of the 

expert-provided criteria for rating colonies, showing that this modeling approach allowed 

identification of features that the experts were not aware they were using. A linear model 

based on both experts identified each expert’s top-rated colonies as well as, or better than, 

the ratings of the other expert, as indicated by receiver operator characteristic curve 
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analysis. By providing an understanding of the differences and similarities in disparate 

sets of expert ratings, this analysis helps to establish confidence in the ratings and the 

criteria for ratings, even when the experts disagree.  

 

 

 

INTRODUCTION 

The commercial significance of stem cell-based therapies and diagnostics has led to 

increased interest in minimizing variability in culturing and characterizing these cells in 

research as well as manufacturing settings. Unambiguous metrics for evaluation of stem 

cell colonies do not existconfidence in assessing colonies.  There is uncertainty about the 

adequacy of commonly used pluripotency markers for the identification of colonies with 

immunofluorescence [1](and references therein), in part because of heterogeneity in the 

expression of markers in cells and insufficient understanding in the field of how to 

interpret the observed heterogeneity to classify individual cells.  Morphology assessment 

is often preferred for evaluating stem cell colonies, and it is often thought that visual 

assessment provides indications of desirable properties of pluripotency, viability, and 

other characteristics that are putatively recognized by an expert observer using phase 

contrast microscopy.  Morphology assessment by experts is, of course, also ambiguous 

because different experts often have different opinions and may even infer characteristics 

that are not explicit in the images of cells being examined, such as how do the cells look 

at this point in time in comparison to some other time. The lack of ground truth and the 

ambiguity in expert opinion makes it difficult to be confident about any individual’s 

assessment. In this study we show how to use a combination of expert opinions to add to 

the confidence and understanding of the stem cell colony ratings even when those expert 

opinions differ.     

 

We have used descriptive explanations of visual cues from stem cell experts to provide 

insight into the colony characteristics they use to identify desirable colonies.  We have 

designed image feature algorithms that aim to numerically describe those characteristics 

and scoring algorithms that attempt to represent the assessments of the stem cell experts 

as an explicit function of those image features.   

 

We provide here a set of 14 computational features inspired by the experts’ descriptions 

as potential components of signatures of pluripotent stem cell colonies. Many examples 

of analyzing cell and tissue images by translating an expert’s assessment of biological 

response into mathematical expressions have been reported [2-4], and we have 

considered other common features to our colony image data in addition to expert-inspired 

features.  A number of machine learning approaches have been  used  to develop 

automated methods for classifying stem cell colonies, including unsupervised clustering 

approaches [5], and supervised methods using neural networks [6, 7], pattern recognition 

[7], and morphology-based feature classification [8], as well as recent work using deep 

learning [9].  Here, we want to know what features of colonies experts are using, but 

instead of a traditional classification strategy, we used a probabilistic approach to convert 
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expert-dependent ratings to provide a basis for a variable pluripotency scoring range. 

Unlike typical classification schemes, this approach uses the information provided by the 

ordering of the experts’ rating when fitting and enables the estimation of what proportion 

of evaluation patterns shared by both experts are captured by a given model.  To our 

knowledge, this work represents the first application of latent variable modeling [10] 

(LVM) to the automated evaluation of stem cell pluripotency. 

 

Colony ratings by the two stem cell experts were not always consistent.  This lack of 

‘ground truth’ is a common problem with assessing uncertainty in analysis of biological 

data in general, and care must be given when interpreting subjective expert assessments.   

In this application, we abide by the following tenets for expert ratings when developing 

and assessing the performance of the image feature-based pluripotency scoring 

algorithms:  1) expert ratings do not correspond to categorical states of nature (i.e., 

ratings are not a literal ground truth); 2) expert ratings are not exactly precise in that each 

rating may correspond to a range of perceived relative pluripotency (e.g., colony A is 

preferred over colony B, but both received a rating of 4); 3) the meaning of a given rating 

value can differ between experts (e.g., experts could agree on the relative pluripotency of 

a given colony compared to other colonies, but assign it different rating values); 4) 

experts can disagree in their perceived pluripotency of a given colony (e.g., experts 

disagree whether colony A appears more desirable than colony B).   

 

Collectively, these considerations dictate that the expert ratings should be recognized as 

ordinal and expert-specific, rather than categorical or continuous, and consequently latent 

variable modeling, as opposed to either classification or ordinary regression provide the 

appropriate modeling framework for these data. We address these perspectives by 

modeling each rating value from each expert as corresponding to a range, rather than an 

exact value, on a latent, continuous pluripotency scoring scale.  The predicted score for 

each colony is given by a function of the image feature values for the colony (e.g., 

weighted combination or random forest) and evaluated through comparison with the 

scoring range(s) corresponding to the rating value(s) provided by the expert(s).   

 

 

 

MATERIALS AND METHODS 

Human pluripotent stem cell culture 

The hESC H9 line was routinely maintained in culture with replacement by frozen stocks 

every 30–40 passages. Cells are expanded on mouse embryonic fibroblast (MEF) feeder 

cells and routinely tested for pluripotency characteristics (by expression of OCT4, SOX2, 

NANOG and SSEA-3/4) and their potential to differentiate into multiple germ layers (by 

expression of eomesodermin and nuclear export signal), as indicated by specific antibody 

staining. The MEF feeder cells were from CF-1 mice at embryonic day 13.5. The MEFs 

were passaged at least three times before use with hESCs to minimize residual non-

fibroblast cells and were used as feeders between passage 3 and 4. The feeder cells were 

plated onto gelatinized tissue culture plates at the density of 44,000 cells/cm2 and 

irradiated with gamma irradiation. The hESCs were cultured on the irradiated MEF cells 

in DMEM/F12 medium (Thermo Fisher) supplemented with 20% Knockout SR (Thermo 
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Fisher), 0.1mM nonessential amino acids (Thermo Fisher), 0.1 mM β-mercaptoethanol 

(Sigma-Aldrich), and 5 ng/ml human basic fibroblast growth factor (hbFGF, R&D 

Systems). Cultures of hESCs were routinely passaged at approximately 4 - 5 day intervals 

when the colonies reached an average size of 400-500 cells by visual inspection. For 

passaging of uniform-sized colonies, cells were treated with 1 mg/ml type IV collagenase 

(Thermo Fisher) for 5 min and the colonies were cut by StemPro EZPassage Tool 

(Thermo Fisher). The clumps of 50-100 cells were selectively collected by using 100 μm 

Cell Strainer (Corning) and washed to remove residual collagenase and then cultured on 

the fresh feeders. 

 

Image data collection 

Three 100mm dishes containing stem cell colonies were used for the study. The cultures 

were fixed using 4% paraformaldehyde for 10 min prior to imaging.  To test whether the 

fixation perturbed the appearance of the colonies, images were acquired from colonies 

before and after fixation and no observable changes were noted. The phase contrast 

image data was acquired on a Zeiss 135 TV microscope (Carl Zeiss USA, Thornwood, 

NY) with a Zeiss 10X/0.3NA Ph1 objective. The microscope was equipped with a 

CoolSNAP HQ2 CCD camera (Photometrics, Tucson, Arizona) and a motorized stage. 

Stage, filters and shutters were controlled by the Zeiss Axiovision software. The stage 

was programmed to move from field to field, 22 fields horizontally and 24 fields 

vertically with an overlap of adjacent fields of 10%. The total imaged area was 

approximately 2.3 cm x 2.1 cm. The fields were stitched using the Zeiss Axiovision 

software. A reference material for alignment of phase rings was developed and used to 

facilitate reproducible imaging conditions and assure the quality of the images. The 

material is composed of an array of micron-size features of polydimethylsiloxane 

(PDMS). An image of this patterned material is shown in Supplemental Information 1, 

Supplemental Figure 1 with a description of the procedure for collecting phase contrast 

images in which the material is used.   

 

Image processing 

Prior to colony rating by experts, image objects that corresponded to colonies were 

identified and segmented using an automated macro routine in ImageJ (see Supplemental 

Information 1, section II) to visually separate the colonies from the background and from 

the surrounding MEF feeder cells.  The macro blurs the images, applies the rolling ball 

algorithm to increase the intensity difference between larger colonies and the MEF layer, 

and then applies the ImageJ AutoThreshold function to identify colony objects. Objects 

smaller than 50,000 pixels (52,000 µm2) were not presented to the experts. 

 

A separate algorithm was implemented for identifying the colony margin.  A binary 

image from pixels that have both a high local mean intensity (Imean_local), and a high local 

standard deviation (SDlocal), computed over a 20x20 pixel neighborhood (21.2 µm x 21.2 

µm) was created. The mean of Imean_local was computed over the entire image as Imean_image 

and the mean and standard deviation of SDlocal were computed over the entire image as 

SDmean_image and SDSD_image, respectively. Pixels with Imean_local > (Imean_image + 0.5 * 
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SDimage) and SDlocal > (SDmean_image + SDSD_image) were used to create a binary mask 

image. A morphological hole-filling operation was performed on the resulting binary 

image to remove internal holes from the contiguous objects. Colony objects were 

separated using the Fogbank algorithm [11], in which, once cell boundaries are located, 

each internal pixel is assigned to a cell based on its geodesic distance from the cell 

boundaries, i.e. the path from pixel to boundary must be internal to the pixel cluster.  The 

details of the segmentation steps are presented in Peskin et al. [12], and the segmentation 

algorithm is available at  [https://gitlab.nist.gov/gitlab/peskin/stem_cell_segmentation]. 

 

 

Rating of colonies by experts 

Colony images were examined and rated by two experts independently.  Colonies were 

given subjective ratings by each expert on a scale from 5 (for the best pluripotent 

colonies), to 1 (those with the least pluripotent character).  Rules for ratings were 

discussed and agreed on by the two experts, and these rules are described in Table 1.  Not 

all colonies were provided rating by both experts. Experts did not rate a colony if, for 

example, the expert was uncertain about how to rate the colony. Expert 1 rated 450/480 

colonies, expert 2 rated 476/480 colonies and 449/480 colonies were rated by both 

experts. The dataset of 480 colony images shown to raters is displayed in Supplemental 

Information 2 and the modeling was based on 477 colonies that were rated by at least one 

expert. 

 

Image analysis features 

Custom algorithms were developed to mathematically represent visual cues that experts 

used and are listed in Table 2. These 11 features were supplemented with the features 

perimeter, circularity and area, and the 14 image analysis features are further described in 

Supplemental Information 1, section III and in reference [12].  Because of the apparent 

importance of the colony margin, the features were developed based on three regions: the 

center region of the colony, the region immediately inside of the margin of the colony, 

and the region just outside the colony margin (as shown Supplemental Figure 2).  

Additional Haralick and wavelet features were applied in some models (see Supplemental 

Information1, section 3 for more details).  A number of features, particularly wavelet 

features, are correlated, and an analysis of feature correlations is provided in 

Supplemental Figure 3. 

 

Model development and evaluation 

We are seeking deterministic functions of image feature values that when applied to each 

of the colonies in our dataset mimic the ordering of preference indicated by the expert 

ratings.  We refer to a candidate function as a scoring algorithm (i.e., a scoring function 

produces a predicted pluripotency score for each colony as a function of the image 

feature values).   

 

Several scoring algorithm approaches were used.  Primary emphasis was on linear 

models, although random forests were used to see if a non-linear scoring algorithm 
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improved performance.  Algorithms were initially developed using the 14 expert-inspired 

image features and later revisited using an expanded feature set that included 42 

additional Haralick and wavelet image features.   

 

Our modeling approach uses a bivariate normal distribution to represent deviations of 

each expert from the pluripotency scores predicted by a scoring algorithm.  The extent to 

which a given scoring algorithm is discordant with the ratings provided by a given expert 

is represented by a variance parameter for that expert.   The extent to which the experts 

agree in their disagreements with the scoring algorithm is represented by a covariance 

parameter. Collectively, the two variance parameters and the covariance parameter 

provide the elements of the variance-covariance matrix for the bivariate normal 

distribution. 

 

In this analysis, the experts’ ratings are treated as ordinal responses.  The provided 

numbers indicate the relative preference of the expert, but not the magnitude of 

difference; e.g., 1,2,3,4,5 could be respectively translated as worst < worse < intermediate 

< better < best. Because the ratings provided by the experts are clearly discrete (and 

therefore do not resemble a sample from a normal distribution), we treat the ratings of the 

experts as representing a range of possible pluripotency scores (i.e., ratings are treated as 

censored scores).  Initial fitting assumed that each rating corresponded to the range of 

scores for which that rating was the nearest available value (i.e., a rating of 1 indicates 

the score was less than 1.5; a rating of 2 indicates the score was between 1.5 and 2.5; …; 

a rating of 5 indicates the score was greater than 4.5).  Subsequent modeling efforts 

allowed the spacing to vary for each rating and expert.  For example, a rating of 2 by 

expert 1 may correspond to a score between 1.05 and 2.3, but the exact value is otherwise 

unknown.  A rating of 2 by expert 2 may correspond to a score between 1.55 and 2.62.  

The intervals for each expert are identified by 4 thresholds, which are model parameters 

optimized during model fitting. 

 

A brief technical description of our implementation of LVM is as follows: let 𝑦𝑖𝑗 

represent the rating provided by expert 𝑗 when evaluating colony 𝑖.  We assume that 

although the experts provide a categorical observation, there exists an unstated (i.e., 

latent) perception, say 𝑦𝑖𝑗
∗ , for each evaluation that could be considered continuous 

scores.  We further suppose that an expert’s perceived score determines the what rating 

will be provided according to the following relationship: 

 

𝑦𝑖𝑗 = 1 if  -∞ < 𝑦𝑖𝑗
∗ ≤  𝜏𝑗1 

𝑦𝑖𝑗 = 2 if  𝜏𝑗1 < 𝑦𝑖𝑗
∗ ≤  𝜏𝑗2 

 ⋮ 

𝑦𝑖𝑗 = 5 if  𝜏𝑗4 < 𝑦𝑖𝑗
∗ < ∞ 

 

where 𝜏𝑗1 through 𝜏𝑗4 are the four rating thresholds. Our modeling approach can be 

represented as 𝑦𝑖𝑗
∗ = 𝑓(𝑋𝑖) + 𝜖𝑖𝑗, where 𝑦𝑖𝑗

∗  represents the expert’s perceived score, the 

function, 𝑓, represents the scoring algorithm, 𝑋𝑖 denotes the vector of image feature 

values for colony 𝑖, 𝑓(𝑋𝑖) denotes the predicted pluripotency score for colony 𝑖, and 𝜖𝑖𝑗 
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represents the difference between the predicted pluripotency score for colony 𝑖 and the 

latent score corresponding to expert 𝑗’s perception of colony 𝑖.  
 

Our modeling approach uses a bivariate normal distribution to represent deviations (i.e., 

𝜖𝑖𝑗) of each expert from the pluripotency scores predicted by a scoring algorithm.  

Because the continuous scores (𝑦𝑖𝑗
∗ ) are not actually observed, the errors (𝜖𝑖𝑗) cannot be 

directly computed.  Rather, the extent to which a given scoring algorithm is discordant 

with the scoring intervals corresponding to ratings provided by expert 𝑗 is represented by 

the variance parameter for that expert (𝜎𝑗
2, 𝑗 = 1,2).   The extent to which the experts 

agree in their disagreements with the scoring algorithm is represented by a covariance 

parameter (𝜎12
2 ). Collectively, the two variance parameters and the covariance parameter 

provide the elements of the variance-covariance matrix for the bivariate normal 

distribution. 

 

Because we treat the ratings of the experts as censored observations, linear models were 

fit using the numerical optimization function, optim, in R [13] to maximize the likelihood 

of the observed data, rather than by conventional least squares. Random forests were fit 

using the R package random forest [14] while treating the ratings as exact values to 

facilitate computation.  The predicted values from the fitted random forest were used as 

the scoring algorithm and incorporated into the evaluation of the thresholds and bivariate 

normal distribution best representing the discordance between the random forest 

predictions and the ratings provided by the experts. Additional modeling details are 

provided in Supplemental Information 1, sections V and VI. 

 

During evaluation, we monitor the values of the variance-covariance parameters.   

Specifically, we compare the expert variances (representing their respective discordances 

with the predicted scores) to the variance of the difference between the experts 

(representing the discordance between the experts themselves). When a scoring algorithm 

produces an expert variance lower than the variance of differences between the experts, 

we say the scoring algorithm is more consistent with that expert than the two experts are 

with each other. Ideally, a scoring algorithm would be more consistent with each expert 

than the experts are with each other. In addition, the value of the covariance parameter is 

helpful in assessing the completeness of a scoring algorithm.  An ideal scoring algorithm 

would produce a covariance estimate close to zero; large positive values indicate the 

model is overlooking evaluation trends exhibited by both experts, while negative 

covariance values are suggestive of over-fitting.   

 

Additionally, we construct receiver operating characteristic (ROC) curves to assess how 

well a scoring algorithm identifies the highest rated colonies for each expert.  This 

evaluation criterion is intended to reflect the envisioned usage of a pluripotency scoring 

algorithm to select the most promising colonies. 

 

Statistical Analysis 

 

Statistical analyses were conducted in R and are displayed in Figures 3 and 4 and 

Supplemental Figures 4, 5, and 6. The predicted colony scores from each model in this 
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study were computed using cross-validation, whereby a colony was never included in the 

training data for the model used to assign its predicted score (see Supplemental 

Information 1, section VI).  

 

 

 

RESULTS 

 

Image data set, expert rating, and LVM modelling approach 

A total of 449 pluripotent stem cell colonies were rated by two experts.  Colonies were 

given subjective ratings by experts on a scale from 5 (for the best pluripotent colonies), to 

1 (those with the least pluripotent character).  Characteristic criteria for rating were 

discussed and agreed on by the two experts, and these characteristics are described in 

Table 1.  Examples of colonies are shown in Figure 1 and all colonies are shown in 

Supplemental Information 2.  The colonies shown in Figure 1 were rated identically by 

the two experts, but often the experts provided different ratings for the same colonies.    

In the dataset of 449 images rated by two experts, only 48% of the colonies were given 

the same rating by both experts.  Table 3 is a confusion matrix showing how the two 

experts varied from one another in their ratings.   

 

 

 

 

 

 
 

 
Figure 1. Example colony images illustrating the range of colony appearance over the 5 ratings. (A) A 

colony rated 5 by both experts (well 1, colony 10). (B) A colony rated 4 by both experts (well 2, colony 

22). (C) A colony assigned rated 2 by both experts (well 1, colony 132). All colonies and their ratings are 

shown in Supplemental Information 2. 
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Table 1. Characteristics that experts agreed on for rating colonies 

 

Rating Description 

5 

(a)distinct margins, homogeneous phase-bright internal cells, small internuclear distance, 

epithelial characteristics (elongated cells throughout). (b)distinct margins, homogeneous 

phase-bright internal cells, small internuclear distance, epithelial characteristics at margin 

only. 

4 Intermediate 

3 
Distinct margins, heterogeneous phase bright/phase dark cells, variable inter-nuclear 

distance. 

2 Intermediate 

1 
Fully differentiated, indistinct margins, heterogeneous internal cell types, large 

internuclear distance. 

 

 

 

 

 

 

 

 

 

 

Table 2. Colony attributes, interpretations for custom algorithm development, and 

feature names  

 

Colony Attribute Interpretations for 

algorithm development 

Feature name 

distinct margins Differences between margin 

and outside of colony; 

homogeneity of margin 

Edge quality, Edge 

contrast, Fgbg 

homogeneous phase-bright 

internal cells 

Contrast in pixel intensities; 

homogeneity in center; 

texture in center  

Local std, Entropy, 

Hg1, Hg2, AreaRatio 

small internuclear distance Dark pixels surrounded by 

bright pixels relative to total 

colony pixels 

Holes/Area 

 

epithelial characteristics Homogeneity of pixel 

contrast immediately inside 

and immediately outside the 

colony margin 

E1, E2 

colony size and shape 
The number of pixels in each 

segmentation mask; the 

number of pixels at the 

margin of each colony; 

4.0*pi*Area/Perimeter^2 

Area, Perimeter, 

Circularity 
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Table 3. Confusion matrix of expert-assigned ratings illustrating correspondences and 

differences.  

Expert 2 Ratings 

E
x
p

er
t 

 1
 

R
a
ti

n
g
s 

 1 2 3 4 5 

1 7 5 0 0 0 

2 2 31 19 11 4 

3 1 21 52 49 11 

4 0 4 35 105 43 

5 0 0 2 25 22 

 

 

 

Our goal was to develop models that allowed us to compare the basis on which experts 

rated stem cell colonies for pluripotency.  This involved assessing whether experts used 

the same features in their evaluation, and the relative importance of the features they 

used.   Our general approach to developing the linear models is described schematically 

in Figure 2A (additional details regarding implementation are provided in the 

Supplemental Information 1, sections V and VI).  When constructing a  linear model for a 

given set of features, three types of parameters were fit simultaneously to maximize the 

likelihood of the observed ratings: the weights assigned to the image features, which 

define the scoring algorithm; the score range associated with each unique rating value for 

each expert, defined by a vector of eight thresholds; and the variance covariance matrix 

of the bivariate normal distribution consisting of the variance between expert 1 and the 

model, the variance between expert 2 and the model and the covariance between the 

experts’ differences from the model.   

 

Figure 2B indicates how the ratings provided by each expert are interpreted by the model 

as scoring ranges, which are expert-specific. For each expert rating, the model assumes 

there is one precise but unknown value that represents the expert’s exact perception of 

pluripotency and falls somewhere within the corresponding expert score interval.  We 

refer to this putative value as a latent score.   

 

 

 

A        B           
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Figure 2.  A. Schematic showing the relationship between the steps of the modeling process. The orange 

boxes represent input values and the green boxes represent variables that are to be optimized. Step 1: The 

predicted scores are computed as a linear combination of image feature values, using feature weights that 

are fixed across all colonies to a value chosen during model fitting. Step 2: Each expert has rated each 

colony on a scale of 1,2,3,4 or 5. Because of ambiguity in how an expert perceives quality, a set of four 

thresholds for each expert identifies the scores that divide an expert’s ratings as depicted in 2B. Each rating 

from each expert is translated to a range of possible predicted scores (according to the corresponding 

thresholds).  Step 3: The discordance between the predicted scores for all colonies and the experts’ ranges 

of scores and the covariance between the experts’ discordance with the model are represented via a 

bivariate normal distribution. Step 4: Maximum likelihood is achieved when the concordance between 

predicted scores and corresponding pluripotency score ranges over all colonies is optimized. In a final step, 

the average expert-dependent score ranges are applied over all models. The differences in score ranges 

calculated for different models was not large and applying an average score range for each expert 

simplified data comparison (see Supplemental Figures 4 and 5). B. The relationship between expert ratings 

(1-5) and latent expert scores is not identical for the two experts. The rating thresholds optimized by the 

model define the expert score ranges.  Expert ratings were constrained at a score of 1.5 and 2.5. For more 

details on the model, refer to Supplemental Information 1. 

 

The linear models were constructed using a forward selection routine.  The modeling 

process begins by giving all features a weight of 0, which causes all colonies to be given 

the same predicted score.  At each iteration, a new model is created by assigning a non-

zero weight to an additional feature that can best improve the performance of the model.  

The weight for each feature in a model is allowed to freely vary to whatever real number 

maximizes the likelihood, while features that are not included in the models retain 

weights of exactly 0.  This process resulted in a collection of linear models. We report the 

models that include zero to 10 features, after which there was little improvement seen 

with any additional features.   

 

After an initial round of fitting, we discovered that a common set of thresholds (defining 

the score ranges associated with each experts’ ratings) could be imposed across all 11 

models without significantly reducing the model performance.  Using a fixed set of 

thresholds across the models puts their scores and variances onto a common scale, which 

greatly aids comparison across models.  Further details are provided in the Supplemental 

information 1, section VII.  
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Evaluation of similarities and differences between expert ratings with LVM 

The performance of the models developed within the 14 expert-inspired features and 

trained on both experts’ scores is shown in Figure 3.  (The 14 features are described in 

Supplemental Information, section III and the algorithms are at 

https://github.com/usnistgov/stem_cell_segmentation. Receiver operating characteristic 

(ROC) curves were constructed using predicted scores obtained via 50-fold cross 

validation. The method and rationale for the cross-validation strategy is described in the 

Supplemental Information 1, section VI.  The ROC curves in Figure 3A indicate that the 

model is quite effective at predicting expert 1 scores for colonies with a rating of 5 or a 

rating of either 4 or 5 (i.e., colonies that expert 1 rated as either 4 or 5 received high 

values from the scoring algorithm).   In fact, the values produced by the scoring 

algorithm were more effective than the ratings from expert 2 at identifying expert 1’s 

highest rated colonies. On the other hand, colonies that expert 2 rated as either 4 or 5 had 

a greater spread in values from the scoring algorithm, and the scoring algorithm identifies 

colonies ranked highly by expert 2 only about as well as the ratings from expert 1 do.  

Adding more than two features had a small effect on ROC performance. Using a random 

forest, evaluated using the complete set of 14 image features, did not improve ROC 

performance over the linear models. 

 

The order in which features were added to the model is shown in Figure 3B, together 

with the variance in the differences between the predicted colony scores and the latent 

scores of each expert, evaluated with the addition of each feature. The red and blue 

markers represent how far, on average, the model’s predicted scores are from the putative 

(latent) scores of the respective expert over all colonies. Because each expert’s score is 

represented as a range of scores (and not a single value), the variance parameter is not 

equated to any explicit sample variance but is a characteristic of the bivariate normal 

distribution used to represent the disagreement between the scoring algorithm and the 

expert ratings.  

 

A measure of the direct discordance between the experts’ scoring ranges over all colonies 

(shown with green markers) is attainable from the elements of the variance-covariance 

matrix of the bivariate normal distribution: 

 

 

Var(𝑦𝑖1
∗ − 𝑦𝑖2

∗ ) = 𝜎1
2  + 𝜎2 

2  − 2𝜎12
2  

 

 

 

This quantity provides a benchmark against which to evaluate scoring algorithm 

performance.  When 𝜎1
2  (red markers) and/or 𝜎2 

2 (blue markers) are less than 

Var(𝑦𝑖1
∗ − 𝑦𝑖2

∗ )  (green markers), the variance-covariance estimates indicate that the 

disparity between the scoring algorithm and the latent scores of the expert(s) would be 

less than the disparity between the latent scores of the two experts.  The scoring 

algorithms do a much better job at predicting expert 1 than expert 2; the discordance 

between expert 2 and the predicted scores is similar to the discordance between experts as 

was also apparent from the ROC curve evaluations. Also, as seen in the ROC curves, a 
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model with two features captures most of the predictive power.  The addition of more 

features to the model has a minimal effect on reducing the variance of the differences. 

 

The covariance in the differences between each expert and the model predictions is 

shown with the purple markers.  The covariance serves as a measure of how much 

information is missing in the model; for an ideal model that captured all the patterns with 

features of interest that are common to both experts, the expected covariance in residuals 

between experts would be 0. The magnitude of the covariance indicates that ~70% of the 

systematic response to image characteristics, shared by these experts, is captured by the 

model. When the scoring algorithm under-values or over-values a given colony with 

respect to the rating of one expert, it tends to do the same with respect to the other expert 

as well.  This tendency indicates that the model fails to capture all of the experts’ 

information. The amount of variation associated with expert 1 that is not also reflected by 

expert 2’s ratings is small (as indicated by the small difference between the red and 

purple markers).  The average magnitude of the residuals between the scoring algorithm 

and expert 2, however is much larger, indicating the presence of either greater random 

variations in the responses from expert 2 or the presence of rating tendencies not shared 

by expert 1 (e.g., consideration of additional subjective image features).  

 

The plot of covariance in the differences between each expert and the model predictions 

indicates that both experts exhibit a common rating tendency, or shared perception, that is 

not captured in the model. The plot indicates that adding two features to the model 

captures all but 36% of their shared perception. By sequentially adding features to the 

model, the covariance in residuals is slightly reduced; for the 10-feature model, the 

shared perception still missing from the model is reduced to about 27%. There are several 

possibilities for how the experts’ shared perception still missing in the model could be captured.  

It is possible that the segmentation routine we used does not reflect what the experts 

identify, and, hence, even the right image feature algorithms may produce non-ideal 

values because they are presented with non-ideal pixel sets.  Another possibility is that 

there are additional feature algorithms that would improve our ability to mimic expert 

assessments.  A third possibility is that we have the right image features and values but 

have not found the optimal function that translates the features into a pluripotency score. 
 

To test if experts used more features than provided so far, the model was trained on both 

experts using 56 features consisting of the 14 used to generate the data in Figure 3 plus 

42 Haralick and wavelet features (as listed in Supplemental Information 1, section III). 

The addition of these features has no significant effect on performance as shown in 

Supplemental Figure 6.  
 

To assess whether a more flexible class of scoring algorithms would provide different 

outcome, we also trained a Random Forest model with the 14 or 56 feature sets. The 

results are shown in Figure 3A as the orange curve, in 3B under the label RF, and in 

Supplemental Figure 6. The more flexible Random Forest model performed 

approximately the same as the linear approach. 
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Figure 3. A and B. Fitting results from linear models with different numbers of features trained on scores 

from both experts and accessing 14 expert-inspired features.   A. ROC curves for the model predictions of 

colonies given a score of 5 or 4-5 and compared to scores from expert 1 and from expert 2. The orange 

curve is the result of RF fit to 14 features. The black ROC curve is computed from the confusion matrix of 

expert 1 and expert 2 ratings.  B. Estimated variances and covariances in the differences between expert 

scores and model predictions. Shown are results of 10 models, where each new model includes all features 

from the previous model and is created by the addition of the indicated feature. This plot represents the 

variance in the differences between the predicted scores from the models and the scores from expert 1 (red) 

and expert 2 (blue).  The purple markers indicate covariance in the differences calculated between the 

experts scores and the model predictions. The numerical values of these covariances appear above the 

designation of the corresponding model on the x-axis. The green markers indicate the variance between the 

experts that is calculated according to equation 1.C and D. Training models on each expert individually. C. 

Models trained on expert 1 ratings. D. Models trained on expert 2 ratings. 

 

 

Although the models were trained on both experts, the differences in the effectiveness of 

the models to predict the ratings of the different experts are large. While the experts 

agreed on the rating criteria, the lack of concordance that is apparent in the confusion 

matrix suggests that the experts could be basing their ratings on different features or 

could be applying very different levels of importance to different features. We repeated 

the forward-selection development of linear models, and the Random Forest fits, training 

to each expert separately, again providing 14 features. Figure 3C and D show that 

training the model on the individual experts has a nominal effect compared to training the 

model on both experts, for predicting either expert 1 or 2. Thus both experts contribute to, 
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and neither expert dominates, the selection of model parameters for predicting colony 

scores.  

 

 

Evaluation of image features useful for predicting expert ratings 

 

Surprisingly, Figure 3 shows that for the model trained on two experts, just two image 

features, “local std”, a custom feature that is associated with high phase contrast in local 

regions, and “perimeter” account for nearly all the predictive power. Adding more 

features to the model only improves the model performance slightly.   We plotted the 

weights for features used in the models trained on both experts, and the models trained in 

either expert 1 or expert 2.  The results are shown in Figure 4, and confirm that for both 

experts, the predominant features are “local std” and “perimeter”.  

 

 

 
 
Figure 4. Features and weights for models using 14 features and trained on both experts (A), expert 1 (B) 

and expert 2 (C).  The 10 most important features in the models are shown.  The additional 4 features 

provided minimal improvement to the models. Under all cases, the most prominent features that appear in 

the models are “local std” and “perimeter”. 
 

 

 

DISCUSSION 

 

For this study, we used an approach based on identified image features and algorithms 

developed to capture the characteristics indicated by experts as important for evaluating 

pluripotent stem cell colony qualities. Many of the features that our experts identified are 

similar to features identified for similar studies [8, 15, 16]. The experts of Wakui et al 

[15] identified intercellular spacing, round, well defined margin, and smooth margin as 

important criteria. Maddah et al [8] identified biologically relevant features that included 

colony margin character, as did Marx et al [16], who also used a feature associated with 

heterogeneity within the colony (that is likely similar to our features of local std). We 

also employed other features, including some Haralick features, which are not based 

explicitly on human visual cues, but have been used successfully by other groups to 

detect intensity patterns in sub-cellular features present in optical microscopy images [17, 

18]. In other work, wavelet features used without any additional features were found to 

correlate well with the apparent pluripotency of cultured stem cells [19].   In this work, 

the 14 expert-inspired features were sufficient to capture most of the experts’ perceptions, 
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and the addition of Haralick and wavelet features did not improve the performance of the 

models for comparing expert scores.  By developing algorithms that are intended to 

quantify what the experts look for, we are able to assess the criteria that they each 

apparently use for visual evaluation.Inconsistencies between expert ratings and molecular 

markers of pluripotency have been observed by others [1, 15, 20]. In this work, we 

acknowledge that neither expert represented ground truth and allowed each expert’s 

ratings to represent a range of values. This general approach has been discussed by 

Frenay [21].   We compared models trained on both experts with models trained on one 

expert at a time.  All models produced colony scores at least as concordant with each 

expert’s scores as the experts were with one another.  Models were always better at 

predicting the scores of expert 1 than expert 2 was at predicting expert 1.   

 

Interestingly, two image features dominated all models, whether they were trained on 

ratings from one or both experts. These image features relate to intra-colony contrast 

(“local std”) and a quality of the colony margin (“perimeter”), suggesting that these are 

robust features for this application, and that both experts were similarly influenced by 

these features when rating colonies.   The importance of the “perimeter” image feature 

probably reflects that experts are aware that a colony that is large is more likely to 

spontaneously differentiate than a smaller colony, even though this characteristic was not 

initially acknowledged as one of their rating criteria.  

 

The consideration of multiple experts can thus provide evidence of robustness of stem 

cell  classification that cannot be achieved if only one expert were used.  The relatively 

poor performance of the model when predicting expert 2’s scores might indicate that 

expert 2 is responding to features that are not used by expert 1. But cross correlation 

analysis indicated that only a small amount of discordance that could be attributed to 

features was not shared between the experts. Since we also trained the model on expert 2 

alone, we conclude that these would be features that are outside of the feature space 

we’ve considered and are not shared by expert 1. Alternatively, this observation could 

also simply be the result of relative inconsistency by this expert in scoring.    

 

The correlations in the differences between expert scores and the models indicate that 

both experts share perceptions that were not accounted for in the models.  It appears that 

the models we employ based on our feature set account for about 70% of the experts’ 

decisions, suggesting that the evaluation of stem cell pluripotency by these experts may 

be improved by acknowledgement of additional, as yet undiscovered, features..  

 

The latent variable modeling approach can be extended to more than two experts. The 

only requirement is that one must estimate or specify the parameters for a larger variance-

covariance matrix.  The simplest case would be to assume the expert-specific tendencies 

are all independent of one another.  Then there would be a variance parameter for each 

expert and one additional covariance parameter.  Otherwise, each pair of experts could 

have a different covariance. 
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CONCLUSIONS 

This study demonstrates the use of non-concordant ratings from multiple experts to add 

confidence to decisions about colony ratings. Each expert’s ratings contribute to the 

model independently. This approach allows us to extract information about 

commonalities and differences in the ratings of different experts.  The differences 

between these experts can be attributed to slight differences in perception of relative 

importance of features, and consistency in scoring. Although there were differences 

between these experts, models based on each of their ratings were highly concordant with 

respect to features used and the presence of shared, unidentified features.  This 

concordance enhances confidence that the experts are evaluating similar content in the 

images.   

 

 

 

 

Availability of Data and Materials 

The raw image data used in this study are available at 

https://isg.nist.gov/deepzoomweb/data.  

Images and expert ratings are shown in Supplemental Information 2.  

The segmentation and analysis algorithms are available at  

https://github.com/usnistgov/stem_cell_segmentation. 
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