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Abstract 27 

Background: Stark racial disparities in disease incidence among American women remains a persistent 28 

public health challenge. These disparities likely result from complex interactions between genetic, social, 29 

lifestyle, and environmental risk factors. The influence of environmental risk factors, such as chemical 30 

exposure, however, may be substantial and is poorly understood. 31 

Objectives: We quantitatively evaluated chemical-exposure disparities by race/ethnicity and age in United 32 

States (US) women by using biomarker data for 143 chemicals from the National Health and Nutrition 33 

Examination Survey (NHANES) 1999-2014.  34 

Methods: We applied a series of survey-weighted, generalized linear models using data from the entire 35 

NHANES women population and age-group stratified subpopulations. The outcome was chemical 36 

biomarker concentration and the main predictor was race/ethnicity with adjustment for age, socioeconomic 37 

status, smoking habits, and NHANES cycle.  38 

Results: The highest disparities across non-Hispanic Black, Mexican American, Other Hispanic, and other 39 

race/multiracial women were observed for pesticides and their metabolites, including 2,5-dichlorophenol, 40 

o,p’-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with personal care and consumer 41 

product compounds. The latter included parabens, monoethyl phthalate, and several metals, such as mercury 42 

and arsenic. Moreover, for Mexican American, Other Hispanic, and non-Hispanic black women, there were 43 

several exposure disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol 44 

concentrations. Exposure differences for methyl and propyl parabens, however, were the starkest between 45 

non-Hispanic black and non-Hispanic white children with average differences exceeding 4 folds.  46 

Discussions: We systematically evaluated differences in chemical exposures across women of various 47 

race/ethnic groups and across age groups. Our findings could help inform chemical prioritization in 48 

designing epidemiological and toxicological studies. In addition, they could help guide public health 49 

interventions to reduce environmental and health disparities across populations. 50 
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1. Introduction 52 

The stark racial disparities in disease incidence and health outcomes among American women 53 

remains a persistent public health challenge. For example, preterm birth incidence was found to be 54 

approximately 60% higher in non-Hispanic Black women relative to non-Hispanic white women (Culhane 55 

and Goldenberg 2011). Non-Hispanic Black and Hispanic women are at increased risk of being diagnosed 56 

with developing dysglycemia (Marcinkevage et al. 2013) and diabetes (Cowie et al. 2009), relative to non-57 

Hispanic white women. Non-Hispanic Black women are also 2-3 times more likely to develop the most 58 

aggressive subtype of breast cancer, triple negative, compared to non-Hispanic white women (Carey et al. 59 

2006; Stark et al. 2010). Furthermore, relative to non-Hispanic white women, non-Hispanic Black women 60 

are also 2.4 times more likely to die of breast cancer after being diagnosed with the pre-invasive lesion, 61 

ductal carcinoma in situ (Narod et al. 2015).  62 

Recent statistics from the American Cancer Society show variation in trends in breast cancer 63 

incidence rates by race/ethnicity in US women from 2005-2014. Specifically, they show increasing trends 64 

in breast cancer over time in Asian (1.7% per year), non-Hispanic Black (0.4% per year), and Hispanic 65 

(0.3% per year) women, and stable trends in non-Hispanic white and American Indian/Alaska Native 66 

women (DeSantis et al. 2017). Dementia rates also vary by race/ethnicity, with rates highest in non-67 

Hispanic black women, followed by American Indian/Alaskan native, Latina, Pacific Islander, non-68 

Hispanic white, and lowest in Asian American women (Mayeda et al. 2016). These rates vary 60% between 69 

African American and Asian American women. Reproductive outcomes are also significantly different by 70 

race/ethnicity, with studies reporting increased incidence of gestational diabetes in South and Central Asian 71 

American women (Thorpe et al. 2005) and Black and Hispanic women (Tanaka et al. 2007). Collectively, 72 

these findings suggest profound racial disparities in disease outcomes that manifest throughout the life 73 

course. Understanding the etiological factors driving these health disparities is essential for informing 74 

public health interventions seeking to promote health equity. 75 

While health disparities are likely due to complex interactions between genetic, social, and lifestyle 76 

factors, the impact of genetic factors on disease disparities appears to be minor (Braun 2007; Cooper et al. 77 
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2003; Diez Roux 2012). For example, a meta-analysis of genetic factors underlying racial disparities in 78 

cardiovascular disease failed to identify heterogeneity of genetic risk factors by race/ethnicity (Kaufman et 79 

al. 2015). These findings of a modest genetic impact on differential cardiovascular disease risk by 80 

race/ethnicity are consistent with genome-wide association studies. A study found that variants with the 81 

strongest association with blood pressure explain, in aggregate, less than 5% of the phenotypic variance 82 

(Ehret et al. 2011). Moreover, a meta-analysis of genetic risk factors and cancer disparities reported similar 83 

findings, with almost no heterogeneity in cancer risk alleles by race/ethnicity (Jing et al. 2014).  84 

Environmental risk factors may be more influential in generating health disparities than other risk 85 

factors. For instance, estimates of environmental impacts on chronic disease suggest than 70-90% of risk is 86 

due to environmental exposures (Lim et al. 2012; Rappaport and Smith 2010). A mechanistic understanding 87 

of racial disparities in disease therefore requires a characterization of differences in environmental risk 88 

factors. In particular, differences in chemical exposures have been hypothesized to be important etiologic 89 

factors in racial disparities of disease rates (Hoover et al. 2012; Juarez and Matthews-Juarez 2018; Ruiz et 90 

al. 2018; Wang et al. 2016; Zota and Shamasunder 2017). 91 

To investigate the influence of environmental risk factors on health disparities, the goal of this 92 

study was to conduct a comprehensive analysis of racial disparities in chemical biomarker concentrations 93 

among US women. For this, we leveraged data from the National Health and Nutrition Examination Survey 94 

(NHANES), an ongoing population-based health study conducted by the US Centers for Disease Control 95 

and Prevention (CDC). Additionally, we developed visuals to highlight differences in biomarker 96 

concentrations across races and age groups, by defining the relative magnitude of exposure disparities for 97 

individual chemicals and chemical families.  98 

2. Methods 99 

2.1 Study Population 100 

 NHANES is a cross-sectional study designed for collecting data on demographic, socioeconomic, 101 

dietary, and health-related characteristics in the non-institutionalized, civilian US population. For this 102 

analysis, we used the continuous NHANES data on chemical biomarkers and demographics, which were 103 
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collected from 1999-2014 with 82,091 participants initially. We excluded participants for not having any 104 

data on chemical biomarkers (N = 7,001), resulting in a sample size of 75,090 study participants. Since this 105 

analysis is focused on measuring chemical disparities in US women, we excluded male participants (N = 106 

37,010), leading to a final sample size of 38,080 female participants. For a given chemical, we also excluded 107 

participants with missing data on any of the following covariates:  race/ethnicity, age, NHANES cycles, 108 

poverty income ratio, cotinine levels, and urinary creatinine. Number of participants with complete data for 109 

a given chemical and the listed covariates are tabulated in Excel Table S1. These exclusion and inclusion 110 

criteria are delineated in Figure 1. 111 

2.2 Chemical Biomarker Measurements 112 

This section along with Figure 1 delineate the curation process for selecting chemical biomarkers 113 

to include for analysis. First, we excluded biomarkers that are not indicative of chemical exposures (n = 114 

99). Next, we corrected for differences in chemical codenames by using a unique codename for each 115 

biomarker (n = 36). We gave preference to lipid-adjusted data and therefore excluded non-lipid adjusted 116 

chemical biomarkers (n = 79) when both types of data were provided for a given chemical. We replaced all 117 

measurements below the limit of detection (LOD) with 𝐿𝑂𝐷/√2 as recommended by the CDC (CDC, 118 

2009). This was to produce reasonably unbiased means and standard deviations (Hornung and Reed, 1990). 119 

There were also instances in which urinary cadmium concentrations were recorded as 0 ng/mL due to 120 

interference with molybdenum oxide (NCHS, 2005a, NCHS, 2005b). We replaced such values with 121 

𝐿𝑂𝐷/√2 if the participant's urinary cadmium level was under the LOD or otherwise excluded. We 122 

calculated detection frequencies for each chemical biomarker (Excel Table S2) and excluded biomarkers 123 

with detection frequencies of 50% or less (n = 182) across all study participants. Across the NHANES 124 

cycles, improvements in laboratory technology can change the LOD and thus lead to differences in 125 

detection frequencies by NHANES cycle (Nguyen et al. 2019). To limit bias from these changing LODs 126 

over time, we calculated detection frequencies by NHANES cycle (Excel Table S2) for each chemical 127 

biomarker and excluded measurements that showed drastic changes in the LOD (Excel Table S3) and 128 
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detection frequencies over time (Fig. 1). Measurements from given cycles for several PCBs, Dioxins, 129 

Furans, Phytoestrogens, and VOCs along with Paranitrophenol, 2-napthol, 1-pyrene and 9-pyrene 130 

(m = 449,396) were therefore also excluded based on these criteria (Excel Table S4). The final dataset for 131 

analysis consisted of 141 chemical biomarkers from 17 different chemical classes (Excel Table S5). 132 

2.3 Statistical Analysis 133 

We performed all analyses using R version 3.6.0. Given the NHANES complex sampling design, 134 

we applied appropriate survey weights in our statistical models to produce estimates representative of the 135 

non-institutionalized, civilian US population. To do this, we developed two databases. The first was a 136 

database of codenames indicating the appropriate survey weights for each chemical biomarker and 137 

NHANES cycle (Excel Table S6). For several of the Per- and Polyfluoroalkyl Substance (PFAS), there 138 

were two different type of survey weights available within the same cycle (one for children aged 3-11 and 139 

the other for participants aged 12 and older). Therefore, we developed another database of codenames 140 

indicating which additional survey weights to use when generalizing these results for PFASs (Excel Table 141 

S7).   142 

Using multivariate regression models, we evaluated differences in biomarker concentrations in 143 

blood and urine by race after log-transforming the data. We included log-transformed levels of cotinine as 144 

a covariate to represent smoking (Benowitz, 1999), and creatinine levels to adjust for urine dilution and 145 

flow differences (Barr et al., 2005). We modeled poverty income ratio (PIR) as a surrogate variable for 146 

socioeconomic status. PIR is the ratio of household income and poverty threshold adjusted for family size 147 

and inflation. First, we examined the racial differences in chemical biomarker levels by performing a series 148 

of chemical-specific regression models with the main predictor being race/ethnicity (categorical), adjusting 149 

for age (continuous), sex (categorical), NHANES cycle (continuous), PIR (continuous), and cotinine 150 

(continuous) as described in Eq. (1): 151 

 152 

𝐿𝑜𝑔10(𝑋-./01234	-672/78938167) = 𝛽932///8.71218<,>?𝑋932///8.71218<,>@ +  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/746867doi: bioRxiv preprint 

https://doi.org/10.1101/746867
http://creativecommons.org/licenses/by/4.0/


𝛽3B/?𝑋3B/@ + 

𝛽2<24/?𝑋2<24/@ + 

𝛽CDE(𝑋CDE) + 

𝛽2681717/(𝑋2681717/) + 

𝛽29/381717/(𝑋29/381717/) + 

𝛼 

 

 

 

 

 

[1] 

 153 

Here, 𝑋-./01234	-672/78938167 is the log-transformed, unadjusted chemical biomarker concentration for all 154 

participants, 𝑋1, where 𝑖 ∈ 	 {𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦, 𝑗, 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒, 𝑃𝐼𝑅, 𝑐𝑜𝑡𝑖𝑛𝑖𝑛𝑒, 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒}, is the 𝑖 155 

covariate for all participants, 𝛽1 is the linear regression coefficient for the 𝑖 covariate, and 𝛼 is the intercept. 156 

𝑋932///8.71218<,>, where 𝑗	𝜖{𝑀𝑒𝑥𝑖𝑐𝑎𝑛	𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑠, 𝑂𝑡ℎ𝑒𝑟	𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑠, 𝑁𝑜𝑛-𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐	𝐵𝑙𝑎𝑐𝑘,157 

𝑂𝑡ℎ𝑒𝑟	𝑅𝑎𝑐𝑒/𝑀𝑢𝑙𝑡𝑖𝑟𝑎𝑐𝑖𝑎𝑙} for 1999-2014, is the race covariate for comparing the 𝑗𝑡ℎ race to the reference 158 

group of Non-Hispanic Whites. For chemical biomarkers which were measured in urine, we further 159 

corrected the regression models by adjusting for urinary creatinine levels (continuous). For the analyses 160 

where cotinine concentration was the outcome, the regression models were not further corrected for 161 

smoking. Prior to 2011, Asian Americans were categorized in Other Race/Multi-Racial category. 162 

Accordingly, to evaluate chemical exposure disparities in Asian American women, we also applied Eq. 1 163 

to the 2011-2014 data. Then to determine whether racial disparities are driven by differences in 164 

socioeconomic status, we conducted a sensitivity analysis to observe how the race coefficients change with 165 

and without adjustment for PIR in the regression models. The coefficient for 𝑗𝑡ℎ race represents the 166 

difference in log-transformed chemical biomarker concentration between the 𝑗𝑡ℎ race and the reference 167 

group of Non-Hispanic Whites. To account for multiple comparisons, we used a False Detection Rate 168 

(FDR) method on the p-values of the linear regression race-coefficients (Benjamini and Hochberg, 1995). 169 

 To evaluate how these racial differences in chemical exposures differ by age group, we conducted 170 

stratified analyses by age groups in the 1999-2014 data. We defined 4 age groups:  0-11, 12-25, 26-50, and 171 
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51-85. For each age group with chemical biomarker measurements, we performed a chemical specific linear 172 

regression with the main predictor as race/ethnicity (categorical) and adjusted for age (continuous), sex 173 

(categorical), NHANES cycle (continuous), PIR (continuous), and cotinine (continuous), stratified by age 174 

group described in Eq. (2). 175 

 176 

𝐿𝑜𝑔10(𝑋-./01234	-672/78938167[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]) = 𝛽932///8.71218<,>,h?𝑋932///8.71218<,>[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]@ + 

𝛽3B/,h?𝑋3B/[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]@ + 

𝛽2<24/,h?𝑋2<24/[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]@ + 

𝛽CDE,h(𝑋CDE[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]) + 

𝛽2681717/,h(𝑋2681717/[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]) + 

𝛽29/381717/,h(𝑋29/381717/[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘]) + 

𝛼 [2] 

 177 

Here, 𝑘 is an available age group from the set of {0-11, 12-25, 26-50, 51-85}, 178 

𝑋-./01234	-672/78938167[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘] is the log-transformed, unadjusted chemical biomarker 179 

concentration for all participants with ages in the 𝑘𝑡ℎ age groups, 𝑋1,h[𝑎𝑔𝑒	𝑔𝑟𝑜𝑢𝑝 = 𝑘], where 𝑖 ∈180 

	{𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦, 𝑗, 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒, 𝑃𝐼𝑅, 𝑐𝑜𝑡𝑖𝑛𝑖𝑛𝑒, 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒}, is the 𝑖 covariate for all participants 181 

with ages with the 𝑘𝑡ℎ age group, 𝛽1,h is the linear regression coefficient for the 𝑖 covariate and 𝑘𝑡ℎ age 182 

group, and 𝛼 is the intercept. 𝑋932///8.71218<,>,h, where 𝑗	𝜖{𝑀𝑒𝑥𝑖𝑐𝑎𝑛	𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑠, 𝑂𝑡ℎ𝑒𝑟	𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑠,183 

𝑁𝑜𝑛-𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐	𝐵𝑙𝑎𝑐𝑘, 𝑂𝑡ℎ𝑒𝑟	𝑅𝑎𝑐𝑒/𝑀𝑢𝑙𝑡𝑖𝑟𝑎𝑐𝑖𝑎𝑙}, is the race covariate for comparing the 𝑗𝑡ℎ race to the 184 

reference group of Non-Hispanic Whites in the 𝑘𝑡ℎ age group. To account for multiple comparisons, we 185 

used a False Detection Rate (FDR) method on the p-values of the linear regression race-coefficients across 186 

all age groups (Benjamini and Hochberg, 1995). 187 

3. Results 188 
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 Table 1 displays demographic characteristics of the study population. The study population 189 

includes 38,080 female study participants of ages 1-85 years, with a median age of 26. Using a series of 190 

covariate adjusted regression models, we first calculated the fold-difference in chemical biomarker 191 

concentrations by race across the entire study population. These regression results are presented in graphical 192 

format in Figure 2, where the letters in the plot reflect the fold-difference in chemical biomarkers for each 193 

race/ethnicity, relative to non-Hispanic white women, who made up the largest portion of the study 194 

population. Full regression results for all covariates in the regression models for each covariate are 195 

presented in Excel Table S8. Pesticides and pesticide metabolites, including 2,5-dichlorophenol, o,p’-DDE, 196 

beta-hexachlorocyclohexane, and 2,4-dichlorophenol had amongst the highest average fold difference 197 

across non-Hispanic Black, Mexican American, Other Hispanic, and other race/multiracial women. On 198 

average, large differences by race are also apparent for personal care and consumer product compounds 199 

including methyl paraben, propyl paraben, monoethyl phthalate and metals, such as mercury and arsenic. 200 

Conversely, cotinine, PBDE-153, PBB-153, Equol, DEET, and bisphenol F were among the chemicals of 201 

which non-Hispanic white women had the highest levels. 202 

In order to more clearly visualize the differences in chemical biomarkers by race/ethnicity, we 203 

generated volcano plots, which are displayed in Figure 3. The x-axis of these plots depicts the fold 204 

difference in average chemical biomarker concentration between each race/ethnicity and non-Hispanic 205 

white women. The y-axis depicts statistical significance, as reflected in the negative log10 transformation of 206 

the FDR-adjusted p-value from the regression analysis for that chemical biomarker, where chemicals with 207 

larger values on the y-axis are more statistically significant. As shown in Figure 3A, non-Hispanic black 208 

women have biomarker concentrations that are more than twice those of non-Hispanic white women for 209 

multiple chemicals. These include 2,5-dichlorophenol, 1,4-dichlorobenzene, methyl paraben, monoethyl 210 

phthalate, 2,4-dichlorophenol, and propyl paraben. The heavy metals, mercury (p-value = 1.39E-15) and 211 

lead (p-value = 1.85E-14), are also significantly higher in non-Hispanic Black women. Conversely, levels 212 

of benzophenone-3, a UV blocker used in sunscreen, are significantly higher in non-Hispanic white women 213 

(p-value = 1.96E-15). In general, concentrations of PCBs tend to be modestly elevated in non-Hispanic 214 
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Black women, while volatile organic compounds (VOCs) and phytoestrogen concentrations are higher in 215 

non-Hispanic white women. Figure 3B shows relative differences in chemical biomarker concentrations 216 

between Mexican American and non-Hispanic white women. Pesticides, including 2,5-dichlorophenol, 217 

beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with the polycyclic aromatic hydrocarbon 2-218 

napthol were on average higher in Mexican American women. Conversely, the smoking biomarker, cotinine 219 

is significantly lower in Mexican American women (p-value = 8.23E-36). PCB levels, on average, are also 220 

lower in Mexican American women, while heavy metal levels tended to be higher. Exposure patterns 221 

comparing Other Hispanic and non-Hispanic white women, displayed in Figure 3C, showed some 222 

similarities, with pesticides 2,5-dichlorophenol and p,p’-DDE elevated in Other Hispanic women. Multiple 223 

PFASs, including PFOS, PFHxS, and 2-(N-methyl-PFOSA) acetate, as well as cotinine, are significantly 224 

lower in Other Hispanic women. Figure 3D shows a distinct exposure pattern in women of other 225 

race/ethnicity or multiracial women. Here, levels of heavy metals, including cadmium, mercury, and 226 

multiple arsenic biomarkers, are significantly elevated relative to non-Hispanic white women. Conversely, 227 

the smoking biomarkers, NNAL (p-value = 2.77E-07) and cotinine (p-value = 4.49E-4), are significantly 228 

lower.  229 

To understand whether socioeconomic status is a driver of racial disparities in chemical exposures, 230 

we generated a series of correlation plots, comparing how the differences in chemical biomarker 231 

concentrations by race/ethnicity change with the inclusion and exclusion of PIR in the regression models 232 

(Figure S1 and Excel Table S9). For many of the chemicals, the fold differences for comparing chemical 233 

biomarker levels by race did not change drastically when including PIR as a covariate in the regression 234 

models, implying that socioeconomic status is not the primary driver in explaining differences in chemical 235 

exposures. However, for cotinine, PCB 194, and several chemicals used in personal care products, the 236 

relative differences changed by greater than 25% when PIR was included as a covariate in the regression 237 

models. This suggests that either exposure differences between races for these chemicals are mediated by 238 

PIR, and/or exposure differences are explained by interactions between race and socioeconomic status. To 239 

visualize differences in chemical biomarker concentrations by race across a gradient of income for a few 240 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/746867doi: bioRxiv preprint 

https://doi.org/10.1101/746867
http://creativecommons.org/licenses/by/4.0/


selected biomarkers, we generated violin plots of the chemical biomarker distribution stratified by 241 

categories of PIR for each race/ethnicity (Figure S2). For benzophenone-3 and cotinine (Figure S2A and 242 

S2B), the trends of biomarker concentrations across the PIR categories and the average concentrations 243 

within the same PIR categories differ by race. This is similar for ethyl paraben (Figure S2C), but 244 

differences are not as drastic. On the other hand, mercury (Figure S2D) along with other remaining 245 

chemicals demonstrated a very different pattern from those of the previously mentioned substances. Across 246 

all races, the trends across PIR categories are similar for mercury, but within the same PIR category, there 247 

are differences in biomarker concentrations by race, suggesting that many chemical exposures disparities 248 

by race are independent of PIR.  249 

Starting in 2011, more detailed information on NHANES study participant race/ethnicity were 250 

collected, including specifically identifying individuals who report Asian ethnicity. To understand whether 251 

the results presented in Figure 3D predominantly reflect results in Asian women, who prior to 2011 were 252 

categorized in other race/multi-racial category, we assessed exposure disparities specifically in the Asian 253 

population. These results, presented in Figure 4A, show that, on average, multiple heavy metal biomarkers 254 

are more than 2-fold higher relative to non-Hispanic white women, including cadmium, mercury, lead, and 255 

arsenics. Additionally, the PFAS compound PFDA is significantly higher in Asian women (p-value = 256 

3.82E-06), while cotinine (p-value = 1.88E-05) and biomarkers of phosphate flame retardants (Bis(1,3-257 

dichloro-2-propyl) phosphate p-value = 5.41E-3; Dibutyl phosphate p-value = 6.76E-4; Diphenyl phosphate 258 

p-value = 3.27E-3) are significantly lower. We also calculated whether there were significant disparities in 259 

chemical biomarker concentrations in women of other or multi-race after excluding Asian women. Figure 260 

4B suggests relatively few differences in this regard, confirming that the other race effect in Figure 3D is 261 

indeed associated with Asian women. Full regression results across all covariates for the 2011-2014 data 262 

are presented in Excel Table S10. 263 

We have previously shown dramatic differences in the chemical “exposome” by age in NHANES 264 

study participants, not stratified by gender or race (Nguyen et al. 2019). Here, we tested for differences in 265 

chemical biomarkers by race, after stratifying by age group. Figure 5 displays these results across the entire 266 
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study population from 1999-2014. Excel Tables S11-S14 includes the results for all regression analyses 267 

stratified across each of the four age groups. Blue colors reflect chemicals where levels are higher in non-268 

Hispanic white women, while red colors reflect chemicals that are of higher concentration in women of the 269 

labeled race/ethnicity. Here, there appear to be exposure disparity patterns that persist across age groups – 270 

such as higher 2,4- and 2,5-dichlorophenol concentrations in Mexican American, Other Hispanic, and non-271 

Hispanic black women. Differences in 1,4-dichlorobenzene concentrations are consistent across age groups, 272 

although this biomarker was not measured in the youngest individuals. Heavy metal concentrations are 273 

elevated in women of other race across age groups. Some exposure patterns differ by age, however. For 274 

example, differences in methyl and propyl paraben are most apparent between young non-Hispanic black 275 

and non-Hispanic white women less than 12 years old. Increased levels of phosphate flame retardants and 276 

the insect repellent DEET in non-Hispanic white women are the most evident in women less than 12 years 277 

of age. Similarly, higher relative concentrations of benzophenone-3, bisphenol A, and bisphenol F occur in 278 

non-Hispanic white women less than 12. Elevated PCB levels in non-Hispanic black women shown in 279 

Figure 3A are most evident in women greater than 51 years of age. Overall, these results highlight racial 280 

exposure disparities that are either stable or that vary across age groups. 281 

4. Discussion 282 

Based on population based chemical biomonitoring generated as part of the 1999-2014 NHANES, 283 

we performed a comprehensive analysis of racial disparities in biomarker concentrations of 141 chemicals 284 

in 38,080 participants. Specifically, we quantified the relative magnitude of racial disparities for individual 285 

chemicals and chemical families while utilizing appropriate regression weightings. This helped ensure that 286 

the results were as generalizable to the entire US population. These results highlighted striking differences 287 

in chemical biomarker exposure patterns by race/ethnicity, independent of other demographic factors such 288 

as socioeconomic status. In particular, exposure patterns of pesticides, heavy metals, tobacco smoke 289 

associated compounds, and chemicals found in personal care products are found to be most disparate across 290 

race/ethnic groups. Stratified analyses revealed exposure patterns that persisted across age groups. For 291 

example, this was apparent in heavy metals exposure for women who identify as other race or multiracial, 292 
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as well as in age-specific exposure patterns, such as elevated PCB, dioxin, and dibenzofuran exposure in 293 

older non-Hispanic black women. In some cases, average differences in chemical biomarker concentrations 294 

between race/ethnic groups exceeded 400%, such as for urinary propyl or methylparaben concentrations 295 

between the youngest non-Hispanic Black and non-Hispanic white women. These findings contextualize 296 

racial disparities in chemical exposures across US women and highlight the vast differences in chemical 297 

exposomes between demographic groups with well characterized disparities in health outcomes. 298 

Environmental injustice is the disproportionate exposure of individuals of color, lower 299 

socioeconomic status, or other politically disadvantaged groups to toxic chemicals in food, air, consumer 300 

products, at the workplace, or in their communities (Brulle and Pellow 2005). Disproportionate chemical 301 

exposures have been hypothesized to be important drivers of health disparities, including obesity and 302 

neurodevelopmental outcomes (Landrigan et al. 2010). While the primary goal of this study was to quantify 303 

and compare chemical exposure disparities across racial/ethnic groups, independent of income, others have 304 

evaluated combined income and race related disparities in exposure. For instance, one analysis compared 305 

geometric mean concentrations of 228 chemical biomarkers between six groups stratified by income and 306 

race in NHANES and identified 37 chemicals as likely contributing to environmental justice (Belova et al. 307 

2013).  Some of these chemicals, including cotinine, lead, 2,4- and 2,5-dichlorophenol, methyl paraben, 308 

and propyl paraben, were associated with the highest disparities across race/ethnic group in the present 309 

study. We also compared chemical exposures disparities across racial/ethnic groups with and without 310 

adjustment for income and found that cotinine, PCB 194, methyl mercury, and chemicals used in personal 311 

care products such as benzophenone-3, the parabens, and triclosan show disparities across both race and 312 

socioeconomic status. However, for most of the studied chemicals, differences in chemical exposures were 313 

not driven by socioeconomic status but were instead primarily associated with race/ethnicity. Furthermore, 314 

a study of racial and social disparities in exposure to BPA and PFAS examined differences in biomarker 315 

concentrations in NHANES study participants (Nelson et al. 2012). The concentrations of the four PFAS 316 

chemicals examined, PFOA, PFOS, PFNA, and PFHxS, were inversely associated with household income, 317 

while BPA concentrations were higher in individuals who reported low food security (Nelson et al. 2012). 318 
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Here, we identified that, independent of socioeconomic status, as assessed by poverty-income ratio, non-319 

Hispanic white women had the highest concentrations of PFOA, while non-Hispanic Black and other 320 

race/multiracial women had the highest concentrations of PFDA. Major routes of exposure to PFAS 321 

compounds include contaminated drinking water (Hu et al. 2016), diet (Schecter et al. 2010), and 322 

occupational routes (Laitinen et al. 2014). BPA concentrations were not strikingly different by race in our 323 

study, but non-Hispanic Black women had, on average, 93% higher BPS concentrations than non-Hispanic 324 

white women. Common routes of exposure to BPA and other bisphenol analogues are diet, thermal paper, 325 

and personal care products (Chen et al. 2016). Further research is necessary to identify the major routes of 326 

exposure which are driving racial disparities in PFAS and bisphenol chemicals biomarker concentrations. 327 

The findings of highly elevated monoethyl phthalate and methyl and propyl paraben concentrations 328 

in the non-Hispanic Black women is consistent with a personal care product route of exposure. A study 329 

assessing the chemical composition of hair products used by Black women consistently identified high 330 

levels of cyclosiloxanes, parabens, and the fragrance carrier diethyl phthalate (Helm et al. 2018). In our 331 

study, the concentrations of the diethyl phthalate metabolite monoethyl phthalate were approximately 78% 332 

higher on average in non-Hispanic black women of all ages relative to non-Hispanic white women, and 333 

122% higher in non-Hispanic black women less than 12 years of age. This is concerning, since urinary 334 

concentrations of monoethyl phthalate have been positively associated with odds of developing breast 335 

cancer in a case-control study of women from Northern Mexico (López-Carrillo et al. 2010). Differences 336 

in concentrations of methyl and propyl paraben biomarkers were among the highest observed in this study, 337 

particularly for the youngest non-Hispanic Black women. These chemicals have been used as preservatives 338 

in personal care products, pharmaceuticals, and food additives, and have been found to promote cell growth 339 

through multiple mechanisms, including estrogenicity (Gonzalez et al. 2018, 2019; Okubo et al. 2001) and 340 

epidermal growth factor receptor signaling (Pan et al. 2016). Particularly relevant to our findings of the 341 

greatest methyl and ethyl paraben disparities in the youngest non-Hispanic Black women was the finding 342 

that early life paraben exposures can alter developing mammary gland morphology and induce gene 343 

expression that resembles an early cancer-like state (Gopalakrishnan et al. 2017). Use of hair products has 344 
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been identified as a potential risk factor for breast cancer in non-Hispanic Black women (Stiel et al. 2016). 345 

Further research is needed, however, to determine whether early-life exposure to potentially estrogenic 346 

compounds, like parabens, can induce biological alterations that increase risk of estrogen receptor negative 347 

breast cancers.  348 

One of the most apparent disparities in chemical biomarker concentrations by race was with the 349 

compounds 2,4-dichlorophenol, 2,5-dichlorophenol, and 1,4-dichlorobenzene. 1,4-dichlorobenzene is used 350 

as a disinfectant, pesticide, and deodorant. 2,5-dichlorophenol is a metabolite of 1,4-dichlorobenzene, while 351 

2,4-dichlorophenol is a metabolite of the antimicrobial triclosan or other pesticides. Elevated concentrations 352 

of these chemicals in non-Hispanic Black individuals has been noted previously (Belova et al. 2013; Ye et 353 

al. 2014)  The concentrations of these three chemicals were up to 350% higher on average in non-Hispanic 354 

Black women, relative to non-Hispanic white women, and also elevated in Mexican American and Other 355 

Hispanic women. Importantly, these exposure disparities were consistent across all age groups. While 2,4-356 

dicholorophenol concentrations were significantly elevated in non-Hispanic Black and Hispanic women, 357 

urinary triclosan levels were not significantly different by race/ethnicity. This suggests that either triclosan 358 

is not the main chemical exposure that explains the differences in concentrations of 2,4-dichlorophenol or 359 

that there are differences in metabolism and excretion rates by race, which is less likely. 1,4-360 

dichlorobenzene exposure has been associated with altered thyroid biomarkers in NHANES (Wei and Zhu 361 

2016), altered immunologic and liver function parameters in occupationally exposed workers (Hsiao et al. 362 

2009), and altered sperm production and increased prostate weight in exposed rats (Takahashi et al. 2011). 363 

Understanding and mitigating exposure to these chemicals is therefore of importance to reduce disparate 364 

risk of these health outcomes. 365 

Heavy metals were among the chemicals most consistently different across racial/ethnic groups. In 366 

particular, women who identified as other race or multiracial had the highest concentrations of multiple 367 

metals, including cadmium, mercury, arsenics, lead, and manganese. Focusing on data from NHANES 368 

2011-14, we identified that these elevated metals concentrations were restricted to women who identified 369 

as Asian. This is consistent with a previous finding of increased concentrations of a subset of these metals 370 
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in Asian NHANES participants (Awata et al. 2017). Furthermore, elevated levels of mercury, lead, and 371 

arsenics were also identified in non-Hispanic Black women, relative to non-Hispanic white women. 372 

Mexican American women had elevated levels of uranium, lead, mercury, arsenics, and cadmium, while 373 

Other Hispanic women had higher concentrations of mercury, arsenics, and cadmium than non-Hispanic 374 

white women. Non-Hispanic white women, however, had higher concentrations of urinary barium. Previous 375 

research has linked diet, occupation, education level, and smoking status to elevated metals exposure 376 

(Awata et al. 2017), in addition to housing (Jacobs et al. 2013), air pollution (Suvarapu and Baek 2016), 377 

and contaminated water (Pieper et al. 2017). The well characterized toxicity of heavy metals exposure, even 378 

at low doses, make identifying and ameliorating heavy metal exposures a top priority for addressing 379 

environmental health disparities. 380 

The oldest non-Hispanic Black women in our study had consistently higher concentrations of 381 

persistent organic pollutants, including dioxins, dibenzofurans, PCBs, and DDT metabolites. This is 382 

consistent with a previous report of non-Hispanic black individuals having an increased risk of having 383 

multiple persistent organic pollutants detectable their blood (Pumarega et al. 2016) or higher average levels 384 

of PCBs (Xue et al. 2014). Biomarkers of persistent organic pollutants were quantified on an individual 385 

(non-pooled) basis in the 1999-2004 NHANES cycles. Elevated concentrations of these pollutants, such as 386 

the DDT metabolite, DDE, have been associated with an increased risk of breast cancer (Wolff et al. 1993).  387 

A lack of disparities, and decreasing concentrations of these chemicals in younger individuals over time, 388 

generally reflect a public health success in decreasing population exposures to these toxic compounds 389 

(Nguyen et al. 2019). The long half-life of these chemicals suggests that the detected biomarkers 390 

predominantly reflect historical exposures. This could, however, be of substantial importance for children 391 

of non-Hispanic Black women, who could have been exposed to disproportionately high levels of these 392 

chemicals in the womb or early in childhood. For example, in utero exposure to the pesticide, DDT, has 393 

been associated with an increased risk of breast cancer in adulthood. Specifically, women in the highest 394 

quartile of in utero DDT exposure were found to have a 3.7-fold increased risk of developing breast cancer 395 

relative to women in the lowest quartile of exposure (Cohn et al. 2015). Prenatal exposure to organochlorine 396 
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compounds has also been associated with decreased lung function later in life (Hansen et al. 2016), risk of 397 

infection in childhood (Dewailly et al. 2000), attention deficit hyperactivity disorder (Sagiv et al. 2010), 398 

and obesity (Mendez et al. 2011). If these effects of elevated early life persistent organic pollutant exposure 399 

last throughout the life course, there could be continued adverse health consequences that manifest in those 400 

exposed for the foreseeable future.     401 

Our study had important limitations. First, the cross-sectional nature of NHANES allows only a 402 

single biomarker measurement per individual. Moreover, since the half-lives of the biomarkers assessed in 403 

this study are highly variable (Nguyen et al. 2019), the precision of estimates of long-term exposure largely 404 

varies across chemical family. Additionally, this study was not able to assess geographic variation in 405 

exposure. Others have identified that persistent organic pollutant exposures in the NHANES cohort varies 406 

geographically, with higher DDT metabolite concentrations in individuals residing in the West, and  407 

elevated PCB concentrations in individuals residing in the Northeast (Wattigney et al. 2015). Future work 408 

is needed to precisely characterize exposure “hot spots,” in order to design intervention studies to reduce 409 

exposure disparities. Our study also focused on identifying average differences in biomarker 410 

concentrations. By ignoring the extremes of these distributions, we have likely not considered individuals 411 

at greatest risk of developing adverse health outcomes. Similarly, our analyses were limited by low 412 

detection rates, with 182 chemicals not meeting our inclusion threshold of at least 50% detection in the 413 

study population. A more in-depth analysis of differences in detection frequency by race/ethnicity could 414 

identify additional chemicals with significant racial disparities. For chemical biomarkers measured in urine, 415 

variations in the concentration of urinary creatinine, used as a correction factor for urine dilution, potentially 416 

confounds our comparison of exposures between individuals of different races. This is because increased 417 

average concentrations of urinary creatinine have been identified for non-Hispanic Black individuals, 418 

relative to Mexican American and non-Hispanic white individuals (Barr et al. 2005). While we adjusted for 419 

urinary creatinine as a covariate in our regression models, the still may be residual confounding. The large 420 

number of chemicals assessed also precluded an in-depth characterization of the various routes of exposure 421 

of individual chemicals – this is undoubtedly an essential future direction of research to develop strategies 422 
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to eliminate exposure disparities. Finally, while we performed analyzed all chemical biomarkers available 423 

from NHANES 1999-2014, these chemicals only represent a small proportion of the over 80,000 chemicals 424 

estimated to be used in commerce in the United States. Future studies could benefit from an unbiased 425 

metabolomics approach to identity disparities in chemical exposures which are not captured in NHANES.   426 

The persistent health disparities between women of different races/ethnicities makes understanding 427 

the etiological drivers of these disparities a pressing public health issue. A recent commentary highlighted 428 

a lack of knowledge regarding the molecular underpinnings of health disparities. It described how the vast 429 

majority of genome sequencing data had been generated in populations of European ancestry (Sirugo et al. 430 

2019). Environmental exposures, however, are hypothesized to be the major driving risk factors for a vast 431 

suite of complex diseases (Rappaport and Smith 2010). Even when genetic data has been generated in an 432 

equitable fashion, understanding gene-environment interactions and complex disease phenotypes will still 433 

require in-depth quantification of environmental exposures. In this study, we have comprehensively 434 

identified differences in biomarker of chemical exposure across women of various race/ethnic groups and 435 

across age groups. These findings can guide future efforts to understand chemical impacts on health 436 

disparities by helping to prioritize chemicals for assessment in epidemiological studies. Additionally, 437 

chemicals as identified as highly disparate here can be further prioritized for toxicological assessment 438 

relevant to disease outcomes of interest. Finally, these findings can inform public health interventions 439 

designed to reduce chemical disparities and promote health equity across the population. 440 
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Tables 619 
Table 1. Demographic characteristics of the study population. 620 
 621 

CATEGORICAL 
Age N (%) Cycle N (%) Race/Ethnicity (%) N (%) 
      0-11 9392 (24.66)       1999-2000 (Cycle 1) 4535 (11.91)       Mexican American  8760 (23.00) 
      12-25 9555 (25.09)       2001-2002 (Cycle 2) 5127 (13.46)       Other Hispanic 2949 (7.74) 
      26-50 9330 (24.50)       2003-2004 (Cycle 3) 4732 (12.43)       Non-Hispanic White 14384 (37.77) 
      51-85 9803 (25.74)       2005-2006 (Cycle 4) 4834 (12.69)       Non-Hispanic Black 9116 (23.94) 
        2007-2008 (Cycle 5) 4628 (12.15)       Other Race  2871 (7.54) 
        2009-2010 (Cycle 6) 4946 (12.99)   
        2011-2012 (Cycle 7) 4493 (11.80)   
        2013-2014 (Cycle 8) 4785 (12.57)   
CONTINUOUS 

 N measured (% 
of population)  5th %tile Median Mean (SD) 95th%tile 

Age (years) 38080 (100) 2 26 32.1 (24.2) 77 
PIR (-) 34968 (91.83) 0.29 1.73 2.2 (1.6) 5.00 
Cotinine (ng/mL) 31699 (83.24) 0.011 0.045 29.9 (91.4) 245.00 
Creatinine (mg/dL) 32314 (84.86) 22.00 102.00 115.9 (76.6) 263.00 
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Figure legends 622 
Figure 1. Dataset compilation and cleaning workflow. 623 
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Figure 2. Alphabet soup plot displaying the covariate adjusted fold differences in chemical biomarker 625 
concentration by race, ranked by the average difference with non-Hispanic White individuals. Colors 626 
represent the chemical families. Shapes represent the comparison between a given race and non-Hispanic 627 
White individuals.  628 
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Figure 3. Volcano plots representing the significance of the covariate-adjusted differences in chemical 631 
biomarker concentrations between non-Hispanic white women and (A) non-Hispanic Black women, (B) 632 
Mexican American women, (C) Other Hispanic women, and (D) Other race/multiracial women. Color and 633 
shapes represent the chemical families.  634 
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Figure 4. Volcano plots representing the significance of the covariate-adjusted differences in chemical 637 
biomarker concentrations between non-Hispanic white women and (A) Asian women, and (B) other race 638 
/multiracial women in NHANES 2011-2014. Colors and shapes represent the chemical families.639 
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Figure 5. Heatmap displaying covariate adjusted fold differences in chemical biomarker concentrations by 642 
race, relative to non-Hispanic white women, stratified by age group and chemical family. Color reflects the 643 
log2 fold difference in chemical biomarker concentration. Biomarkers in grey color were not measured in 644 
that age group. 645 
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