
 

  

Spatial Patterns for Discriminative Estimation 
 

Alberto Llera1,2,3, Roselyne Chauvin1,2, Peter Mulders1,2,4, Jilly Naaijen1,2, Maarten Mennes1,2,  
and Christian F. Beckmann1,2,5 

 
1. Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, 6500 GL, Nijmegen, The Netherlands. 
2. Department of Cognitive Neuroscience, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands. 
3. Karakter, Child and Adolescent Psychiatry, University Center, 6525 GC Nijmegen, The Netherlands  
4. Department of Psychiatry, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands.  
5. Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, OX3 9DU, U.K. 

 
 
Abstract—Functional connectivity between brain regions 

is modulated by cognitive states or experimental 
conditions. A multivariate methodology that can capture 
fMRI connectivity maps in light of different experimental 
conditions would be of primary importance to learn about 
the specific roles of the different brain areas involved in the 
observed connectivity variations. Here we detail, adapt, 
optimize and evaluate a supervised dimensionality 
reduction model to fMRI timeseries. We demonstrate the 
strength of such an approach for fMRI data using data from 
the Human Connectome Project to show that the model 
provides close to perfect discrimination between different 
fMRI tasks at low dimensionality. The straightforward 
interpretability and relevance of the model results is 
demonstrated by the obtained linear filters relating to 
anatomical areas well known to be involved on each 
considered task, and its robustness by testing 
discriminatory generalization and spatial reproducibility 
with respect to the number of subjects and fMRI time-points 
acquired. We additionally suggest how such approach can 
provide a complementary view to traditional task fMRI 
analyses by looking at changes in the covariance structure 
as a substitute to changes in the mean signal. We conclude 
that the presented methodology provides a robust tool to 
investigate brain connectivity alterations across induced 
cognitive changes and has the potential to be used in 
pathological or pharmacological cohort studies. A publicly 
available toolbox is provided to facilitate the end use and 
further development of this methodology to extract Spatial 
Patterns for Discriminative Estimation (SP♠DE). 
 

Index Terms—fMRI analysis, connectivity analyses, 
dimensionality reduction, machine learning.  
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I. INTRODUCTION 
UNCTIONAL magnetic resonance imaging (fMRI) is the 
primary tool used to investigate how the brain (re)acts 
under different mental states and the biological 

underpinnings of brain disorders. Most commonly, these state 
or group-differences are investigated using generalized linear 
models (GLM) [1] to detect brain regions that differentiate 
between experimental conditions. The GLM is for example the 
standard tool used to analyze task fMRI data incorporating a 
temporal model for the induced brain activity [2] that allows 
obtaining a supervised voxel-wise characterization of changes 
in the blood-oxygen-level dependent (BOLD) response [1]. 
Yet, while powerful and straightforward to interpret, the GLM 
has two crucial disadvantages. Foremost, while fMRI data is 
multivariate in nature, the GLM is applied as a mass univariate 
approach (i.e., independently to each voxel in the brain) and 
does not consider interactions between different regional 
effects. Second, it ignores the variance in the data by looking 
at single mean BOLD changes across conditions. To overcome 
these issues, one can use multivariate models that allow 
studying the second order interactions between different brain 
areas [3], [4]. Although these models overcome some of the 
issues with univariate modelling, they are not specifically 
tailored for state/group characterization. Further inclusion into 
models for state/group identification, i.e. regression or 
classification, can provide strong discrimination but 
complicates the interpretation of the results. Consequently, to 
improve interpretability of results obtained from analyzing 
multivariate fMRI data while optimizing discrimination 
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between two conditions or groups of fMRI time-series, it 
would be beneficial to the community the use of multivariate 
approaches to extract brain patterns that maximize 
discriminative properties. Using a simultaneous 
diagonalization approach [5] we introduced such preliminary 
results on fMRI data in [6] and further work has been done 
since then by applying it to cohorts of neurodevelopmental 
disorders [7]–[9]. Recently we have also considered it to study 
the effect of stress induction [10]. For a proper understanding 
between the fMRI community, we first summarize here the 
full analytical transformations defining the simultaneous 
covariance diagonalization [5]. The basics of the general 
approach [5] are not new to the neural engineering community 
as it is commonly used as a feature extractor for classification 
on EEG-based brain-computer interfaces [11], [12]. In such 
prediction contexts, the model order selection, i.e. which 
subset of linear filters to select, represents no critical choice 
due to the posterior features interaction with a classifier, and 
simple heuristics commonly suffice. However, when 
considering such model further than for discrimination, the 
clinician/researcher needs to know which set of filters deserve 
further attention. In addition, the model order selection step is 
required for the interpretation of spatial maps derived from 
‘backward’ linear models [13], and consequently, using 
simultaneous diagonalization approaches further than for 
discrimination, but as a cognitive neuroscience tool, requires 
stricter model order optimization. Here we embed the model 
order optimization into a permutation testing statistical 
approach. However, the application of this model to fMRI data 
is principally challenging due to the high spatial correlation of 
fMRI data and because the model requires a large number of 
observations to compute well-posed covariance matrices. 
Although recent advances in data acquisition and large-scale 
data collection allow collecting a large number of observations 
in relatively short time periods, this is not yet the standard, 
especially in clinical acquisitions. To partially overcome these 
issues, here we perform an initial fMRI spatial dimensionality 
reduction using a functional brain parcellation [14], and 
compute regularized versions of the spatial covariance 
matrices [15] to expand the original methodology formulation 
[5]. We make use of large-scale high-quality fMRI data from 
the Human Connectome Project (HCP) [16], [17] to uncover 
and evaluate the potential power of such pipeline for 
discriminative estimation and spatial reproducibility on fMRI 
data. We consider resting state, motor, and working memory 
task fMRI data from 1063 subjects and demonstrate that we 
are able to learn robust low-dimensional representations of the 
data that provide close to perfect discrimination between the 
different mental states. The method is fast and efficient and 
the availability of these simple and well-known tasks allows to 
validate that the learned filters are robust and specific to brain 
areas well-known to be involved during their respective 
paradigms [13], [18], validating the spatial interpretation of 
the obtained results on fMRI data. Further, the highly 
temporally sampled fMRI data of the HCP allows also 
considering the discrimination and spatial associations’ 
robustness as a function of the number of subjects and time 
points included. Herewith, identifying the scenarios in which 

the current approach is useful to address general questions 
using fMRI. 

II. METHODS 

A. Dataset & preprocessing 
 In this work we use resting state and task  fMRI data from the 

Human Connectome Project (HCP) [16], [17]. For each subject, 
we consider the motor task (MT), the working memory task 
(WM), and the first of the two available resting state sessions 
(RS). We use the HCP1200 release which includes data from 
1200 subjects and only consider data from subjects for whom 
all three data modalities (RS, MT and WM) were available 
resulting in a total of 1063 subjects. In all cases we used the 
fully preprocessed data in MNI152 space as delivered in the 
HCP1200 release. For the full preprocessing details we refer the 
reader to [19].  

B. Spatial Patterns for Discriminative Estimation 
Next, we describe the processing steps that lead to the 

extraction of Spatial Patterns for Discriminative Estimation 
(SPADE) from fMRI data. SPADE indexes connectivity 
changes from two sets of fMRI data using the simultaneous 
diagonalization of two covariance matrices [5]; full analytical 
details are provided in Appendix A. Although ideally one 
would like to perform such analyses using well posed full brain 
spatial covariance matrices, this is not achievable yet due to the 
fMRI spatial correlation and the computational memory 
constraints relating to the high spatial resolution of fMRI 
measurements. As a consequence, a spatial dimensionality 
reduction must be performed in order to apply the algorithm to 
fMRI data. For each subject and for each of the three considered 
fMRI data modalities we performed a spatial dimensionality 
reduction into 165 regions of interest (ROI) from a functional 
parcellation [14] by extracting the mean time-series across the 
voxels in each ROI. Each ROI time-series was then 
independently demeaned and divided by its standard deviation 
before further processing. 

Then, considering such ROI time-series gathered under two 
different fMRI modalities (e.g., resting state versus working 
memory task fMRI), we compute a regularized covariance 
matrix[15] per subject and condition and average then across 
subjects to obtain a unique covariance matrix per modality; 
these two average covariance matrices are then used to estimate 
their simultaneous diagonalization[5]. This results in a set of 
discriminative linear spatial filters that optimally separate the 
two initial modalities in terms of variance. We address the 
model order selection, i.e. the number of spatial filters selected 
for discrimination, using permutation testing. Briefly, we select 
the filters for which the difference of the variances across tasks 
rejects the hypothesis of their variances being equal for both 
tasks. This is achieved by building a null distribution by 
balanced permutating the data across conditions, and we used 
1000 permutations (see Appendix C). An important feature of 
the SPADE model is that connectivity changes can be 
summarized for each basis vector as a unique spatial map that 
provides a spatial weight for each ROI. This results in a 
straightforward interpretation of the relevant changes in 
connectivity. Since the simultaneous diagonalization assumes 
no implicit noise model, the estimated basis vectors cannot be 
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directly interpreted back to the brain, and the interpretable 
associated spatial maps are obtained using structural 
coefficients [13], [18]. Brief details are provided in Appendix 
B and for a more extensive explanation we refer the reader to 
[13]. Note that since for a proper spatial interpretation the 
source model is estimated from the selected relevant filters [13], 
the model order selection we introduce here is of relevance to 
obtain a proper interpretation of the resulting spatial filters.  

For the remainder of the paper we will denote the full process 
involving spatial dimensionality reduction of two fMRI data 
modalities, spatial covariance regularization, simultaneous 
diagonalization, model order estimation by permutation testing, 
and estimation of the associated interpretable spatial maps [13] 
as SPADE. To facilitate the end use application of these tools 
to the community, a toolbox providing full automatized 
estimation will be made publicly available through Git-Hub 
upon publication. 

C. Evaluations 
We use the resting state (RS), motor task (MT) and working 

memory task (WM) fMRI data from the HCP sample and apply 
the introduced SPADE methodology to find brain connectivity 
differences between each pair of fMRI modalities 
independently: RS vs MT, RS vs WM and MT vs WM. To 
quantify the quality of the learned filters we perform a 
discriminative analysis to distinguish between fMRI modalities 
using a ten-fold cross validation approach for each of the three 
scenarios (RS vs MT, RS vs WM and MT vs WM) 
independently. At each fold, SPADE discriminative filters are 
learned from the covariance matrices of the two selected 
modalities using data from 90% of the subjects and the number 
of filters is selected using permutation testing. Then we 
compute the projection of these subjects’ data into the newly 
learned basis, compute the logarithmic variance of the resulting 
time-series as features, and use them to train a Linear 
Discriminant Analysis (LDA) classifier [20] to distinguish 
between the two included modalities (e.g. RS vs MT). The 
filters are then used to project the remaining unseen data (~10% 
subjects) and extract the log-variance of these projections as 
features to test the LDA classifier quality. Each classifier is 
evaluated using the accuracy, i.e. the percentage of correctly 
classified samples, and we report statistics across folds. We 
then test the significance of mean classification performance 
against a null distribution built from accuracy values obtained 
from SPADE analyses where the labels where evenly mixed 
across samples (1000 randomizations).  For comparison we also 
evaluate the results obtained using a linear support vector 
machine (SVM) [21] classifier in the full covariance space, i.e. 
feature space of dimension (165*166)/2= 13695. To conclude 
the analyses of these full samples we visually evaluate the 
spatial extent of the SPADE linear filters using structural 
coefficients for visualization and interpretation of the 
associated spatial maps [13], [18].  

Then, we consider the effect of a reduced number of subjects 
and temporal observations in the performance of the model. For 
each considered number of subjects (N) and time-points (T), we 
performed 1000 different bootstraps using the SPADE 
analyses, where at each realization a subset of N subjects was 
selected randomly and the temporal down-sampling was 
performed by selecting T equally temporally spaced samples 

from the full original fMRI time-series i.e. simulating higher 
TR acquisitions. The performance of the model at these 
scenarios was assessed using classification performance and 
spatial reproducibility. To evaluate the spatial reproducibility 
of the results we first compute the correlation between the 
spatial maps obtained in the original decomposition and the 
ones obtained at each bootstrap. We then estimate the 
probability of each map being significantly recovered by 
computing the percentage of bootstraps for which the 
correlation value rejects the hypothesis of not being correlated 
at a given significance level i.e. testing against a null 
distribution build from the off-diagonal terms of the correlation 
matrices across bootstraps.  

  In addition, we perform a secondary evaluation where we 
apply the SPADE model to a scenario previously studied using 
a GLM analysis. Using the WM task data from the HCP sample, 
we compared the 0-back memory task periods to the 2-back 
memory task periods using the SPADE approach. As with the 
previous evaluations, in this case we also test the discrimination 
power using 10-fold cross-validation and report the group 
spatial maps associated to the top four spatial maps for 
comparison to the results presented in [22].  

III. RESULTS 
To illustrate the discriminative performance of the SPADE 

methodology, Fig. 1 presents two-dimensional representations 
of fMRI data obtained using the SPADE model.  

 

 
Fig. 1: Two-dimensional fMRI data representations obtained using 

SPADE. The columns represent three different comparisons, MT vs RS, 
WM vs RS and WM vs MT task fMRI respectively. In the first row we 
present the logarithmic variance of the training fMRI data projected onto 
the first and last SPADE filters learned to discriminate each pair of fMRI 
modalities as indicated in the figure legends. Dots represent subjects 
and blue and black color encode the two different fMRI tasks considered 
on each scenario. In all three cases we can see that the training set is 
correctly separated in two visually distinguishable sets. In the second 
row we represent the learned two-dimensional training feature 
distributions presented in the first row as two Gaussian densities, and 
visualize the logarithmic variance of the testing fMRI data projections 
into the new basis as color coded diamonds. Appreciate the 
generalization ability of the SPADE model that provides an optimal two-
dimensional classification space.  
 

A) Trained models

B) Models generalization

First filter (#1)                            First filter (#1)                            First filter (#1) 

L
a
s
t 

fi
lt

e
r 

(#
1
6
5
) 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
 L

a
s
t 

fi
lt

e
r 

(#
1
6
5
)

RS vs MT                                  RS vs WM                                MT vs WM

RS vs MT                                  RS vs WM                                MT vs WM

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2020. ; https://doi.org/10.1101/746891doi: bioRxiv preprint 

https://doi.org/10.1101/746891
http://creativecommons.org/licenses/by-nc-nd/4.0/


For each comparison between two fMRI modalities, we 
visualized one random fold from the ten-fold-cross-validation 
used to evaluate discrimination and divide the data into training 
and testing datasets. Note that by construction, the first and the 
last SPADE filters maximize variance for one class while 
minimizing it for the other one. Consequently, the 
discriminative power of the algorithm usually comes from the 
combination of pairs of filters at both extremes of the eigen-
spectrum. In the first row we can appreciate, for each of the 
three comparisons, a very clear two-dimensional separation 
between the training features obtained by combining the two 
extreme SPADE filters. The second row clearly shows the 
generalization ability of the SPADE model on the test-set data. 
We observed that in all cases the classification using uniquely 
one pair of filters (two-dimensional feature space) is very high, 
with a mean value above 99%; exact statistics are provided in 
the second column of Table 1.  

 
 SPADE 

2D     
accuracy 

 

SPADE 
Selected 
filters 

SPADE 
accuracy 

 

SVM 
accuracy 

RT vs MT 98.64% 
(0.95) % 

1-6 
155-165 

99.3% 
 (2*10-3) % 

98.9% 
(0.37) % 

RT vs WM 99.34% 
(0.33) % 

1-2 
152-165 

99.77% 
 (6*10-5) 

99.8 % 
(0.40) % 

WM vs MT 99.76% 
(0.46) % 

1-4 
153-165 

99.63% 
 (2*10-4) % 

99.58% 
(0.35) % 

mean 99.24% 
(0.58) % 

 99.56% 
(1.3*10-3) % 

99.42% 
(0.37) % 

Table 1: Summary results of the SPADE analyses. The second row 
presents the classification accuracy results when comparing resting 
state (RT) with motor task (MT) fMRI, the third row shows RT with 
working memory (WM) task fMRI, and the forth row compares WM and 
MT fMRI. The fifth row shows the mean results across the three 
comparisons. The second column (SPADE 2-D) presents the 
classification results (mean and standard deviation) when discriminating 
each pair of fMRI modalities using a SPADE two-dimensional projection 
of the data. The column ‘SPADE selected filters’ shows the eigen-
spectrum location of the filters selected by the model order selection. 
The column ‘SPADE accuracy’ shows the classification results obtained 
using the model order selection and the column ‘SVM accuracy’ shows 
the results obtained using a SVM in full covariance space (i.e. feature 
space of dimension (165*166)/2= 13695). 

We then applied the proposed model order selection via 
permutation testing and selected filters at significance 
Bonferroni corrected level (p<0.05/165 = 3.3x10^-4, see 
Appendix C). Although in practice the dimensionality was 
computed on each fold independently, for illustration we 
provide the exact set of filters selected when using the full 
sample at each comparison in Table 1 column ‘SPADE selected 
filters’. On each of the three comparisons the classification 
performance obtained using SPADE at the dimensionality 
selected using the permutation testing strategy is presented in 
Table 1 column ‘SPADE accuracy’. In all cases, SPADE 
classification performance was significantly better than random 
(permutation p<10-3). For comparison, we also provide the 
classification results obtained using an SVM in the full 
covariance space in the last column of Table 1. Although the 
mean improvement with respect to the two-dimensional 
scenario or the SVM is relatively small, the advantage of using 
model order selection for discrimination is most notable in the 
reduced standard deviation of the results across folds. These 

results highlight that the top filters are the most relevant for 
discrimination but using the model order selection generalizes 
better across folds. Further, the comparison with the SVM 
provides remarkable results, especially in light of the reduced 
dimension in which SPADE classification is performed and the 
linear nature of the SPADE filters that allow for a 
straightforward spatial interpretation. 

To evaluate the spatial distributions of the filters associated to 
the discriminative results reported, Fig. 2 summarizes the 
spatial maps obtained in all three comparisons. Since each fold 
provides slightly different discriminative filters, for visual 
validation we performed SPADE analyses including all subjects 
in the learning phase. The obtained spatial filters were then 
transformed into interpretable spatial maps [13], [18].  

 

 
Fig. 2: A) Resting state vs. motor task. B) Resting state vs. working 

memory task. C) Working memory vs. motor task fMRI. For each of the 
three scenarios we present a summary of the spatial maps associated 
with the discriminative spatial filters. On the left side we present filters 1 
and 2, which maximize variance for A) motor, B) memory and C) 
memory. On the right side we present filters 165 and 164, which 
maximize variance for A) resting state, B) resting state and C) motor 
task. For visualization the value of the maps is converted to pseudo-z-
statistics and thresholded at Z=1.6.  

 
When looking at differences between resting state and motor 

task [23], in Fig. 2 A) we observe that areas synchronizing to 
maximize variance for the motor task (left side, filters 1 and 2) 
involve bilateral supplementary motor cortex, caudate and 
operculum in the first filter, while primary motor cortex and 
contralateral cerebellar cortex involvement is present in the 
second filter. Areas identified by these filters are well known to 
be related to motor preparation, execution and control [24], 
[25]. On the other side of the spectrum (right side, filters 164 
and 165) we find the filters maximizing variance for resting 
state data while minimizing it for motor task data. The last filter 
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(#165) involves sensory motor cortex, bilateral dorso-lateral 
PFC (attention network), cerebellum and several temporal areas 
including the temporal gyrus and temporal pole. On the other 
side, the penultimate filter (#164) resembles the default mode 
network (DMN), anterior cingulate cortex and thalamus. 

When looking at the differences between resting state and 
working memory task, in Fig. 2 B) we observe that the areas 
synchronizing to maximize variance for the working memory 
task in the first filter involve areas well known to working 
memory performance [26], [27] as visual and precuneus area, 
similar to the dorsal pathway, and temporal-occipital areas, as 
present in the ventral pathway [28], [29]. Filter number two 
involves areas similar to number one but includes bilateral 
hippocampus and thalamus and more temporal areas. On the 
other side of the eigen-spectrum, we find that the last filter 
(#165) involves the anterior cingulate cortex, cerebellum, 
frontal pole, thalamus, middle temporal gyrus and temporal 
pole, frontal opercula. Further, the penultimate filter (#164) 
involves again the DMN and the thalamus. We observe that the 
filters relating to increased variance during rest (Fig. 2A and 
2B) are in both cases informing about a stronger involvement 
of default mode network (DMN) related areas during the resting 
state and are extremely similar in both independent analyses 
(Fig. 2 A and B right sides), showing the consistency of the 
SPADE algorithm.  

When looking at the differences between working memory 
and motor task (Fig. 2 C), we observe that the spatial maps 
obtained are also very closely related to the ones that 
differentiated the tasks from the resting state; in particular, 
filters maximizing for WM (Fig. 2 C, filters 1 and 2) resemble 
the ones maximizing variance for WM with respect to resting 
state (Fig. 2 B filters 1 and 2); and filters maximizing variance 
for MT (Fig. 2 C, filters 164 and 165) exhibit a similar spatial 
distribution to the ones maximizing variance for MT with 
respect to resting state (Fig. 2 A filters 1 and 2). These results 
show that the filters extracted for each modality involve areas 
well known to be required for the particular task performed and 
are highly specific since they can be obtained independently of 
the other covariance structure considered. 
 

We then consider the behavior of the model as a function of 
the number of subjects and of fMRI time points. For each of the 
three considered comparisons, Fig. 3 presents the mean and 
standard deviation (top and bottom rows respectively) of the 
classification performance results as a function of the number 
of subjects and of fMRI time points included, (see section 
Methods for details). In general, all the classification 
performances above 60 % where found significant at the 
granularity level (permutation p<10-3). Clearly more subjects 
and longer scanning sessions provide stronger discriminability 
as shown by a higher accuracy and a lower standard deviation 
in these numerical experiments. However, we appreciate that in 
all cases above 100 subjects and a reasonable amount of time 
points (350 as a reference) are enough to reach close to optimal 
performance and a low standard deviation. Using 50 subjects 
still provides high accuracy in most cases but at a very high 
standard deviation cost. Dropping the number of subjects to 20 
or less clearly decreases the model performance even when 
considering a high temporal sampling. 

 
Fig. 3: Top row presents the mean classification performance for the 

three comparisons indicated on each figure title, each as a function of 
the number of fMRI time samples (y-axis) and the number of subjects 
(x-axis). The bottom row shows the standard deviation around the 
classification accuracy presented in the top row.   

The numerical results presented in Fig. 3 are of interest when 
the goal of a study is to discriminate between two groups. 
However, our main aim is to develop models to learn about the 
hidden brain sources that drive observed changes on brain 
functional connectivity as a function of cognitive changes, and 
consequently, we are required to address the reproducibility of 
the spatial maps obtained through SPADE. For space constrains 
we present detailed results only for the RS vs MT case; the 
results for the other two scenarios, RS vs WM and MT vs WM 
were quantitatively but not qualitatively different. Fig. 4 shows 
the mean correlation matrices between the significant spatial 
maps obtained in the full sample (N=1063) and the spatial maps 
obtained for the number of subjects indicated on each subfigure 
title (N) and the number of time-points indicated in the y-axis 
(T) (see Methods).  The standard deviations around these mean 
values are shown in Appendix D, Fig. A1. The size of these 
matrices equals the number of significant selected filters 
indicated in Table 1 since all the analyses were performed at the 
same dimensionality than the full analyses (see Table 1). 
Further, the obtained maps at each subsample were not 
reordered to match the original order. 

 
Fig. 4: SPADE spatial maps reproducibility for RT vs MT. Each 

subfigure shows the mean correlation matrix between the significant 
spatial maps using the full sample (x-axis, N=1063) and the ones 
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obtained for N and T as indicated on each row and column (y-axis). The 
mean is computed over 100 random selections of subjects (see Methods 
section for details). The size of each correlation matrix equals the 
number of significant selected filters as indicated in Table 1 and, are 
accordingly ordered. In this way, the top left and bottom right corners of 
each subfigure relate to the spatial reproducibility of the most important 
filters, the first (#1) and the last one (#165) respectively. 

 
For each subfigure, an identity matrix would represent perfect 

reproduction of all selected spatial maps and consequently, it 
becomes clear that as with the classification performance, the 
reproducibility also increases stronger with higher number of 
subjects than with longer scanning sessions.  The top left and 
bottom right corners of each subfigure relate to the spatial 
reproducibility of the two most discriminative spatial maps, the 
associated to the first and the last filters. We observe that these 
two spatial maps start to be reproduced relatively well in 
expectation with N=50 subjects at relatively short scanning 
sessions, and that in general it seems to be easier to recover 
maps in the top of the eigen-spectrum. However, since it is 
difficult to draw conclusions from such representation, in Fig. 
5 we show for each N and T, the probability of each spatial map 
being successfully reproduced (y-axis), at different significance 
levels (x-axis) (see Methods for details). For visualization the 
results are shown explicitly for the first, second, penultimate 
and last spatial maps (1, 2, 164, 165), and for all other spatial 
maps/filters we show the mean and standard deviation of a) all 
other significant maps (green coded) and b) all non-significant 
maps (orange coded). 

 
Fig. 5: Probability of obtained spatial maps being significantly 

reproduced (y-axis) at a given significance level (x-axis), for each N and 
T. Black and blue lines encode the top four strongest filters as indicated 
in the figure legend. Colored areas encode the mean and standard 
deviation obtained across the significantly selected maps (green) and 
the non-selected filters (orange). 

This representation shows that we are able to recover the first 
and last filters with 50 subjects, but also that the last filter is not 
reproduced with probability 1, even at (uncorrected) p < 0.01. 
Further, we observe that reproducing the penultimate filter 
required at least 100 subjects. When considering the 
reproducibility of the other significant maps (green coded), we 
see that an accurate reproduction is achieved at N=500. It is to 
note that at N=500, and even at N=1000, the remaining non-

significant filters (orange coded) are poorly reproduced, 
reflecting the heterogeneity of the non-tasks discriminative data 
sources across subjects, and remarking the reproducibility of 
the task related selected components. Altogether, these results 
show that the spatial reproducibility of the results obtained 
when using this model is dependent on the set of filters to 
report. As a reference, when requiring simply the two extremer 
maps (first and last), a set of N=50 subjects would be sufficient. 
However, we would need around 100 subjects to interpret or 
include in further analyses the four strongest maps,  

and around 500 subjects to recover fully the set of significant 
spatial maps. Further, although there is a preference for longer 
scanning sessions, scans around 350 timepoints seemed to 
provide reasonable spatial reproducibility associations. 

In addition to the previously described comparisons, we 
performed another validation of the model by considering an 
analysis where we use the WM task fMRI data and compare the 
2-back working memory task periods to the 0-back working 
memory task ones. For each of these two different memory 
loading tasks there is a total of 330 time points of task 
‘activation’ acquired, which according to Fig. 1, it is at the low 
side in temporal sampling, but it is sufficient given the HCP 
sample size to successfully use SPADE in this context. A 
common approach to this type of data is a traditional example 
of task fMRI data analysis where conditions are compared by 
means of a GLM analysis, and the results of such analyses in 
this same dataset have been previously reported in [22]. In this 
study, increased activation in the lateral-prefrontal and dorsal 
parietal cortex was associated with 2-back vs. 0-back working 
memory task differences. Table 2 shows the classification of the 
10-fold cross validation results we obtained for discrimination 
of the 0-back and the 2-back working memory tasks. In all cases 
the classification performance was significantly better than 
random (permutation p<10-3). We appreciate that a two-
dimensional SPADE projection already provides a very high 
accuracy to identify which level of memory loading the task 
requires (2nd column) at the single subject level. Such low 
dimensional representation already provides higher 
discrimination than the obtained using an SVM in full 
covariance space (5th column). Further, in this scenario the two 
main filters provide a discrimination accuracy very close to the 
one obtained using all selected discriminant filters (3rd and 4th 
columns).  

 
 SPADE 

2D 
accuracy 

 

SPADE 
Selected 
filters 

SPADE 
accuracy 

 

SVM 
accuracy 

0 vs 2-back 93.9 %  
(0.016) % 

1-10   
163-165 

94.4 % 
(0.015) % 

91.3 % 
(0.018) % 

Table 2: Summary results of the SPADE analyses in 2-back vs. 0-back 
working memory. The second column (SPADE 2-D) presents the 
classification results when discriminating each pair of fMRI modalities 
using a SPADE two-dimensional projection of the data. The column 
‘SPADE selected filters’ shows the eigen-spectrum location of the filters 
selected by the model order selection. The column ‘SPADE accuracy’ 
shows the classification results obtained using the model order selection 
and the column ‘SVM accuracy’ shows the results obtained using an 
SVM in full covariance space (i.e. feature space of dimension 
(165*166)/2= 13695). 
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In Fig. 6 we present a summary of the spatial maps learned 
using the SPADE model. The filter providing the most variance 
for the 2-back task, i.e. filter 1, involves left thalamus 

and hippocampus, bilateral putamen and caudate, temporal 
pole and language areas. The next filter providing most 
variance for the 2-back task, i.e. filter 2, involves left thalamus, 
bilateral hippocampus, brainstem, cingulate and paracingulate 
gyrus, bilateral inferior frontal gyrus and left inferior temporal 
gyrus. On the other side of the eigen-spectrum, the filter 
maximizing variance for the 0-back task, i.e. filter 165, involves 
brainstem, cingulate gyrus, left thalamus, frontal pole and 
temporal gyrus and the next strongest filter for the 0-back task, 
i.e. filter 164, includes bilateral thalamus, brainstem, cingulate 
gyrus, frontal pole and motor cortex. Summarizing, the 
networks identified for the 2-back task involve areas purely 
related to working memory task while the 0-back task involves 
areas more related to the attention and salience network. This 
clearly reflects that the 2-back task involves stronger memory 
processing than the 0-back case which involves sustained 
attention.   In general these presented results show some overlap 
with [23]. More specifically, some areas of filters 1 and 2 are 
present in both analyses. However, SPADE also reveals 
additional discriminative areas not found by the direct 
univariate analysis, including for example the striatum or the 
superior frontal gyrus. 

 

 
Fig. 6: Spatial maps obtained using SPADE to compare the 2-back 

against the 0-back working memory fMRI data. Left side: filters 1 and 2 
are the filters maximizing variance for the 2-back memory task. Right 
side: filters 164 and 165 are the ones maximizing variance for 0-back 
memory task. 

IV. DISCUSSION 
In this work we optimize and provide the tools to achieve 

optimal supervised linear filtering of fMRI data using the 
simultaneous diagonalization of covariance matrices [5], [6].  

Although performing full brain voxel-wise analyses would be 
optimal, the high spatial resolution and correlation of fMRI data 
makes it computationally and technically challenging, and at 
the current state of development, an initial spatial 
dimensionality reduction is still required. Although different 
initial spatial dimensionality reductions are possible, including 
a parcellated full brain [14], [30], a resting state network space 
[3] or voxel-wise restricted to an anatomical ROI, here we use 
a full brain functional atlas parcellation [14] for ease of spatial 
validation of the results. We use regularized versions of the 
covariance matrices [15] and  introduce a novel permutation 
strategy for model order estimation, i.e. how many spatial filters 
to select. Considering the estimated model order, the 
discriminatory generalization of the model is evaluated using 
cross-validation, it is tested for significance using permutation 
testing, and the associated interpretable spatial maps are 

obtained using structural coefficients [13]. We denote the fully 
developed pipeline as Spatial Patterns for Discriminative 
Estimation (SPADE, https://github.com/allera/SPADE ).  

We validated the use of this automated pipeline by using the 
high-quality HCP data from 1063 subjects. The analyses 
showed SPADE providing close to perfect low dimensional 
discrimination between representative fMRI experiments, and 
highlighted the straightforward interpretability of the model, 
with the obtained linear maps relating to connectivity between 
anatomical areas well known to be involved on each considered 
fMRI task. We also showed that accurate classification can be 
achieved also using (for example) an SVM in a high-
dimensional space (full covariance space).  
However, the power of the presented model is the 
intuitive interpretation of the results that are summarized 
as a small set of spatial maps, each relating to a 
discriminative brain ‘sub-networks’, that can be used to 
further develop our understanding of brain function, 
directly or through its introduction in posterior analyses. 
This is certainly a big advantage with respect to 
discrimination in full covariance/correlation/partial 
correlation space where the interacting factors between 
different spatial nodes make the interpretation more 
difficult. As a note of advice, SPADE is not intended to 
replace classifiers on covariance-like feature spaces 
extracted from fMRI time-series; most probably, when 
not being able to achieve significant classification 
performance on covariance space when using some 
adequate and properly optimized classifier, SPADE will 
also not achieve significant discrimination. However, 
our experience suggests that if the classifier performs 
properly, then we probably will be able to learn more 
from the SPADE model than from the high dimensional 
classifier approach.  

Our analyses revealed further a strong specificity of the 
spatial distribution across the three considered fMRI modalities 
(rest, motor and working memory). Each of the discriminative 
spatial maps obtained through SPADE reflects brain areas well-
known to be relevant for a particular modality, reflecting for 
example that a stronger engagement of the DMN is recorded 
during rest than during task fMRI. In the working memory 
tasks, filters reveal independent effects for the ventral-dorsal 
pathways; the sensory integration is represented in one filter 
and the higher-order memory storage and utilization in another 
filter. Indeed, these two pathways start by sending sensory 
information to the parietal and temporal areas, characterizing 
spatial versus categorical features related to the items to 
memorize.  Both connect to the temporo-medial structure 
(TMS) via specific connectivity to the parahippocampus, 
enthorinal cortex, before converging on the hippocampus [31]. 
The TMS then connects through the temporal pole to the 
(prefrontal, pole) frontal and (anterior) cingulate to store and 
use the information. Regarding working memory, we observe 
the phonological loop with both Wernicke and Broca areas 
[32]–[34]. SPADE is extracting differentiating filters out of 
these networks, demonstrating the existence of independent 
dynamics that can be the subject of further studies.  
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We also presented extended analyses relating the 
discriminative generalization and the robustness of the learned 
spatial representations to the sample size and the fMRI temporal 
sampling. Although relatively high classification accuracy 
could be achieved using around 100 subjects, getting strongly 
reproducible all the significant spatial maps, required more than 
200 subjects, probably even closer to 500 subjects. However, 
more in line with the classification results, the reproducibility 
of the four most discriminative maps could be achieved already 
with 100 subjects. Further, we observed that the top side of the 
eigen-spectrum achieves higher spatial reproducibility with less 
data than the bottom side. Although such behavior was not 
observed in all cases, it could be partially induced through the 
non-symmetric roles of the group covariances in the 
simultaneous diagonalization algorithm, and alternatives to 
further improve the spatial reproducibility in this direction are 
focus of current research.  

To evaluate the performance of SPADE in a harder problem, 
we applied it to compare 2-back working memory from 0-back 
working memory task fMRI data. We were able to find the 
memory load of a subject with an accuracy higher than 94%. 
Further, the model showed that the 2-back task involves areas 
well known to be involved in working memory while the 0-back 
did not involve for example the hippocampus, but instead, the 
identified networks involved areas related to the salient and 
attention networks, as the frontal pole or the dorsal anterior 
cingulate gyrus. In comparing our results with those presented 
in [22], we note that our analysis point to connectivity changes 
between 2 and 0-back task at areas known to be involved in 
working memory tasks that were not clearly identified using the 
GLM approach in [22]. This is not a surprising result since both 
analyses are looking at different statistics in the data; while [22] 
reports changes in the mean fMRI signal across conditions 
through a GLM analyses, the findings we report using SPADE 
refer to changes in covariation between brain areas. 
Consequently, although the results are different, the analysis we 
present here and that in [22] are not exclusive but rather 
complementary, with both having their advantages and 
limitations. One of our research directions considers the 
development of SPADE towards single subject statistical 
spatial maps and voxel-wise representations, that could allow 
in the future its use to complement traditional GLM analyses at 
the first and second level.  

Further, since the simultaneous diagonalization introduced 
by [5] can be used for any pair of symmetric positive definite 
matrices, and given the growing neuroimaging interest in 
working with partial correlation matrices, we have also 
explored the extension of the SPADE algorithm to partial 
correlation matrices and observe that it did not improve in 
discrimination with respect to the original formulation. 

Nevertheless, we believe that such an approach warrants more 
thorough investigation in cases where the initial spatial 
dimensionality reduction results in more highly correlated data, 
for example when using a small spatially continuous ROI. The 
model is also very flexible in that it allows its implementation 
for different goals than direct discrimination, and it can for 
example be used to remove site-related variance from multi-site 
fMRI cohorts. Other research directions we are investigating for 
this model include the study of subject-wise deviation from 

group functional connectivity as a strategy to address normative 
modelling [35] on discriminative functional connectomes, as 
well as extensions to multi-class versions [36]. As an alternative 
to SPADE one could consider supervised non-linear 
dimensionality reduction models as the popular t-SNE [37], 
however, such models come with a loss of interpretation price.  

 
To conclude, the SPADE model is able to capture and 

summarize the brain nodes involved in network covariation 
changes induced by fMRI experimental manipulation. As 
introduced here, the SPADE model can be used to further 
develop robust tools as well as to address questions of potential 
interest to diverse scientific and industrial communities. 

APPENDIX  
A. Discriminative covariances diagonalization.  

Consider two sets of time-series, 𝑋 and 𝑌, measured at the 
same spatial locations during two different states of the system 
being measured, and define the spatial covariance matrices of 
each of these series as 𝐶$ and 𝐶%. Usually, the unsupervised 
simultaneous diagonalization of both covariances is achieved 
through a generalized eigenvalue decomposition, involving a 
whitening transformation of one of the covariance structures 
(e.g. 𝐶$), combined with a further rotation to also diagonalize 
the other covariance (𝐶%). A different approach was introduced 
in [5] where the whitening transformation is performed with 
respect to the sum of both covariances 𝐶 ≔ 𝐶$ + 𝐶%; such 
whitening can be summarized by two matrices, a rotation 𝑊 
and a scaling diagonal matrix 𝑃, such that 𝐼 = 𝑃,𝑊,𝐶𝑊𝑃. 
Individually applying these transformations to 𝐶$ and 𝐶%, one 
obtains two (non-diagonal) matrices 𝐾$ = 𝑃,𝑊,𝐶.𝑊𝑃 and  
𝐾/ = 𝑃,𝑊,𝐶/𝑊𝑃. Performing now the eigenvalue 
decomposition of (for example) 𝐾/ we obtain matrices 𝑍/ and 
diagonal 𝐷/ such that 𝑍/𝐾/𝑍/,			 = 𝐷/. Defining 𝑉 ≔ 𝑊𝑃𝑍/, 
we have that 𝑉,𝐶.𝑉 = 𝐼 − 𝐷/ and 𝑉,𝐶/𝑉 = 𝐷/. This means 
that 𝑉 defines a basis for the data that diagonalizes 
simultaneously 𝐶.  and 𝐶/ and, and by construction, the sum of 
the variances of the projections of data 𝑋 and 𝑌 into each of the 
new basis vectors adds to one; consequently, for basis 
directions where the projection of 𝑋 has large variance (i.e. 
close to one), the projection of 𝑌 must have low variance (i.e. 
close to zero), and vice versa. The algorithmic imposition to 
maximize variance for one class and minimize it for the other 
one, makes of this process a supervised multivariate 
dimensionality reduction model, and the new learned basis is 
formed of spatial filters that provide optimal linear 
discrimination in terms of variance of the projected data  [12]. 
Note that for implementation purposes it all reduces to solving 
a generalized eigenvalue problem which can be easily 
accomplished using most software platforms, for example using 
the matlab command  𝑒𝑖𝑔(𝐶., 𝐶) or the python command 
𝑠𝑐𝑖𝑝𝑦. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑒𝑖𝑔ℎ(𝐶., 𝐶, 𝑒𝑖𝑔𝑣𝑎𝑙𝑠_𝑜𝑛𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒).  In the 
recent literature, the process described in [5] is commonly used 
as a feature extractor for EEG based brain computer interfaces 
[11], [12] and the features extracted for discrimination are 
usually the logarithmic of the variance of the projected data; by 
construction of the algorithm the most discriminative 
dimensions are the associated with the extreme eigenvectors 
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since towards the center of the eigen-spectrum the variances for 
both conditions tend to be close to 1/2. In practice, for 
discrimination purposes the dimension is usually reduced to a 
few pairs of extreme eigenvectors and a low dimensional linear 
classifier suffices [12]. 

 
B. Interpretation of the linear filters 

 
Since the simultaneous diagonalization assumes no implicit 

noise model, the spatial filters learned, i.e. the columns of 𝑉	 
(𝑉K) cannot be directly interpreted and the interpretable spatial 
maps (𝐴M) are obtained from 𝐴 = 𝐶X|YVCS

-1 [13], [18], where 
𝑋|𝑌 denotes the spatially concatenated 𝑋 and 𝑌 data, and 𝑆 the 
data projected to the new basis 𝑉, i.e. 𝑆 = 𝑉,(𝑋|𝑌). For 
completeness we note here that 𝑋|𝑌 = 𝐴𝑆 + 𝑒, where 𝑒 denotes 
the residual of the approximation 𝑋|𝑌 = 𝐴𝑆 and for a more 
detailed description we refer the reader to [13], [18]. 

 
C. Model order estimation 

 
Although for classification purposes the SPADE model order 

selection is not critical due to the latter integration of a 
classifier, for interpretation purposes we are required to select 
which filters provide significant connectivity covariation 
information. To that end we address for the first time the model 
order estimation on this model by permutation testing to find a 
robust estimation of which filters explain more variance for a 
modality than for the other one, with respect to a null 
distribution obtained by permutation.   

To that end a p-value is computed for each basis vector 
(column of 𝑉, 𝑉K) by comparing the absolute difference 
between the variances of the class-wise data projections, 
𝑎𝑏𝑠(	𝑣𝑎𝑟(𝑉K,	𝑋) − 	𝑣𝑎𝑟(𝑉M,	𝑌)), with a distribution of such 
values obtained when the simultaneous diagonalization basis 
(V) is computed using randomized groups of covariances. In the 
dataset set used in the main text the randomization is performed 
1000 times and it is achieved by permuting half of the subject’s 
covariance matrices across different fMRI modalities. We 
consider a filter significant at a Bonferroni corrected level 
p<0.05/165. 

 
D. On the spatial reproducibility  

 
Fig. A1 shows the standard deviation of the correlation 

matrices values presented in Fig. 4. We observe that the 
standard deviation of all elements in general, and of the 
diagonal elements in particular decreases with a bigger sample 
size.   

 
Fig. A1: Standard deviation of SPADE spatial maps reproducibility for 

RT vs MT. Each subfigure shows the element wise standard deviation 
around the correspondent mean correlation shown in Fig. 4.  The 
standard deviation is computed over 1000 bootstraps (see Methods 
section for details). 
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