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Abstract

Both natural and engineered networks are often modular. Whether a network node interacts with only
nodes from its own module or nodes from multiple modules provides insight into its functional role.
The participation coefficient (PC') is typically used to measure this attribute although its value also
depends on the size of the module it belongs to, often leading to non-intuitive identification of highly
connected nodes. Here, we develop a normalized PC' that overcomes the module size bias associated
with the conventional PC. Using brain, C.elegans, airport and simulated networks, we show that
our measure of participation alleviates the module size bias, while preserving conceptual and mathe-
matical properties, of the classic formulation of PC. Unlike the conventional PC', we identify London
and New York as high participators in the air traffic network and demonstrate stronger associations
with working memory in human brain networks, yielding new insights into nodal participation across
network modules.

Introduction

Many natural and engineered networks are modular [1-3]. Networks that are highly modular can be
partitioned into communities of nodes, or modules, such that the density of connections is greater
between the nodes within modules, relative to the density between nodes in different modules. Some
nodes have connections that are distributed across many modules, whereas others are only connected
with other nodes in their own module. This distinction can provide important insight into a node’s
functional role in a modular architecture.

A node’s inter-modular connectivity is typically quantified with the participation coefficient (PC')
[4]. PC provides insights into how specific nodes communicate between modules in a range of real-world
networks, including air traffic and brain networks [5-13|. To compute a node’s PC, the proportion of
a node’s connections to each module is first determined, yielding a proportion for each module. These
proportions are then squared, summed across all modules and the resulting summand is subtracted
from one to yield the node’s PC. PC' of zero indicates a node that only connects with other nodes
in its own module, whereas nodes with connections that are uniformly distributed across all modules
have PC that approaches one.

PC tacitly assumes that all modules in a network are equally sized. This is, however, rarely the
case in real-world networks. PC'is consequently susceptible to a bias wherein nodes in small modules
often have high PC' and nodes in large modules often have low PC [14]. This bias is exemplified in
the two networks shown in Fig. 1, where node 7 in network B, by the virtue of belonging to a larger
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A toy network example of PC’s module size bias
A) PCi = 0.67 B) PC; = 0.59

. Module 1 . Module 2 ‘ Module 3

Figure 1: Toy network examples of PC’s module size bias: Node i has identical intermodule connectivity in
network A and B, but it has lower PC; in network B as it belongs to a larger blue module than network A.

module, has a lower PC than node i in network A, even though node i has the same inter-modular
connectivity in both networks. We refer to this as the module size bias of PC, which we show can
yield biased inference about a node’s participation.

The module size bias of PC was first highlighted by Klimm and others [14]. These authors
proposed a dispersion index as an alternative to PC. In this paper, we propose a modification of
the original PC' measure rather than constructing a new measure of network integration. Our aim
is to reduce the module size bias of PC while retaining the underlying mathematical assumptions,
and numerical range, of the original PC measure. To achieve this, we developed a normalized PC
in which a node’s participation is benchmarked to an ensemble of random networks matched in node
degree and connection density [15]. Our normalized participation coefficient (PChorm) accounts for
the (intra-modular) connectivity expected by chance, given the size of network modules. To validate
PCorm, we used three real-world networks: i) undirected functional MRI (fMRI) brain network data
with 100 brain regions from 1003 healthy adults (ages 22-35) participating in the Human Connectome
Project [16]; ii) a single directed neural network from the C.elegans nematode containing a total of
277 neurons [17,18]; and iii) a single directed flight network with 500 airports [19], as well as simulated
networks [4].

Firstly, simulations were undertaken to test the hypothesis that PC)opm preserves the network
features and numerical range of PC, in networks where all modules were equally sized. We then
hypothesized that PC), would reduce the module size bias inherent to PC' in real-world networks
across a range of spatial resolution parameters and network density thresholds. In addition to our
main hypotheses, we assessed nodal traits of PCjumm, to evaluate their relevance in neurobiological
and air-traffic systems. We also investigated whether PC,, o, measured in fMRI networks associated
with behavior more strongly than PC. Together, our results demonstrate a simple refinement of PC
that retains the interpretation of PC' in real-world networks but alleviates the module size bias. Unlike
the conventional PC, we identify London (LHR) and New York (JFK), among other airports, as high
participators in the air traffic network, and demonstrate stronger associations with working memory
in human brain networks. We hope PCj,om Wil lead to a more reliable estimation of nodal integration
in complex networks.
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Results

Normalized participation coefficient (PC,,,,)

The participation coefficient (PC) measures whether a node interacts with only nodes from its own
module or nodes from multiple modules [4]. Formally, PC of node i is given by,

PCi=1-Y <k]im))2 (1)

meM

where M is the set of network modules, k;(m) is the degree between node 7 and all nodes in module
m and k; is the degree between node ¢ and all other nodes in the entire network. A node with PC
of zero only interacts with nodes comprising its own module, while nodes with connections uniformly
distributed across all modules have a PC' that approaches one. As demonstrated below and discussed
elsewhere [14], PC is limited by an inherent module size bias, which may lead to inaccurate inference
in networks with modules that vary in size.

To alleviate the module size bias, we propose the normalized participation coefficient (PChorm ),

PCnormi —1- |B, Z (k‘z(m) _:i(m)r(znd>2' (2>

meM v

The key difference between PC and PC,,m of node i is subtraction of the normalization factor,
ki(m)rand, from k;(m). This normalization factor denotes the median intra-modular degree for node ¢
across randomized networks generated with an established network rewiring algorithm that preserves
connection density and node degree (i.e., k;). This also means that k; is the same for original and
randomized networks [15]. We found that 1000 network randomizations were adequate to return a
stable estimate of PCherm (see Supplementary Fig 1). In each randomized network, all edges were
rewired five times. We used the same underlying modular network structure (M) for original k;(m)
and random k;(m),qnq. To constrain the range of PCl,orm between 0 (low network integration) and 1
(high network integration), we add the multiplicative term By = 0.5, and we also calculate the square
root of the difference of participation between original and randomized networks.

PC and PC,,,,, are comparable in simulated networks without a module size bias

Firstly, we aimed to establish that our normalization process does not alter the conceptual basis
of the PC', or its mathematical properties and relationships with other topological attributes. To
discount this possibility, we implemented the network simulation described by Guimera and Amaral [4]
and verified that PC and PC,ym yielded comparable values in a network comprising equally-sized
modules. Specifically, we simulated binary networks with 100 nodes, and four equal-sized modules
(each containing 25 nodes). Given that the modules were equally sized, module size bias was absent
by design, and thus PC' and PC)orm should not markedly differ. We added connections either within
or between the different modules through a range of probabilities (0 to 1, in increments of 0.01), and
calculated PChorm (Fig. 2A), PC (Fig. 2B), PCporm minus PC (Fig. 2C) and modularity Q-score
(Fig. 2D), for all possible connectivity probability values.

Figure 2A and B suggest that PC0ryn and PC yield highly comparable estimates across a range
of simulated networks with equally sized modules. More specifically, the relationship between PCorm
and PC was strong across all simulated networks (Pearson’s » = 0.91). This suggests that PChorm
remains consistent with PC in networks with no module size bias, despite our algorithmic changes
to node participation. Our simulation additionally shows that PC,on values reside within the same
range as PC' (i.e., 0,1]), although PCorm tends to have higher values than PC (see Fig 2, 3 and
8). PChporm is also shows a more linearly inverse relationship between modularity and inter-module
connectivity than PC' (Fig. 2E-F). This phenomena was also outlined by Guimera and Amaral in their
seminal PC' paper |4], where the original PC algorithm may be unstable if a node has more than 50%
inter-modular connections. This suggests that PC,,.n may be an appropriate metric in networks with
numerous inter-modular connections.
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PCrorm and PC are comparable in simulated networks without a module size bias
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Figure 2: Simulations in networks without module size bias: Simulation results for PChorm and PC in
networks with equally sized modules, where the heat maps show that average PC across all nodes. (A) PCrorm across
probabilities of intra- (y-axis) and inter-module (z-axis) connectivity. (B) PC across probabilities of intra- (y-axis) and
inter-module (z-axis) connectivity. (C) PChorm minus PC across probabilities of intra- (y-axis) and inter-module (z-
axis) connectivity. (D) modularity (Q-score) across probabilities of intra- (y-axis) and inter-module (x-axis) connectivity.
(E) average modularity for PChrorm across inter-module (z-axis) connectivity. (F) average modularity for PC across
inter-module (z-axis) connectivity. This simulation suggests that PC)orm preserves the mathematical, and conceptual,
features of the original PC' measure.

PC,, ., reduces PC’s module size bias in real-world modular networks

Next, we aimed to test whether PC),., alleviates the module size bias of PC' and thus yields more
intuitive conclusions about the importance of single nodes in three real-world networks. Using a
Louvain modularity decomposition method with a spatial resolutions of v = 1 [21] (7 = 1 yields few
and large modules), we found that fMRI human brain networks had an average modularity Q-score
of 0.35 & 0.03 [SD]!, and an average of 3.52 & 0.63 [SD| modules, across 1003 healthy adults; the
C.elegans network had an average modularity Q-score of 0.42 + 0.01 [SD], and an average of 6.02
=+ 0.55 [SD] modules, across 1000 Louvain modularity iterations; the airport network had an average
modularity Q-score of 0.50 = 0.01 [SD| and an average of 4.01 £+ 0.05 [SD| modules, across 1000
Louvain modularity iterations (see Supplementary Fig. 3, for results across a range of « parameters).
This resulted in a total of 3003 networks for analysis, where we for each network calculated the average
PClorm and PC across all (non-zero) nodes in each module. In our main analysis we included 11 values
for the y-parameters (1 to 2, in increments of 0.1). This was done to verify that PC},opy, reduces PC’s
module size bias across several resolution parameters and module sizes.

To enable statistical inference between the two squared correlation coefficients of interest (corre-
lation value #1 = 12 between PC and module size; correlation value #2 = 72 between PChopm and
module size), we employed a bootstrapping approach using 10000 bootstrap samples with replace-
ment [22]. Here, we aimed to test the null hypothesis of equality in the two correlation coefficients.
For each sample, we computed squared correlation coefficients based on the pooled bootstrap samples
of participation (PCherm and PC) and module size, as well as its 95% confidence intervals (95% CI).

In line with our hypothesis, we found that the variance explained (r?) between the participation
coefficient and module size was substantially lower for PC,, .y, relative to PC, where a module’s size
was determined by the number of nodes it comprised. This indicates that PCqy alleviates the
module size bias of PC. We display correlation patterns between PCh o, PC and module size, in
Fig. 3, and we summarize the statistical differences between PC),ppm, PC and module size in Table 1.

1Q-scores range between 0 and 1 where values proximate to 1 indicate that the network is highly modular, with a
predominance of intra-modular connections.
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PCrorm reduces module size bias in real-world networks (7 =1)

A) fMRI network - 100 nodes B) C.elegans network — 277 nodes C) Airport network — 500 nodes
and 1003 subjects and 1000 iterations and 1000 iterations
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Figure 3: PCrorm reduces PC’s module size bias: Relationship between PC' and module size (top row), PCrorm
and module size (middle row), for v = 1 (few and large module). Each data point is the average participation of all
nodes within a module. Displayed are (A) 3357 modules (data points) across 1003 fMRI networks; (B) 6020 modules
(data points) across 1000 C.elegans networks and (C); 3998 modules (data points) across 1000 airport networks. The
scatter plots for the airport network appear sparser due to greater consistency across runs of the modular decomposition
algorithm, relative to the other networks (see Supplementary Fig. 2). The bottom row shows the mean difference
between PC, PCorm and module size for v between 1 and 2 in 0.1 increments. It is worth noting that PC’s module
size bias is reduced for high ~ values (y > 1.5), where networks have numerous small modules with less variation in size,
although v > 1.5 is rarely used in complex network analysis [20].

Given that connection density —i.e., the proportion of edges in a network— can markedly impact
a network’s modular architecture as well as other topological properties [23], we also confirmed that
PClorm reduces PC’s module size bias in fMRI networks, across multiple connection densities (Sup-
plementary Fig. 4). From now on, we report results associated with v = 1.

Node-wise features of PC,,,,, in real-world modular networks

Next, we investigated the distinct inferences and conclusions that can be reached about the role of
specific nodes when alleviating the module size bias. For this purpose, we subtracted average PC
from PChorm across 1003 fMRI network subjects, and 1000 modularity runs for C.elegans and airport
networks. In the next few paragraphs we have summarized node-wise results for fMRI, C.elegans
and airport networks. We have also provided a full set of node-wise results for PC), - and PC' in
Supplementary Table 1, 2 and 3, including z-score differences between these two measures. A z-score
was used to calculate the relative differences between PC, o and PC' because PCh o, tends to yield
higher values than PC' (Fig. 2 and 3). In Supplementary Fig. 5, we display the average modularity
structure for fMRI, C.elegans and airport networks.

In the brain, the largest difference between PC,r and PC' was observed in cerebellum subregions
crus I (z = 1.76), crus II (z-score = 1.56) and lobule VI (z-score = 1.42), but also in cortical areas such
as inferior parietal cortex (z-score = 1.31) and superior frontal gyrus (z = 1.12) (Fig. 4A), areas that
are known to connect to a variety of sub-networks in the brain [24|, and that subserve higher order
cognitive function [11]|. Brain regions with the highest PC),orm were cerebellum lobule VI (PClorm =
0.73), cerebellum crus I (PChorm = 0.72; PC' = 0.49), inferior parietal cortex (PChorm = 0.71; PC =
0.46), middle frontal gyrus (PChporm = 0.71; PC' = 0.50) and precuneus (PChopm = 0.70; PC' = 0.52)
(Supplementary Table 1).
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fMRI network: node-wise differences between PCnorm and PC

PCrorm minus PC
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Figure 4: Node-wise fMRI differences between PC,,,.» and PC: Displayed are the subtracted group-average PC
from PChorm in fIMRI networks (z-score). The largest difference between PChorm and PC was observed in cerebellum
subregions lobule VI, crus I and II, fronto-parietal and insular cortex.

For the C.elegans network, the greatest nodal differences between PCh o and PC' was observed
in the largest module of the nematode encompassing inhibitory GABAergic neurons involved in head
movement (RMDDL — z-score = 2.48; RICR — z-score = 2.35; RMDVL — z-score = 2.27; RMDDR —
z-score = 2.26; and RMDVR z-score = 2.23 — Fig 5 and Supplementary Table 2). These were not
the same subset of neurons with highest node participation. The strongest PChorm Was observed in
several interneurons, also located in the head of the nematode including AVER (PC),orm = 0.87; PC
= 0.75); AVAR (PChorm = 0.85; PC = 0.75); AVAL (PChorm = 0.84; PC = 0.75); AVBR (PChorm
= 0.83; PC = 0.74) and AVBL (PCyorm = 0.80; PC = 0.74), responsible for locomotor behavior,
which is an important function for the C.elegans nematode. These locomotor interneurons have been
found to be densely inter-connected across a range of sub-networks forming a selective ’rich-club’
responsible for a bulk of neural signalling in the nervous system of the C.elegans nematode [13, 25—
27]. See https://www.wormatlas.org/neurons/Individual%20Neurons/Neuronframeset.html, for full
naming, definition and function of specific C.elegans neurons.

In the airport network, the greatest difference between PC)my, and PC was observed in South
American airports (Montevideo — z-score = -2.26; Sao Paolo — z-score = -2.22; Lima — z-score = -2.20;
Rio de Janeiro — z-score = -2.19; and Buenos Aires — z-score = -2.18 — see Fig. 6A and Supplementary
Table 3), which was the smallest module in this network. Notably, 8 of the 10 airports with highest
PC belonged to the module encompassing Central and South America (Fig 6B — red circles). This
was in contrast to the nodes with strongest PC)orm, which included major airport hubs, including
New York-JFK (PChorm = 0.85; PC = 0.61), Punta Cana (PCloy = 0.83; PC' = 0.58), Toronto
(PCporm = 0.81; PC = 0.55), Montreal (PChorm = 0.81; PC' = 0.49) and Frankfurt (PChorm =

0.78; PC = 0.62) (see blue circles in Fig. 6). These airports are known to have many intercontinental

C.elegans network: node-wise differences between PCnorm and PC

PCrorm minus PC
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Figure 5: Node-wise C.elegans differences between PC,,., and PC: Z-score difference beteween PC and
PCrorm, in the C.elegans network (z-score). The largest difference between PChrorm and PC was observed in in
inhibitory GABAergic neurons that belong to the largest module of the nematode encompassing RMDDL, RICR,
RMDVL, RMDDR and RMDVR neurons.
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Airport network: node-wise differences between PCrnorm and PC

A) PCrorm minus PC B) Nodes with the strongest participation
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Figure 6: Node-wise difference between PC,.» and PC in the network of airports: (A) A world map
displaying all airports included in the study. As highlighted in the manuscript, we observed the greatest difference
between the two metrics in Central- and South American airports (red moudle). (B) A visual representation of the ten
nodes with strongest PChrorm on the z-axis (blue nodes) and PC (red nodes) on the y-axis. The two black nodes were
high for PChorm and PC. Here, the size of each node is proportional to its module size (number of nodes in modules).

flights. This node-wise analysis suggests that PC overestimates the integrative nature of nodes within
relatively small modules and that PClrp, can alleviate systematic module size bias, thereby enabling
clearer and more intuitive conclusions to be drawn about the role of nodes.

PC, -, is more strongly correlated with working-memory performance than PC

Having established that PC,,,, alleviates the module size bias of PC and yields a more parsimonious
interpretation of node roles, we next aimed to test whether inter-individual variation in PCjomm
measured in brain networks would associate more strongly with behavioral measures than PC [28§].

We conducted an analysis informed by our previous study where we showed that inter-modular
network switching was related to the following behavioral domains [8]: 1) N-back task, calculated as the
average of 0- and 2-back task, important for working memory performance; ii) a relational task central
for planning and reasoning; iii) a sleep index averaging hours of sleep the month before the fMRI scan.
Each subject had a single behavioral score for each of the three behavioral domains. We therefore
averaged PChorm across all nodes in the network to yield a single PChorm value, for each subject.
We show that, using the same bootstrapping procedure outlined previously, mean PC), 4, associated
with functional brain networks was correlated more strongly with the N-back task compared to PC),
but not the sleep index and relational task (Fig. 7). This suggests that working memory performance
relates to the extent of inter-modular connectivity, rather than the size, of modules.

PC,,.,, PC and within-module degree z-score in real-world networks

PC is often interpreted alongside within-module degree z-score, a metric that quantifies the normalized
degree of intra-modular nodes. First of all, we observed almost no correlation between within-module
degree z-score and module size (Pearson’s r2 = 0.01, v = 1). We next projected corresponding
values between PC' and within-module degree z-score in a joint histogram which categorizes the intra-
and inter-modular statuses of nodes (see Fig 8). Similarly to previous work, most network nodes
are peripheral nodes classified as nodes that mainly connect to a single module [6]. However, our
joint histogram analysis showed that PCqy detected more non-hub connector nodes than PC' in
fMRI networks (Fig. 8A). Non-hub connector nodes are classified as nodes that connect to a variety
of modules. Airport networks also showed increased PC)orm, compared to PC, but remained as
peripheral nodes (Fig. 8B). On the other hand, PC' and PC,,s, yielded comparable inference about
the C.elegans network, which primarily comprised peripheral nodes (see Fig. 8C). This suggests that
PCorm may alter the topological structure, and interpretation, of networks where the module size
bias is prominent.
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fMRI network: relationship between participation and behavior
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Figure 7: Correlation between PC,,rm, PC and behavior: Inter-individual variation in PChorm (blue) and
PC (red) was associated with three behavioral measures (A) N-back task, (B) sleep index and (C) relational task. In
each panel, the dashed line represents the correlation between modular network switching and behavior obtained in our
previous study [8]. Pearson’s r between N-back task and PCporm was 0.14 (df = 1001, p < 0.00001); r between N-back
task and PC was 0.11 (df = 1001, p < 0.001). Bootstrap difference between PChorm and PC for N-back task was 0.04
[95% CI = -0.01 - 0.08]. r between sleep and PChporm was 0.12 (df = 1001, p < 0.0001); r between sleep and PC was
0.13 (df = 1001, p < 0.0001). Bootstrap difference between PClorm and PC for sleep was 0.00 [95% CI = -0.05 - 0.05].
r between relational task and PChorm was 0.06 (df = 1001, p = 0.07); r between relational task and PC was 0.07 (df
= 1001, p = 0.04). Bootstrap difference between PChorm and PC for relational task was 0.01 [95% CI = -0.04 - 0.05].

Discussion

We proposed a normalized participation coefficient (PChopm) to alleviate the module size bias inherent
to the established formulation of PC developed by Guimera and Amaral [4]. Using brain, C.elegans,
airport and simulated networks, we demonstrated that our proposed measure of participation: i)
alleviates module size bias to a significant extent; ii) preserves the conceptual and mathematical
properties of the classic formulation of PC'; and, iii) yields new insights into the role and function of
nodes in the context of their participation across modules, thereby enabling clearer and more intuitive
conclusions to be drawn about the role of nodes. Our work should be conceptualized as an extension
to Guimera and Amaral’s classic formulation of PC' [4], rather than a new measure to include in the
network scientist’s toolbox. We advocate use of PC, o in favour of PC, particularly for networks
with significant variation in module size. These are the networks for which the module size bias is
most detrimental to inference performed based on the classic participation coefficient.

It is important to clarify and highlight the crux of PC”s module size bias, namely network modu-
larity. Modularity decomposition methods are designed to search for a collection of nodes that have
stronger and more widespread inter-connectedness than we expect by chance [21]. Then, a sizeable col-
lection of inter-connected nodes forming a large module will, more often than not, have low PC values
without necessarily reflecting the node’s inter-connectedness with other modules. An example of this
is the case of airport networks, which showed the strongest module size bias. We observed maximal
PC in a subset of airports located in the smallest module comprising Central- and South America,
that consequently led to high PC values (Fig. 6). After correcting this module size bias, PCorm
suggested that the airports with strongest inter-modular connectivity were located in metropolitan
cities such as New York, London and Paris where over one third of flights were cross-continental. It is
also important to note that PC)orm, like PC, appears independent from node degree. This is evident
as the two airports with highest PC,or, had highly divergent node degree: i) New York had a total of
218 connections (127 intra-modular connections); and ii) Punta Cana in the Dominican Republic had
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Participation and within-module degree z-score

A) fMRI network — 100 nodes B) C.elegans network — 277 nodes C) Airport network — 500 nodes
and 1003 subjects and 1000 iterations and 1000 iterations
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Figure 8: Participation and within-module degree z-score: Joint histograms containing the number of simul-
taneous occurrences between PChrorm (top row), PC (bottom row) and within-module degree z-score in (A) fMRI
networks, (B) C.elegans networks and (C) airport networks. Within-module degree z-score is shown on the vertical
axis, while PC' and PChrorm is shown on the horizontal axis. In accordance with [6], PC of 0.62 was used to distinguish
between peripheral nodes (PC < 0.62) and non-hub connector nodes (PC > 0.62).

only 52 connections (34 intra-modular connections). Although Punta Cana is not a densely connected
airport, it belongs to the large module encompassing North America. This airport has a substantial
number of cross-continental flights, mainly to South America, again demonstrating how PC may un-
derestimates the integrative nature of nodes within large modules. A specific example where PC was
less affected by module size was the RMGR neuron in the C.elegans nematode. The RMGR neuron
of the C.elegans nematode, which showed similar values between PC and PCirp (Supplementary
Table 2), despite belonging to a spatially large module. This finding may be due to the high fidelity
of the C.elgegans connectome, which was mapped using electron microscopy, and also the inherent
function of this neuron. RMGR is an interneuron located at the head of the C.elegans nematode,
and it makes gap junctions to multiple other neuron classes [29]. Its main function is to integrate
information between extrinsic and intrinsic brain activity that leads to behavioral responses [30]. The
function of RGMR therefore provides a plausible explanation why it connects to several modules.

An example of the utility of PC),opm, in real-world networks was seen in fMRI brain networks, where
we observed increased inter-subject correlation with the N-back task, compared to PC' (Fig. 7A). This
task is important for working memory performance [31], a higher-order cognitive process that engages a
distributed brain network comprising symmetric and bilateral frontal and parietal cortices [32-34]. We
found that PC)orm was relatively high in these regions compared to other areas of the cortex, but this
was not as prominent as PC. Several reports also suggest that PC' is correlated with working memory
performance [5,11,35,36]. For example, Shine et al. [11]| reported increased PC' in fronto-parietal
networks during the N-back task, compared to the resting state. This suggests that the human brain
may allocate more inter-modular connectivity to meet demands of this cognitively strenuous task.
Other brain regions that expressed relatively high values of PCi,oryn were located in the cerebellum,
mainly sub-region Crus I and Lobule VI (see Fig. 4A). These cerebellar sub-regions are also involved
in working memory [37-39]. They display connectivity with frontal and parietal cortices [40,41], and
have preferentially expanded over recent evolutionary time [42].
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Unlike PC', nodes that only have intra-modular connections will not have a PC;,, value of zero.
This is because our randomization approach always returns a 'random’ number to subtract from the
original PC algorithm. Nevertheless, our simulations show that PCjmm return values close to zero
for nodes that only have intra-modular connections, unless these are high-degree nodes (see upper left
corner of Fig. 2C). We also found that, in real-world networks, PCy,orm remains low when PC' is zero
(Supplementary Fig. 6). An alternative is to conduct a post-hoc correction setting PCl,orm, nodes to
zero if corresponding PC' values are zero.

We have released a user-friendly MATLAB code for calculation of PChorm, available at GitHub.
The current version of PCopm works for undirected /directed and weighted /binary networks. A limi-
tation of PCiorm is the computational time needed for network randomizations, which can be partic-
ularly time consuming for large networks (i.e. > 1000 nodes). To circumvent this issue, we added a
parallel computing option in our code that allows for faster computation time, ensuring this process is
tractable for all but the largest networks. Nevertheless, as network randomization procedures are be-
coming increasingly popular, it is imperative to continue optimizing computational capabilities when
randomizing edges in large and complex networks.

Methods

Modular decomposition of networks

Before estimating PC' and PCor, (defined in the Results section - Egs. 1 and 2), we parsed fMRI,
C.elegans and airport networks into modules using a Louvain modularity optimization procedure [21]
written as:

@M= 51 Y [y 252 o), 3)
ij
where A;; represents the binary connectivity edge between nodes i and j. Louvain modularity
optimisation procedure finds nodes with greater intra-modular connectivity that is expected by chance
using a null model where k;k; (the sum of the weights of the edges attached to nodes i and j) is divided
by 2m (the sum of all of the edge weights in the graph). ¢; and ¢; are the modules associated with
node ¢ and j, and the module vector output is M.
~ controls the spatial resolution of modules. A low v (y < 1.5) results in a few large modules,
whereas a high v (7 > 1.5) returns numerous small modules [20]. We validated our findings across a
variety of v parameters between 1 and 2 in 0.1 increments, [43|. The Louvain clustering method also
contain heuristics that may cause run-to-run variability due to the degeneracy issue in complex network
[44]. This provided us with a good opportunity to assess PC' across a range of modular structures in
the C.elegans and airport network where we only had a single network available for analysis. In these
two networks, we obtained 1000 different modular outputs. In fMRI networks we computed a single
modular output of each of the 1003 subjects using a consensus clustering approach with 1000 iterations.
For each modularity run in C.elegans and airport networks, and fMRI network subject, we obtained a
1 x N vector where N is total number of nodes (i.e., 100 nodes for fMRI networks, 277 nodes for the
C.elegans neuronal system and 500 nodes for the airports network) comprising m-numbers of modules
(M = all modules).

Within-module degree z-score

To compare PC and PChorm with intra-modular connectivity we computed within-module degree z-
score |4], i.e., the normalized connectivity of a node within its own module [4]. It is given by:

ki(mi) — k(ma)
k) (4)

where m; denotes the module containing i; k;(m) is the overall degree of node i in module m
(where node i is located). k(m;) is the mean degree of all nodes in module m and o*™) is the

standard deviation of all nodes in module m.

Z; =
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Dataset 1: fMRI network

We used 57.6 min (4800 time-points x 0.72s repetition time) of resting state fMRI data from 1003
healthy adults between ages of 22 and 35 years, from the Human Connectome Project [16], that we
filtered between frequencies of 0.01 and 0.1 Hz. The fMRI data was distortion, motion, and field
bias corrected and normalized into a common Montreal Neurological Institute space. An independent
components analysis was conducted to parcellate the brain into 100 regions of interests (55 sub-cortical
and 45 cortical brain regions). At the individual level, we generated an undirected binary brain network
with 100 nodes using pair-wise Pearson correlation analysis of subject-specific fMRI time series over
100 brain regions. For our main analysis we thresholded networks at a sparsity level 20% (990 edges).
We also derived networks at additional sparsity levels of 10% (495 edges), 30% (1485 edges) and 40%
(1980 edges — Supplementary Fig. 4)

Dataset 2: C.elegans network

We analyzed two-dimensional spatial representations of the global neuronal network (277 neurons, or
nodes, and 2105 connections, or edges) of the nematode C.elegans, previously identified by electron
microscope reconstructions [18]. This network is directed and binary — i.e., it contains both incoming
and outgoing neural connections between brain areas of the C.elegans. In this study we only used
outgoing connections.

Dataset 3: Airport network

Airport network was constructed based on flights between the 500 busiest airports (nodes) in the
world. Edges were based on the total passenger volume between airports. In this network there were
a total of 24009 flights (edges). The existence of flight connections between airports is based on flights
within one year from 1 July 2007 to 30 June 2008 [19]. An edge means that there is at least one flight
between two airports. This network is directed and binary, meaning it contains incoming and outgoing
flights connections between airports. In this study we only used outgoing connections.
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