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 Abstract 24 

Recent studies have shown that prediction and attention can interact under various 25 

circumstances, suggesting that the two processes are based on interdependent neural 26 

mechanisms. In the visual modality, attention can be deployed to the location of a task-relevant 27 

stimulus (‘spatial attention’) or to a specific feature of the stimulus, such as colour or shape, 28 

irrespective of its location (‘feature-based attention’). Here we asked whether predictive 29 

processes are influenced by feature-based attention outside the current spatial focus of 30 

attention. Across two experiments, we recorded neural activity with electroencephalography 31 

(EEG) as human observers performed a feature-based attention task at fixation and ignored a 32 

stream of peripheral stimuli with predictable or surprising features. Central targets were 33 

defined by a single feature (colour or orientation) and differed in salience across the two 34 

experiments. Task-irrelevant peripheral patterns usually comprised one particular conjunction 35 

of features (standards), but occasionally deviated in one or both features (deviants). Consistent 36 

with previous studies, we found reliable effects of feature-based attention and prediction on 37 

neural responses to task-irrelevant patterns in both experiments. Crucially, we observed an 38 

interaction between prediction and feature-based attention in both experiments: the neural 39 

effect of feature-based attention was larger for surprising patterns than it was for predicted 40 

patterns. These findings suggest that global effects of feature-based attention depend on 41 

surprise, and are consistent with the idea that attention optimises the precision of predictions 42 

by modulating the gain of prediction errors.    43 

Significance Statement 44 

Two principal mechanisms facilitate the efficient processing of sensory information: prediction 45 

uses prior information to guide the interpretation of sensory events, whereas attention biases 46 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/747204doi: bioRxiv preprint 

https://doi.org/10.1101/747204
http://creativecommons.org/licenses/by/4.0/


3 
 

the processing of these events according to their behavioural relevance. A recent theory 47 

proposes to reconcile attention and prediction under a unifying framework, casting attention as 48 

a ‘precision optimisation’ mechanism that enhances the gain of prediction errors. Crucially, 49 

this theory suggests that attention and prediction interact to modulate neural responses, but this 50 

hypothesis remains to be tested with respect to feature-based attention mechanisms outside the 51 

spatial focus of attention. Here we show that global effects of feature-based attention are 52 

enhanced when stimuli possess surprising features, suggesting that feature-based attention and 53 

prediction are interdependent neural mechanisms.  54 

Introduction 55 

Selective attention mechanisms enhance the processing of sensory stimuli that are relevant for 56 

guiding behaviour (Desimone & Duncan, 1995; Posner, 1994). Visual processing can be biased 57 

toward stimuli at a relevant location, commonly known as ‘spatial attention’, or toward stimuli 58 

that possess task-relevant features, known as ‘feature-based attention’ (Carrasco, 2011). 59 

Monkey neurophysiology studies (Martinez-Trujillo & Treue, 2004) and human neuroimaging 60 

studies (Gledhill, Grimsen, Fahle, & Wegener, 2015; Saenz, Buracas, & Boynton, 2002; 61 

Serences & Boynton, 2007) have demonstrated that neural responses to stimuli at task-62 

irrelevant locations are enhanced when they possess task-relevant features, demonstrating that 63 

the effects of feature-based attention are global and dissociable from those of spatial attention. 64 

In humans, neural responses to visual stimuli at task-irrelevant locations can be enhanced when 65 

they possess surprising features (e.g., colour, orientation, motion), demonstrating that top-66 

down ‘prediction’ mechanisms also exert a global effect on incoming sensory signals (Friston, 67 

2005; Stefanics, Kremlácek, & Czigler, 2014). At present, it is unknown whether the global 68 

effects of visual feature-based attention can interact with those of prediction. Here we used 69 
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electroencephalography (EEG) to measure neural responses to peripheral visual stimuli that 70 

were predictable or surprising along two feature dimensions (orientation and colour), and tested 71 

whether attending to a particular feature at fixation modulated the effect of prediction on neural 72 

responses to peripheral stimuli at task-irrelevant locations. 73 

Predictive coding theories propose that top-down prediction signals effectively ‘silence’ 74 

bottom-up sensory signals that match the predicted content, leaving only the remaining 75 

prediction error to propagate forward and update a model of the sensory environment  (Friston, 76 

2005; Rao & Ballard, 1999). In addition to predicting the content of sensory signals, an optimal 77 

inference system should also estimate the level of uncertainty about its predictions (i.e., inverse 78 

precision; Hohwy, 2012). Recently, it has been proposed that selective attention mechanisms 79 

fulfil this role, optimising the expected precision of predictions by enhancing the activity of 80 

units encoding prediction errors for attended stimuli (Feldman & Friston, 2010; Friston, 2009, 81 

2010). Recent studies have supported this theory by demonstrating that selective attention and 82 

prediction can interact under various circumstances (Auksztulewicz & Friston, 2015; Jiang, 83 

Summerfield, & Egner, 2013; Kok, Rahnev, Jehee, Lau, & De Lange, 2012; Marzecová, 84 

Widmann, SanMiguel, Kotz, & Schröger, 2017; Smout, Tang, Garrido, & Mattingley, 2019). 85 

However, selective attention mechanisms encompass distinct information-processing 86 

subcomponents (e.g., spatial attention, temporal attention) across sensory modalities (e.g., 87 

auditory, visual) and it is important to establish which of these subcomponents interacts with 88 

prediction and in what manner. In the visual domain, previous studies that reported an 89 

interaction between attention and prediction typically presented stimuli at task-relevant 90 

locations (Jiang et al., 2013; Kok, Rahnev, et al., 2012; Marzecová et al., 2017; Smout et al., 91 

2019). One previous study found an effect of feature-based attention on mismatch responses to 92 

stimuli at task-irrelevant locations, but this study presented clearly visible targets that likely 93 
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did not necessitate a tight focus of spatial attention on the central stimulus stream (Czigler & 94 

Sulykos, 2010). Thus, it remains unclear whether prediction can interact with global feature-95 

based attention mechanisms that modulate neural responses to stimuli outside the spatial focus 96 

of attention. 97 

Here we tested whether feature-based attention modulates the effect of prediction at task-98 

irrelevant locations by comparing event-related potentials evoked by peripheral stimuli that 99 

either matched (‘congruent’) or mismatched (‘incongruent’) a cued feature of the target at 100 

fixation. Participants searched for targets at fixation while predictable or surprising task-101 

irrelevant stimuli were presented in the periphery. We conducted two experiments that differed 102 

in the salience of central targets and distractors to investigate whether the strength of the top-103 

down feature-set modulates the neural interaction between feature-based attention and 104 

prediction. 105 

Methods 106 

Experiment 1: Effects of feature-based attention at fixation on neural responses to 107 

predicted and surprising peripheral stimuli 108 

Participants 109 

Twenty-four healthy adults (13 female, 11 male, age = 22.08 ± 2.38 years) with normal or 110 

corrected-to-normal vision were recruited for participation via an online portal at The 111 

University of Queensland. The study was approved by The University of Queensland Human 112 

Research Ethics Committee, and all participants provided written, informed consent before 113 

commencing the experiment. 114 
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Stimuli and apparatus 115 

Participants were positioned at a viewing distance of 57 cm and seated in a comfortable 116 

armchair in an electrically shielded laboratory. Stimuli were presented on a 61 cm LED monitor 117 

(Asus, VG248QE) with a 1920 x 1080 pixel resolution and refresh rate of 120 Hz, using 118 

PsychToolbox presentation software (Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, 119 

R., & Broussard, 2007) for Matlab (v.15b) running under Windows 7 with an NVidia Quadro 120 

K4000 graphics card. The intensity of the green phosphor was adjusted per participant to 121 

produce subjective equiluminance with that of the red phosphor at full intensity. The 122 

equiluminance point was determined prior to the experiment using minimum motion 123 

photometry (Anstis & Cavanagh, 1983), with intensity values determined by two interleaved 124 

adaptive staircases (1 up-1 down, stopping after 15 reversals). 125 

Central and peripheral stimuli were sinusoidal Gabors (diameter: 4.72˚, spatial frequency: 0.94 126 

c/˚, 100% contrast) with one of two orientations (tilted 45° clockwise or counterclockwise of 127 

vertical) and one of two colours (red or green). Central stimuli were superimposed over a red-128 

green noise patch (diameter: 4.72) and onset every 700 - 1400 ms for 66.67 ms. Twenty percent 129 

(20%) of central stimuli were targets (approximately 28 targets and 114 distractors per block). 130 

Multi-element peripheral stimuli (‘patterns’) were arranged in three concentric circles (radii: 131 

4.72°,  8.49°, 12.26°; containing 8, 14, and 20 Gabors, respectively; Figure 1A). Peripheral 132 

patterns were presented every 350 ms for 66.67 ms (428 events per block) on top of a 133 

background that alternated between uniform red and green pixels at the screen refresh rate (120 134 

Hz), producing a subjective percept of a uniform brown background. During each block, 135 

peripheral patterns were more likely to contain one of the four possible feature conjunctions 136 

(e.g. clockwise-tilted red Gabors; 76% of presentations, standards), with the other three feature 137 
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conjunctions being rare and of equal likelihood (8% each, deviants). Standards were pseudo-138 

randomized across blocks, and the order of deviants was pseudo-randomized within blocks. 139 

 140 
Figure 1. Stimulus display and task. (A) Stimulus display, showing a green clockwise-tilted target 141 
within the central noise patch and a peripheral pattern consisting of three concentric rings of red 142 
counterclockwise-tilted Gabors. (B) Simplified task diagram. In this example trial, participants 143 
monitored for green Gabors (targets) and ignored red Gabors (distractors) within the central noise 144 
patch. Peripheral patterns typically contained red counterclockwise-tilted Gabors (standards), but 145 
occasionally contained red clockwise-tilted Gabors (orientation deviant), green counterclockwise-tilted 146 
Gabors (colour deviant), or green clockwise-tilted Gabors (object deviant, i.e. deviating in both colour 147 
and orientation). In this example trial, the colour and object deviants shared features with the target 148 
(i.e., green) and would thus be labelled ‘congruent’. 149 

Procedure 150 

Participants were asked to fixate on a central dot and click a mouse button as soon as they 151 

detected a target in the stream of central stimuli, continuously throughout blocks (duration: 150 152 

s), while ignoring central distractors and peripheral patterns (Figure 1B). In each block, Gabor 153 

targets were designated as either (1) red, (2) green, (3) clockwise-tilted, or (4) 154 

counterclockwise-tilted. Note that each condition dictated two of the four possible feature 155 

conjunctions as targets and two as distractors (e.g., if searching for clockwise-tilted targets, 156 

both red and green clockwise-tilted Gabors were valid targets).  157 

Participants completed two practice blocks with auditory feedback after each response, before 158 

being fitted with the EEG cap and electrodes (see EEG Data Acquisition). Participants then 159 

completed 16 test blocks with target type and standard pattern features pseudorandomized 160 
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across blocks (6848 peripheral patterns per session). Feedback on mean reaction time and the 161 

number of hits and false alarms was provided between blocks. 162 

Behavioural Data Analysis 163 

We investigated whether the feature-congruence and predictability of peripheral patterns 164 

affected participants’ detection of central targets. Targets were sorted into prediction 165 

conditions according to whether the preceding pattern (i.e., the peripheral stimulus presented 166 

up to 700 ms prior to peak target contrast) was a standard (‘predicted’) or a deviant 167 

(‘surprising’), and feature-congruence conditions according to whether the preceding 168 

peripheral pattern matched the features of the central target (‘congruent’) or distractor 169 

(‘incongruent’). Participant responses were scored as hits if they occurred within 1 s of the 170 

onset of a target. Successive responses within this window were ignored, as were any responses 171 

that occurred within 250 ms of a preceding response. Because we observed differences in hit 172 

rates and reaction times between target feature conditions (i.e., the feature that participants 173 

searched for at fixation, e.g. ‘red’), we first normalised hit rates and reaction times within each 174 

target feature condition, separately for feature-congruence and prediction conditions, and then 175 

collapsed across the target feature conditions. The resulting normalised hit rates and reaction 176 

times were then subjected to two-way repeated measures ANOVAs to assess the effects of 177 

peripheral pattern prediction (two levels: predicted, surprising) and feature-congruence (two 178 

levels: congruent, incongruent) on target detection.  179 

EEG Data Acquisition 180 

Participants were fitted with a 64 Ag-AgCl electrode EEG system (BioSemi Active Two: 181 

Amsterdam, Netherlands). Continuous data were recorded using BioSemi ActiView software 182 

(http://www.biosemi.com), and were digitized at a sample rate of 1024 Hz with 24-bit A/D 183 
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conversion and a .01 – 208 Hz amplifier band pass. All scalp electrode offsets were adjusted 184 

to below 20μV prior to beginning the recording. Pairs of flat Ag-AgCl electro-oculographic 185 

electrodes were placed on the outside of both eyes, and above and below the left eye, to record 186 

horizontal and vertical eye movements, respectively.  187 

EEG Preprocessing 188 

EEG recordings were processed offline using the EEGlab toolbox in Matlab (Delorme & 189 

Makeig, 2004). Data were resampled to 256 Hz and high-pass filtered with a passband edge at 190 

0.5 Hz (1691-point Hamming window, cut-off frequency: 0.25 Hz, -6 db). Raw data were 191 

inspected for the presence of faulty scalp electrodes (none were found). To clean the data, we 192 

applied an iterative process of artifactual epoch and component rejection using independent 193 

component analyses (ICA). The data were segmented into 350 ms epochs surrounding Gabor 194 

onsets (50 ms pre- and 300 ms post-stimulus) and baseline activity prior to stimulus onset was 195 

removed from each epoch. Epochs were subjected to ICA, and the SASICA plugin for EEGlab 196 

(Chaumon, Bishop, & Busch, 2015) was used to identify blink, saccade, and focal trial 197 

components. Epochs were rejected if they met any of the following criteria: (1) blink 198 

component activity greater than ±10 μV between -50 and 150ms; (2) saccade component 199 

activity greater ±5 μV between 0 and 350 ms; (3) focal component activity exceeding a joint 200 

probability threshold of ±7 SD (5.5% of epochs were removed due to blink, saccade, or focal 201 

activity). The remaining epochs were then subjected to ICA for a second time, and SASICA 202 

was used again to identify artifactual components.  203 

For further analysis, the resampled raw data were band-pass filtered between 0.5 and 40 Hz 204 

(1691-point Hamming window, cut-off frequencies: 0.25 and 40.25 Hz, -6 db) and segmented 205 

into 550 ms epochs surrounding Gabor onsets (100 ms pre- and 450 ms post-stimulus). Epochs 206 
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containing artefacts (identified previously using the first ICA) were removed. Independent 207 

component weights from the second ICA were applied to this new dataset and artefactual 208 

components (identified previously using the second ICA) were removed. Baseline activity in 209 

the 100 ms prior to stimulus onset was removed from each epoch.  210 

Event-Related Potential and Bayes Factor Analyses 211 

Peripheral patterns were sorted into prediction conditions based on whether they were 212 

standards (repeated at least 4 times; ‘predicted’) or deviants (‘surprising’), and attention 213 

conditions based on whether they shared features with central targets (‘congruent’) or 214 

distractors (‘incongruent’) in the central task. Trials in each attention and prediction condition 215 

were averaged within participants to produce event-related potentials (ERPs) for each 216 

individual. Statistical analyses of condition ERPs were conducted using two-tailed cluster-217 

based permutation tests across participants (Monte-Carlo distribution with 5000 permutations, 218 

pcluster<0.05; sample statistic: dependent samples t-statistic, aggregated using the maximum 219 

sum of significant adjacent samples, psample<.05) in the Fieldtrip toolbox for Matlab 220 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Statistical analyses of univariate condition 221 

averages were conducted using paired-samples t-tests and Bayesian analyses. The Bayes factor 222 

analyses allowed for quantification of evidence in favour of either the null or alternative 223 

hypothesis, with BF10 > 3 indicating substantial support for the alternative hypothesis and BF10 224 

< 0.33 indicating substantial support for the null hypothesis. Bayes factors were computed 225 

using the Dienes (2014) calculator in Matlab.  226 
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Experiment 2:  Replication with individually thresholded manipulation of feature-based 227 

attention at fixation 228 

In Experiment 1, the high contrast targets were detected at near-ceiling levels. To investigate 229 

whether the neural interaction between feature-based attention and prediction is sensitive to the 230 

strength of the top-down feature set, we conducted a second experiment in which central targets 231 

and distractors were individually thresholded to be less salient. Except for the minor 232 

methodological differences noted below, Experiment 2 was the same as Experiment 1 and thus 233 

afforded an opportunity to replicate the original results in a separate group of participants. 234 

Methods 235 

A new cohort of 24 healthy adults with normal (or corrected-to-normal) vision was recruited 236 

to participate in Experiment 2 (12 female, 12 male, age = 22.17 ± 2.88 years, mean ± SEM). 237 

The stimuli and apparatus were identical to those used in Experiment 1 (Figure 1), except that 238 

in Experiment 2 the central stimuli (targets and distractors) were presented at lower contrast 239 

and with a sinusoidal onset and offset profile (total duration: 700 ms). The peak contrast of the 240 

central stimuli was determined during the two practice blocks, using a transformed and 241 

weighted up/down adaptive staircase configured to approximate 83% detection of targets 242 

(up/down step ratio: 1/3, up/down size ratio: .1/.07; Garcı́a-Pérez, 1998). Blocks lasted for 150 243 

s (as per Experiment 1) for all except two participants, for whom blocks lasted for 120 s (due 244 

to time constraints for these two individuals). Participant responses were scored as hits if they 245 

occurred within 1 s of the peak target contrast (i.e., within 1.35 s of target onset, accounting 246 

for the 350 ms on-ramp). During EEG preprocessing, we interpolated 11 faulty electrodes 247 

(across 5 participants) using the average activation across neighbouring electrodes (defined by 248 

the EEGlab Biosemi 64 template) and removed 4.1% of epochs due to blink, saccade, or focal 249 

component contamination. 250 
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Results 251 

Experiment 1: Effects of feature-based attention at fixation on neural responses to 252 

predicted and surprising peripheral stimuli 253 

Feature-Congruent Peripheral Patterns Interfere with Target Detection at Fixation 254 

We first asked whether the congruence between peripheral pattern and central target features 255 

affected participants’ detection of central targets shortly after pattern onset. There was no 256 

significant main effect of feature-congruence on normalized hit rates (congruent = 94.41 ± 257 

1.28%, 0.06 ± 0.19 z-normalised, incongruent = 93.63 ± 1.39%, -0.08 ± 0.20 z-normalised, 258 

F(1,23) = 3.33, p = .081, ηp2 = .013). There was a significant main effect of feature-congruence 259 

on normalised reaction times, however, with participants responding more slowly to central 260 

targets preceded by congruent peripheral patterns (438.80 ± 9.43 ms, mean ± SEM; 0.04 ± 0.19 261 

z-normalised) than to those preceded by incongruent peripheral patterns (436.09 ± 9.53 ms; -262 

0.04 ± 0.20 z-normalised, F(1,23) = 5.70, p = .026, ηp2 = 0.20). This finding suggests that 263 

participants were more distracted by peripheral patterns with task-relevant (congruent) 264 

features, relative to those with task-irrelevant (incongruent) features, and is consistent with the 265 

theory that involuntary orienting to task-irrelevant stimuli is contingent on attentional control 266 

settings (Folk, Remington, & Johnston, 1992).  267 

Peripheral Pattern Prediction Does Not Affect Target Detection 268 

In a second analysis we asked whether the predictability of peripheral patterns affected 269 

behavioural responses to subsequent central targets. There was no significant effect of 270 

peripheral pattern prediction on normalised hit rates (predicted = 94.39 ± 1.22%, 0.04 ± 0.18, 271 

surprising = 93.65 ± 1.47%, -0.06 ± 0.21, F(1,23) = 1.63, p = .215, ηp2 = .07) or normalised 272 

reaction times (predicted = 437.12 ± 9.66 ms, -0.01 ± 0.20, surprising = 437.76 ± 9.32 ms, 0.01 273 
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± 0.19, F(1,23) = 0.27, p = .605, ηp2 = .01), and no interaction between prediction and feature-274 

congruence on either normalised hit rates (F(1,23) = 0.31, p = .582, ηp2 = .01) or normalised 275 

reaction times (F(1,23) = 0.15, p = .701, ηp2 = .01). These findings suggest that the 276 

predictability of peripheral patterns did not modulate the extent to which participants were 277 

distracted from their task at fixation.  278 

Prediction Decreases Neural Activity 279 

We next assessed the main effect of prediction on neural activity by comparing ERPs to 280 

peripheral deviant patterns (‘surprising’ patterns, collapsed across orientation, colour, and 281 

object deviants) and standard patterns that had been repeated at least 4 times (‘predicted’ 282 

patterns). Relative to baseline, standards evoked smaller neural responses than deviants (Figure 283 

2). Over posterior electrodes, the neural response to standards was significantly reduced 284 

relative to deviants during both the early negative deflection (i.e. standards > deviants; 82 - 164 285 

ms, p = .020) and the late positive deflection (i.e. deviants > standards < deviants; 242 – 348 286 

ms, p = .010; Figure 2B). Over frontal electrodes, the neural response to standards was 287 

significantly reduced relative to deviants during both the early positive deflection (i.e. 288 

standards < deviants; 90 - 230 ms, p < .001) and the late negative deflection (i.e. standards > 289 

deviants; 254 – 348 ms, p = .008; Figure 2A). These effects are consistent with the theory that 290 

surprising stimuli (deviants) produce greater prediction errors than predicted stimuli 291 

(standards; Friston, 2005, 2009; Rao & Ballard, 1999).  292 
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 293 
Figure 2. Main effect of prediction in Experiment 1. (A-B) ERPs evoked by standards and deviants 294 
(collapsed across deviant types) at frontal electrodes (Fz, F1, F3, AFz, AF3, AF4; A) and occipital 295 
electrodes (Oz, O1, O2, POz, PO3, PO4; B). Shading indicates the within-subject standard error of 296 
the mean, calculated relative to standards. Black bars along the x-axis denote significant timepoints at 297 
the displayed electrodes (cluster-corrected). (C) ERPs evoked by standards and each of the three 298 
deviant conditions. Shading indicates the within-subject standard error of the mean, calculated 299 
separately for each deviant condition relative to standards. Yellow, red and purple bars along the x-300 
axis denote significant differences between standards and each corresponding deviant condition 301 
(cluster-corrected). (D-E) Headmaps show the effect of prediction (standard minus average deviant) 302 
during the indicated time windows. Asterisks and dots denote electrodes with larger or smaller 303 
responses, respectively, across at least 33% of the averaged time points (cluster-corrected). 304 

We followed up this result with direct comparisons between standards and each type of deviant, 305 

which revealed similar effects to those reported above for the average deviant condition 306 

(Figure 2C). Early posterior negativities were smaller in response to standards than orientation 307 

deviants (109 – 160 ms, p = .033), colour deviants (98 – 164 ms, p = .040), and object deviants 308 

(82 – 348 ms, p < .001), and late posterior positivities were significantly smaller in response to 309 

standards than orientation deviants (176 – 348 ms, p < .001) and object deviants (250 – 348 310 
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ms, p = .019). Early frontal positivities were smaller in response to standards than orientation 311 

deviants (98 – 164 ms, p = .002), colour deviants (86 – 238 ms, p = .001), and object deviants 312 

(102 – 238 ms, p < .001), and late frontal negativities were smaller in response to standards 313 

than orientation deviants (242 – 348 ms, p < .001) and object deviants (84 – 348 ms, p < .001). 314 

Visual Mismatch Negativities Are Additive Across Feature Deviations 315 

Because previous investigations have suggested that the visual mismatch negativity (vMMN) 316 

is non-additive across feature deviations (Czigler & Sulykos, 2010), we also tested for 317 

differences between vMMNs evoked by each type of deviant (orientation, colour, or object). 318 

We used a data-driven approach to identify spatiotemporal samples (electrodes x timepoints) 319 

that were significantly different from standards in all three deviant conditions (electrodes: Pz, 320 

P1, P2, P3, P4, POz, PO3, PO4, Oz, O1, O2, Iz; timepoints: 109 – 160 ms) and then averaged 321 

across these samples to produce one amplitude value per deviant condition and participant. We 322 

then compared each pair of deviant conditions with paired-samples t-tests and Bayesian 323 

analyses, using a uniform prior with upper and lower bounds set to the average vMMN 324 

amplitude. As can be seen in Figure 2C, there was no difference between the orientation (-1.02 325 

± 0.13 μV) and colour vMMN (-0.98 ±Z0.14 μV, t(23) = -0.35, p = .733, BF10 = 0.14). In 326 

contrast, the object vMMN (-1.64 ± 0.16 μV) was significantly larger than both the orientation 327 

vMMN (t(23) = -5.39, p < .001, BF10 = 2.4 x 105) and the colour vMMN (t(23) = -7.06, p < 328 

.001, BF10 = 6.3 x 109), suggesting that the vMMN is sensitive to features of the deviant 329 

stimulus.  330 

Feature-based Attention Decreases Neural Activity 331 

We assessed the main effect of feature-based attention by comparing ERPs to peripheral 332 

patterns that shared features with targets (‘congruent’) or distractors (‘incongruent’) in the 333 
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central detection task. Congruent peripheral patterns evoked a smaller positivity over posterior 334 

electrodes than incongruent patterns late in the epoch (188 – 305 ms, p = .004; Figure 3B,D). 335 

This effect was matched by a polarity-reversed activity profile over frontal electrodes (191 – 336 

309 ms, p = .003; Figure 3A,D).  337 

 338 
Figure 3. Main effect of feature-based attention in Experiment 1. (A-B) Congruent and incongruent 339 
ERPs are collapsed across prediction conditions separately for frontal electrodes (Fz, F1, F3, AFz, 340 
AF3, AF4; A) and occipital electrodes (Oz, O1, O2, POz, PO3, PO4; B). Shading indicates the within-341 
subject standard error of the mean. Black bars along the x-axis denote significant differences at the 342 
displayed electrodes (cluster-corrected). (C-D) Headmaps show the effects of feature-based attention 343 
(congruent minus incongruent) during the indicated time windows. Asterisks and dots denote 344 
electrodes with larger, or smaller responses, respectively, in at least 33% of the averaged time points 345 
(cluster-corrected). 346 

The Effect of Feature-based Attention Depends on Surprise  347 

Next, we investigated the interaction between feature-based attention and prediction by 348 

subtracting the standard ERP from the deviant ERP (i.e., the mismatch response, collapsed 349 

across deviant conditions) and comparing difference waves between congruent and 350 
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incongruent conditions (Figure 4). Over posterior electrodes, the mismatch response was more 351 

negative for congruent stimuli than for incongruent stimuli late in the epoch (203 – 285 ms, p 352 

= .041; Figure 4B). Inspection of individual condition ERPs (Figure 4E) revealed that the 353 

significant interaction was driven by a larger (negative) effect of feature-based attention on the 354 

neural response to deviants, relative to standards.  355 

We followed up this finding by averaging spatiotemporal samples spanned by the significant 356 

effect, separately for each deviant condition. We then compared congruent and incongruent 357 

conditions with paired t-tests and Bayesian analyses (uniform prior with upper and lower 358 

bounds set to the average amplitude across all conditions). Feature-based attention decreased 359 

the mismatch response to all three deviant types (orientation: congruent = 0.13 ± 0.10 μV, 360 

incongruent = 0.42 ± 0.13 μV, t(23) = -2.16, p = .041, BF10 = 1.18; colour: congruent = -0.45 361 

± 0.17 μV, incongruent = 0.05 ± 0.14 μV, t(23) = -3.28, p = .003, BF10 = 1.41; object: congruent 362 

= -0.53 ± 0.19 μV, incongruent = -0.06 ± 0.14 μV, t(23) = -2.92, p = .008, BF10 = 1.28; Figure 363 

4C).  These findings suggest that feature-based attention modulates the effect of prediction on 364 

neural responses to stimuli at task-irrelevant locations, irrespective of the predicted feature (or 365 

combination of features).  366 
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 367 
Figure 4. Interaction between feature-based attention and prediction in Experiment 1. (A-B) Average 368 
mismatch response (MMR; average deviant minus standard) collapsed across frontal electrodes (Fz, 369 
F1, F3, AFz, AF3, AF4; A) and occipital electrodes (Oz, O1, O2, POz, PO3, PO4; B). Solid lines 370 
represent the congruent condition and dotted lines represent the incongruent condition. Shading 371 
indicates the within-subject standard error of the mean. The black bar along the x-axis denotes 372 
significant differences at the displayed electrodes (cluster-corrected). (C) Mismatch responses at 373 
occipital electrodes for individual deviant conditions. (D-E) ERPs evoked by standards and deviants 374 
(averaged across deviant types), shown separately for congruent (solid) and incongruent (dotted) 375 
conditions. (F) ERPs for individual deviant conditions, shown separately for congruent (solid) and 376 
incongruent (dotted) conditions. (G-H) Headmaps show the effect of feature-based attention 377 
(congruent minus incongruent) on the average deviant mismatch response (average deviant minus 378 
standard) during the early vMMN (G) and late interaction time windows (H). Dots denote electrodes 379 
with significant differences in at least 33% of the averaged time points (cluster-corrected). (I-K) Effect 380 
of feature-based attention (congruent minus incongruent) on the orientation mismatch response (I), 381 
colour mismatch response (J) and object mismatch response (K) during the late interaction time 382 
window. Note that cluster-based permutation tests were not conducted on these differences.  383 

The Visual Mismatch Negativity is Not Modulated by Feature-based Attention 384 

Because previous literature has provided evidence for an effect of feature-based attention on 385 

the vMMN (Czigler & Sulykos, 2010), we also used Bayes analyses to test for differences 386 

between congruent and incongruent conditions during the (non-significant) vMMN time 387 
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period. Spatiotemporal samples spanning the common vMMN window (electrodes: Pz, P1, P2, 388 

P3, P4, POz, PO3, PO4, Oz, O1, O2, Iz; timepoints: 109 – 160 ms) were averaged to produce 389 

one amplitude value for each condition within participants. Congruent and incongruent 390 

conditions were compared within deviant conditions using paired-samples t-tests and Bayes 391 

analyses (uniform prior with upper and lower bounds set to the average amplitude across 392 

conditions). We found no difference between congruent and incongruent vMMNs for any 393 

deviant type (orientation: congruent = -1.09 ± 0.13 μV, incongruent = -0.95 ± 0.16 μV, t(23) = 394 

-1.23, p = .231, BF10 = .26; colour: congruent = -1.00 ± 0.16 μV, incongruent = -0.96 ± 0.14 395 

μV, t(23) = -0.37, p = .713, BF10 = 0.13; object: congruent = -1.55 ± 0.19 μV, incongruent = -396 

1.73 ± 0.15 μV, t(23) = 1.29, p = .208, BF10 = 0.33; Figure 4C).  397 

Taken together, the results from Experiment 1 suggest that feature-based attention modulates 398 

the neural effect of prediction on neural responses to stimuli at task-irrelevant locations. This 399 

interaction emerged after (but not during) the vMMN time period for all deviant types, from 400 

approximately 200 ms after stimulus onset. We also found that the detection of high contrast 401 

targets at fixation was slower following peripheral patterns with target features, relative to 402 

those with distractor features, suggesting that feature-congruent peripheral patterns ‘captured’ 403 

attention to their location (Folk et al., 1992). Because our principle question of interest 404 

pertained to the neural interaction between feature-based attention and prediction outside the 405 

current spatial focus of attention, we conducted a second study in which target contrast was 406 

individually titrated for each participant to increase the task difficulty and ensure that attention 407 

remained fixed on the central target stream.  408 
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Experiment 2:  Replication with individually thresholded manipulation of feature-based 409 

attention at fixation 410 

Peripheral Patterns Do Not Modulate Behaviour in a Demanding Feature-based Attention 411 

Task   412 

In contrast to Experiment 1, there was no significant effect of feature-congruence on 413 

normalised reaction times in Experiment 2 (congruent: 391.79 ± 11.12 ms, -0.01 ± 0.18 z-414 

normalised; incongruent: 392.49 ± 11.56 ms, 0.02 ± 0.18 z-normalised; F(1,23) = 1.00, p = 415 

.329, ηp2 = .04), suggesting that the top-down feature set modulates the effect of congruent 416 

patterns on target detection and that the more difficult task in Experiment 2 contained spatial 417 

attention to the central target stream. In line with Experiment 1, all other behavioural effects 418 

were non-significant. Thus, there was no significant effect of feature-congruence on 419 

normalised hit rates (congruent = 74.90 ± 2.05%, -0.02 ± 0.16 z-normalised, incongruent = 420 

75.23 ± 2.14%, 0.01 ± 0.17 z-normalised, F(1,23) = 0.37, p = .547, ηp2 = .02). In addition, there 421 

was no significant effect of pattern prediction on normalised hit rates (predicted = 74.25 ± 422 

2.07%, -0.06 ± 0.16 z-normalised, surprising = 75.88 ± 2.13%, 0.06 ± 0.17 z-normalised, 423 

F(1,23) = 3.64, p = .069, ηp2 = 14) or on normalised reaction times (predicted = 388.79 ± 11.11 424 

ms, -0.03 ± 0.18 z-normalised, surprising = 395.49 ± 11.58 ms, 0.04 ± 0.18 z-normalised, 425 

F(1,23) = 2.46, p = .130, ηp2 = .10). Finally, there was no interaction between prediction and 426 

feature-congruence on either normalised hit rates (F(1,23) = 2.11, p = .160, ηp2 = .08) or 427 

normalised reaction times (F(1,23) = 1.50, p = .233, ηp2 = .06). 428 
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The Neural Interaction Between Feature-based Attention and Prediction Replicates With a 429 

Demanding Feature-based Attention Set   430 

The neural effects observed in Experiment 2 (see Figures 5-7) were highly similar to those in 431 

Experiment 1 (see Figures 2-4). Prediction again modulated neural responses over posterior 432 

electrodes early (standards > deviants; from 78 ms, p < .001) and late (standards < deviants; 433 

246 – 348 ms, p = .014) in the epoch (Figure 5B), with opposite early (standards < deviants; 434 

74 - 238 ms, p < .001) and late effects (standards > deviants; prior to 348 ms, p < .001) over 435 

frontal electrodes (Figure 5A). Follow-up comparisons revealed similar effects of prediction 436 

on each deviant type (Figure 5C). Over posterior electrodes, standards evoked smaller early 437 

negativities than all deviant types (orientation deviants: 109 – 160 ms, p = .037; colour 438 

deviants: 90 – 348 ms, p < .001; object deviants; 78 – 348 ms, p < .001) and smaller late 439 

positivities than all deviant types (orientation deviants: 227 – 348 ms, p = .001; colour deviants; 440 

250 – 348 ms, p = .029; object deviants: 250 – 348 ms, p = .022). Over frontal electrodes, 441 

standards evoked smaller early positivities than all deviant types (orientation: 47 – 156 ms, p 442 

= .0012; colour: 98 – 242 ms, p = .002; object: 78 – 242 ms, p < .001) and smaller late 443 

negativities than orientation deviants (234 – 348 ms, p < .001). As in Experiment 1, the vMMN 444 

was sensitive to features of the deviant stimulus (Figure 5C), with object deviants evoking a 445 

significantly larger vMMN (-1.86 ± 0.27 μV) than orientation deviants (-1.10 ± 0.16 μV, t(23) 446 

= -5.40, p < .001, BF10 = 288,942.02) and colour deviants (-1.05 ± 0.19 μV, t(23) = -6.17, p < 447 

.001, BF10 = 22,207,026.78). Again, there was no difference between orientation and colour 448 

vMMNs (t(23) = -0.42, p = .679, BF10 = 0.12).  449 
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 450 
Figure 5. Main effect of prediction in Experiment 2. (A-B) ERPs evoked by standards and deviants 451 
(collapsed across deviant types) at frontal electrodes (Fz, F1, F3, AFz, AF3, AF4; A) and occipital 452 
electrodes (Oz, O1, O2, POz, PO3, PO4; B). Shading indicates the within-subject standard error of 453 
the mean, calculated relative to standards. Black bars along the x-axis denote significant timepoints at 454 
the displayed electrodes (cluster-corrected). (C) ERPs evoked by standards and each of the three 455 
deviant conditions. Shading indicates the within-subject standard error of the mean, calculated 456 
separately for each deviant condition relative to standards. Yellow, red and purple bars along the x-457 
axis denote significant differences between standards and each corresponding deviant condition 458 
(cluster-corrected). (D-E) Headmaps show the effect of prediction (standard minus average deviant) 459 
during the indicated time windows. Asterisks and dots denote electrodes with larger, or smaller 460 
responses, respectively, across at least 33% of the averaged time points (cluster-corrected). 461 

As in Experiment 1, congruent peripheral patterns evoked smaller positivities over posterior 462 

electrodes than incongruent patterns late in the epoch (195 – 273 ms, p = .045; Figure 6B). 463 

However, the polarity-reversed frontal effect observed in Experiment 1 was not significant in 464 

Experiment 2 (230 – 281 ms, p = .127).  465 
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 466 
Figure 6. Main effect of feature-based attention in Experiment 2. (A-B) Congruent and incongruent 467 
ERPs are collapsed across prediction conditions separately for frontal electrodes (Fz, F1, F3, AFz, 468 
AF3, AF4; A) and occipital electrodes (Oz, O1, O2, POz, PO3, PO4; B). Shading indicates the within-469 
subject standard error of the mean. The black bar along the x-axis denotes significant differences at 470 
the displayed electrodes (cluster-corrected). (C-D) Headmaps show the effects of feature-based 471 
attention (congruent minus incongruent) during the indicated time windows. Dots denote electrodes 472 
with smaller responses in at least 33% of the averaged time points (cluster-corrected). 473 

Crucially, we replicated the significant interaction between feature-based attention and 474 

prediction observed in Experiment 1 (Figure 7). Congruent mismatch responses (deviants 475 

minus standards) were significantly smaller than incongruent mismatch responses over 476 

posterior electrodes late in the epoch (242 – 320 ms, p = .048; Figure 7B,H). We also observed 477 

an additional polarity-reversed effect over frontal electrodes that was absent in Experiment 1 478 

(254 – 324 ms, p = .026; Figure 7A,H). Follow-up analyses revealed that feature-based 479 

attention significantly decreased the mismatch response to colour deviants (congruent = -0.01 480 

± 0.17 μV, incongruent = 0.31 ± 0.13 μV, t(23) = -3.52, p = .002, BF10 = 94.83, Figure 7J) and 481 

object deviants (congruent = 0.10 ± 0.21 μV, incongruent = 0.61 ± 0.14 μV, t(23) = -3.66, p = 482 
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.001, BF10 = 51.42, Figure 7K) but only trended in the same direction for orientation deviants 483 

(congruent = 0.40 ± 0.11 μV, incongruent = 0.60 ± 0.10 μV, t(23) = -1.96, p = .062, BF10 = 484 

2.35, Figure 7I). Again, we found no effect of feature-based attention on the vMMN evoked 485 

by any type of deviant (orientation: congruent = -1.09 ± 0.19 μV, incongruent = -1.11 ± 0.15 486 

μV, t(23) = .18, p = .857, BF10 = .12; colour: congruent = -1.08 ± 0.19 μV, incongruent = -1.02 487 

± 0.22 μV, t(23) = -0.42, p = .676, BF10 = .15; object: congruent = -1.96 ± 0.28 μV, incongruent 488 

= -1.76 ± 0.27 μV, t(23) = -1.67, p = .11, BF10 = 0.43; Figure 7C). 489 

Overall, the findings from Experiment 2 replicate those from Experiment 1 to show that 490 

feature-based attention and prediction interact in their modulation of neural responses to stimuli 491 

at task-irrelevant locations. Similar to Experiment 1, this interaction emerged after (but not 492 

during) the vMMN time period for all deviant types, from approximately 240 ms after stimulus 493 

onset.  494 
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 495 
Figure 7. Interaction between feature-based attention and prediction in Experiment 2. (A-B) Average 496 
mismatch response (MMR; average deviant minus standard) collapsed across frontal electrodes (Fz, 497 
F1, F3, AFz, AF3, AF4; A) and occipital electrodes (Oz, O1, O2, POz, PO3, PO4; B). Solid lines 498 
represent the congruent condition and dotted lines represent the incongruent condition. Shading 499 
indicates the within-subject standard error of the mean. The black bar along the x-axis denotes 500 
significant differences at the displayed electrodes (cluster-corrected). (C) Mismatch responses at 501 
occipital electrodes for individual deviant conditions. (D-E) ERPs evoked by standards and deviants 502 
(averaged across deviant types), shown separately for congruent (solid) and incongruent (dotted) 503 
conditions. (F) ERPs for individual deviant conditions, shown separately for congruent (solid) and 504 
incongruent (dotted) conditions. (G-H) Headmaps show the effect of feature-based attention 505 
(congruent minus incongruent) on the average deviant mismatch response (average deviant minus 506 
standard) during the early vMMN (G) and late interaction time windows (H). Asterisks and dots denote 507 
electrodes with larger, or smaller responses, respectively, in at least 33% of the averaged time points 508 
(cluster-corrected). (I-K) Effect of feature-based attention (congruent minus incongruent) on the 509 
orientation mismatch response (I), colour mismatch response (J) and object mismatch response (K) 510 
during the late interaction time window. Note that cluster-based permutation tests were not conducted 511 
on these differences. 512 

Discussion 513 

Here we investigated whether prediction interacts with feature-based attention outside the 514 

spatial focus of attention. To achieve this, we measured neural responses to surprising and 515 

predicted stimuli – deviants and standards, respectively – presented at task-irrelevant locations. 516 
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Task-irrelevant peripheral patterns shared features with either the targets (congruent) or 517 

distractors (incongruent) in a central search task. Across two experiments, we replicated the 518 

finding that feature-based attention decreased neural responses to surprising but not predicted 519 

task-irrelevant stimuli in the periphery of vision. This finding suggests that the global neural 520 

mechanisms of feature-based attention and prediction are interdependent, and supports the 521 

theory that attention increases the gain of prediction errors (Feldman & Friston, 2010).  522 

Consistent with previous literature, prediction modulated early and late neural responses to 523 

stimuli in both experiments (Figures 2 & 5). Early responses (approximately 100 to 160 ms) 524 

over posterior electrodes were more negative for surprising stimuli than predicted stimuli, 525 

consistent with the commonly reported visual mismatch negativity (for a review, see Stefanics 526 

et al., 2014). This finding is broadly consistent with the theory that top-down prediction signals 527 

silence matching bottom-up sensory signals and leave only the remaining prediction error to 528 

propagate forward (Friston, 2005, 2009; Rao & Ballard, 1999). Prediction also reduced the 529 

later positive P3 component (from approximately 250 ms), consistent with the theory that this 530 

component reflects involuntary orienting to novel stimuli (Friedman, Cycowicz, & Gaeta, 531 

2001; Polich, 2007). 532 

We also found that stimuli deviating in two feature dimensions (i.e., object deviants) evoked 533 

larger early negativities than stimuli deviating in only one feature dimension (i.e., orientation 534 

or colour deviants; Figures 2 & 5). This finding contradicts a previous study that found visual 535 

features elicit non-additive mismatch-related brain activity (Sulykos & Czigler, 2011), and 536 

suggests instead that the vMMN is sensitive to the extent of deviation across multiple feature 537 

dimensions. Importantly, object deviants in Sulykos & Czigler (2011) deviated in spatial 538 

frequency and orientation, whereas object deviants in the present study deviated in colour and 539 
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orientation. Thus, future studies should investigate the extent to which mismatch additivity in 540 

the visual domain depends on the specific features involved.  541 

We found that feature-based attention reduced neural responses to task-irrelevant peripheral 542 

patterns from approximately 200 ms after stimulus onset (Figures 3 & 6), consistent with the 543 

commonly reported ‘selection negativity’ (Gledhill et al., 2015). This effect replicated with 544 

low contrast stimuli that likely necessitated a tight focus of spatial attention (Experiment 2), 545 

contradicting the finding that feature-specific modulation of the selection negativity is 546 

contingent on spatial attention (Anllo-Vento & Hillyard, 1996; Hillyard & Münte, 1984) and 547 

suggesting instead that late effects of feature-based attention are globally effective (Gledhill et 548 

al., 2015). Interestingly, we found no difference between neural responses to congruent and 549 

incongruent stimuli earlier in the epoch (Figures 3 & 6), in contrast to a previous study that 550 

reported early effects of feature-based attention on neural responses to stimuli at task-irrelevant 551 

locations (beginning within 100 ms of stimulus onset; Zhang & Luck, 2009). A critical 552 

difference between Zhang & Luck (2009) and the present study is that Zhang & Luck (2009) 553 

had participants search for targets with specific feature conjunctions (luminance and colour), 554 

whereas targets in our study were defined by only a single feature (colour or orientation). Thus, 555 

it is possible that early effects of feature-based attention depend on the complexity of the 556 

attentional set. This interpretation is consistent with a recent study in which we found that 557 

neural responses to high-frequency flickering stimuli outside a search array (12.5 or 16.7 Hz, 558 

corresponding to an 80 or 60 ms cycle) are enhanced by feature-based attention during 559 

conjunction but not unique-feature search (Painter, Dux, Travis, & Mattingley, 2014).  560 

Crucially, we found an interaction between feature-based attention and prediction in each of 561 

the two experiments. Congruent stimuli evoked smaller posterior mismatch responses than 562 
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incongruent stimuli between approximately 200 and 300 ms after stimulus onset. Inspection of 563 

the ERPs revealed that the effect of feature-based attention on neural responses was larger for 564 

deviants than it was for standards. This pattern of results is consistent with our recent finding 565 

that attention enhances the processing of mismatch information from approximately 200 ms 566 

post-stimulus (Smout et al., 2019) and broadly supports the theory that attention enhances the 567 

gain of prediction errors (Feldman & Friston, 2010). Neural responses to surprising stimuli 568 

(deviants) are theorised to be modulated by attention because they contain prediction errors, 569 

whereas neural responses to predicted stimuli (standards) are less affected because they contain 570 

relatively few prediction errors. The present study extends this theory to suggest that feature-571 

specific attentional modulation of prediction errors occurs even when the surprising stimuli are 572 

task-irrelevant and presented outside the spatial focus of attention.  573 

Interestingly, we found that feature-based attention had no effect on the earlier vMMN evoked 574 

by deviants (109 – 160 ms). This pattern of findings contradicts a previous study that found the 575 

vMMN evoked by peripheral stimuli was smaller (more positive) when participants searched 576 

for a change in the deviating feature at fixation, relative to a different feature (Czigler & 577 

Sulykos, 2010). A subtle difference between the paradigms is that participants in Czigler and 578 

Sulykos (2010) searched for a feature ‘change’ at fixation (e.g., a change in the target object 579 

colour), whereas participants in our study searched for specific object onsets. Thus, it remains 580 

possible that subtle differences in the configuration of the attentional set can influence the 581 

timing and direction of the interaction between feature-based attention and prediction.  582 

We manipulated target and distractor salience across the two experiments in order to 583 

investigate whether the strength of the top-down feature set modulates the neural interaction 584 

between prediction and feature-based attention. Although the pattern of neural effects did not 585 
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differ between the two experiments, we observed slightly different behavioural effects as a 586 

function of task difficulty. Responses to highly salient targets (Experiment 1) that appeared 587 

immediately after a congruent pattern were slower than those to targets that appeared after an 588 

incongruent pattern. In contrast, there was no such effect of feature-congruence on responses 589 

to less salient targets (Experiment 2). These findings are broadly consistent with contingent 590 

capture theory (Folk et al., 1992), which proposes that distracting stimuli within the spatial 591 

focus of attention capture attention when they are congruent with the observers’ current 592 

attentional set. Since targets were easily detected in Experiment 1, it seems likely that some 593 

amount of spatial attention ‘leaked’ to the peripheral stimuli, facilitating contingent capture. In 594 

contrast, the higher task difficulty of Experiment 2 likely necessitated a tighter focus of 595 

attention to the central stimuli, thus prohibiting a contingent capture effect.  596 

We did not observe an effect of predictability of peripheral patterns on target detection, or an 597 

interaction between pattern prediction and feature-congruence, in either experiment. This is 598 

consistent with a previous study that failed to find any effect of pattern prediction on response 599 

times to a central feature change target, nor an interaction with task set, at the level of single 600 

trials (though note that this study did report sustained block-wise effects on behaviour; Czigler 601 

& Sulykos, 2010). These findings suggest that the neural bias toward feature-congruent and 602 

surprising stimuli at task-irrelevant locations, observed in the present study, does not interfere 603 

with the concurrent processing of targets at task-relevant locations.  604 

The present study contributes to a burgeoning literature on the relationship between prediction 605 

and attention. Whereas some studies have found an interaction between prediction and 606 

attention (Auksztulewicz & Friston, 2015; Jiang et al., 2013; Kok, Rahnev, et al., 2012; 607 

Marzecová et al., 2017; Smout et al., 2019), many others have reported only independent main 608 
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effects (e.g. Garrido, Rowe, Halász, & Mattingley, 2017; Hsu, Hämäläinen, & Waszak, 2014; 609 

Kok, Jehee, & de Lange, 2012). We note that investigations to date have employed a wide 610 

variety of attention manipulations (e.g., feature-based, spatial, temporal) and prediction 611 

manipulations (e.g., first-order, rule-based) across different sensory modalities (e.g., visual, 612 

auditory). Thus, the equivocal pattern of findings to date may stem from distinct relationships 613 

between different subprocesses of attention and prediction across the various modalities. In 614 

particular, previous studies that found an interaction between visual attention and prediction 615 

presented stimuli at attended locations (Jiang et al., 2013; Kok, Rahnev, et al., 2012; Marzecová 616 

et al., 2017; Smout et al., 2019) or used paradigms that did not require focussed attention to 617 

complete the task (Czigler & Sulykos, 2010), leaving open the possibility that spatial attention 618 

is necessary in the interaction with prediction. The present study extends this literature by 619 

demonstrating that visual predictions interact with feature-based attention to modulate neural 620 

responses to stimuli outside the spatial focus of attention. The nature of this interaction is 621 

consistent with the theory that attention optimises the expected precision of predictions by 622 

modulating the gain of prediction errors (Feldman & Friston, 2010). Future research should 623 

continue to parse ‘attention’ and ‘prediction’ into more precise taxonomies that reflect specific 624 

mechanisms in the brain and investigate potential interactions between each of these 625 

subcomponents. This work could illuminate the extent to which predictive coding theory might 626 

be considered a ‘unified theory of the brain’ (Friston, 2010). 627 
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