
1 

 

Capsule Networks but not Classic CNNs 1 

Explain Global Visual Processing 2 

Adrien Doeriga,†,*, Lynn Schmittwilkena,†, Bilge Sayimb,c, Mauro Manassid & Michael H. Herzoga  3 

a Laboratory of Psychophysics, Brain Mind Institute, EPFL, Lausanne, 1015, Switzerland 4 

b Institute of Psychology, University of Bern, 3012 Bern, Switzerland  5 

c Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France 6 

d Department of Psychology, University of Aberdeen, Aberdeen, Scotland, UK 7 

† Equal contributions 8 

* Corresponding author: adrien.doerig@gmail.com 9 

Keywords: Vision, Neural Networks, Capsule Networks, Crowding, Global Shape Processing, Recurrent 10 

Processing 11 

Abstract 12 

Classically, visual processing is described as a cascade of local feedforward computations. 13 

Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be 14 

and revolutionized computer vision. However, ffCNNs only roughly mimic human vision. They lack 15 

recurrent connections and rely mainly on local features, contrary to humans who use global shape 16 

computations. Previously, using visual crowding as a well-controlled challenge, we showed that no 17 

classic model of vision, including ffCNNs, can explain human global shape processing (1). Here, we 18 

show that Capsule Neural Networks (CapsNets; 2), combining ffCNNs with a grouping and 19 

segmentation mechanism, solve this challenge in a natural manner. We hypothesize that one 20 

computational function of recurrence is to efficiently implement grouping and segmentation. We 21 

provide psychophysical evidence that, indeed, time-consuming recurrent processes implement 22 

complex grouping and segmentation in humans. CapsNets reproduce these results in a natural 23 

manner. Together, we provide mutually reinforcing psychophysical and computational evidence that 24 

a recurrent grouping and segmentation process is essential to understand the visual system and 25 

create better models that harness global shape computations. 26 
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 27 

Introduction 28 

The visual system is often seen as a hierarchy of local feedforward computations (3), going back to 29 

the seminal work of Hubel and Wiesel (4). Low-level neurons detect basic features, such as edges. 30 

Higher-level neurons pool the outputs from the lower-level neurons to detect higher-level features 31 

such as corners, shapes, and ultimately objects. Feedforward Convolutional Neural Networks (ffCNNs) 32 

embody this classic framework of vision and excel at object detection (5). However, despite their 33 

amazing success, ffCNNs only roughly mimic human vision. For example, they lack the abundant 34 

recurrent processing of humans (6, 7), perform differently than humans in crucial psychophysical tasks 35 

(1, 8), and can be easily misled (9–11). Importantly, ffCNNs focus mainly on local, texture-like features, 36 

while humans harness global shape level computations (1, 11–15).  37 

One difficulty in addressing these topics is that there are no widely accepted diagnostic tools to 38 

specifically characterize global shape level computations in neural networks. Models are usually 39 

compared either on computer vision benchmarks, such as ImageNet (16), or with neural responses in 40 

the visual system (17, 18). One drawback with these approaches is that the datasets are hard to 41 

control. Psychophysical results can be used to fill this gap and create well-controlled challenges for 42 

visual models, tailored to target specific aspects of vision (19). Here, we use visual crowding to target 43 

global shape computations in humans and machines.  44 

In crowding, objects that are easy to identify in isolation seem jumbled and indistinct when clutter is 45 

added (1, 20–25). For example, a vernier target is presented, i.e., two vertical lines separated by a 46 

horizontal offset (Figure 1a). When the vernier is presented alone, observers easily discriminate the 47 

offset direction. When a flanking square surrounds the target, performance drops, i.e., there is strong 48 

crowding (26, 27). Surprisingly, adding more flanking squares reduces crowding strongly, depending 49 

on the configuration ( Figure 1b; 25). This global, configurational uncrowding effect occurs for a wide 50 

range of stimuli in vision, including foveal and peripheral vision, audition, and haptics (28–34). The 51 

ubiquity of (un)crowding in perception is not surprising since elements are rarely seen in isolation. 52 

Hence, any perceptual system needs to cope with crowding, i.e., isolating important information from 53 

clutter.  54 

We have shown previously that these global effects of crowding cannot be explained by models based 55 

on the classic framework of vision, including ffCNNs (1, 15, 35). Here, we propose a new framework 56 

to understand these global computations. We show that Capsule Neural Networks (CapsNets; 2), 57 
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augmenting ffCNNs with a recurrent grouping and segmentation process, can explain these complex 58 

global (un)crowding results in a natural manner. Two processing regimes can occur in CapsNets: a fast 59 

feedforward pass able to quickly process information, and a time-consuming recurrent regime to 60 

perform more in depth global grouping and segmentation computations. We will show that the 61 

human visual system indeed harnesses recurrent processing for efficient grouping and segmentation, 62 

and that CapsNets naturally explain this result. Together, our results suggest that a time-consuming 63 

recurrent grouping and segmentation process is crucial for shape-level computations in both humans 64 

and artificial neural networks.  65 

 66 

 67 

Figure 1: a. Crowding: Perception of visual elements deteriorates in clutter, an effect called crowding. In this example, a 68 

vernier (two vertical bars with a horizontal offset) becomes harder to perceive when a square flanker is added (fixate on 69 

the blue dots). b. Uncrowding: A vernier is presented in the visual periphery. The offset direction is easily reported (dashed 70 

red line; the y-axis shows the threshold, i.e., the minimal offset size at which observers can report the offset direction with 71 

75% accuracy). When a square flanker surrounds the vernier, performance deteriorates - a classic crowding effect. When 72 

more squares are added, performance recovers (uncrowding). Critically, the uncrowding effect depends on the global 73 
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stimulus configuration. For example, if some squares are replaced by stars, performance deteriorates again (3rd bar; 25). 74 

c. Routing by agreement in CapsNets: Information propagates between layers of capsules through a recurrent routing 75 

process aiming to maximize agreement between capsules. Each capsule is a group of neurons whose activity vector 76 

represents the pose (such as position, orientation, etc.) of the feature it detects. In this toy example, lower-level capsules 77 

detect simple shapes such as triangles and rectangles. In the next layer, capsules have learnt combinations of these shapes. 78 

Here, the triangle capsule detects a tilted triangle and the rectangle capsule detects a tilted rectangle. Each of these 79 

capsules predicts what is represented at the next layer. For example, the triangle capsule predicts an upside-down house 80 

or a tilted boat, while the rectangle capsule predicts a tilted house or a tilted boat. The recurrent routing by agreement 81 

process routes information between the layers so that agreement is maximized. In this case, capsules agree about the 82 

titled boat, but disagree about the house orientation. Hence, the routing by agreement suppresses activity in the house 83 

capsule and boosts activity in the boat capsule. d. Grouping and segmentation in CapsNets: This recurrent routing by 84 

agreement process endows CapsNets with natural grouping and segmentation capabilities. Here, an ambiguous stimulus, 85 

which can be seen either as an upside-down house (top) or a house on a boat (bottom), is presented. The upside-down 86 

house interpretation leaves parts of the image unexplained and this causes disagreement. Hence, the routing by 87 

agreement will select the latter interpretations because it is the best explanation of the input and therefore maximizes 88 

agreement. Thereby, the house and boat are each grouped as an object and segmented into the corresponding higher-89 

level capsules. 90 

 91 

Results 92 

Experiment 1: Crowding and Uncrowding Naturally Occur in CapsNets 93 

In CapsNets, early convolutional layers extract basic visual features. Recurrent processing combines 94 

these features into groups and segments objects by a process called routing by agreement1. The en-95 

tire network is trained end-to-end through backpropagation. Capsules are groups of neurons repre-96 

senting visual features and are crucial for the routing by agreement process. Low-level capsules iter-97 

atively predict the activity of high-level capsules in a recurrent loop. If the predictions agree, the cor-98 

responding high-level capsule is activated. For example, if a capsule responds to a triangle above a 99 

rectangle detected by another capsule, they agree that the higher-level object should be a house and, 100 

therefore, the corresponding high-level capsule is activated (Figure 1c). This process allows CapsNets 101 

to group and segment objects (Figure 1d). 102 

We trained CapsNets with two convolutional layers followed by two capsule layers to recognize 103 

greyscale images of vernier targets and groups of identical shapes (see Methods). During training, 104 

either a vernier or a group of identical shapes was presented. The network had to simultaneously 105 

 
1 In most implementations of CapsNets, including ours and (2), the iterative routing by agreement process is not explicitly 
implemented as a “standard” recurrent neural network processing sequences of inputs online. Instead, there is an 
iterative algorithmic loop (see (2) for the algorithm), which is equivalent to recurrent processing. 
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classify the shape type, the number of shapes in the group, and the vernier offset direction. 106 

Importantly, verniers and shapes were never presented together during training, i.e., there were no 107 

(un)crowding stimuli during training.  108 

When combining verniers and shapes after training, both crowding and uncrowding occurred (Figure 109 

2a): presenting the vernier target within a single flanker deteriorated vernier offset discrimination 110 

(crowding), and adding more identical flankers recovered performance (uncrowding). Adding config-111 

urations of alternating different flankers did not recover the network’s performance, similarly to hu-112 

man vision. Small changes in the network hyperparameters or stimulus characteristics do not affect 113 

these results (supplementary material). As a control condition, we checked that when the vernier 114 

target is presented outside the flanker configuration, rather than inside, there was no performance 115 

drop (supplementary material). Hence, the performance drop in crowded conditions was due to 116 

crowding and not merely to the simultaneous presence of the target and flanking shape in the stim-117 

ulus.  118 

Reconstructing the input image based on the network’s output (see Methods) shows that (un)crowd-119 

ing occurs through grouping and segmentation (figure 2b). Crowding occurs when the target and 120 

flankers cannot be segmented and are therefore routed to the same capsule. In this case, they inter-121 

fere because a single capsule cannot represent well two objects simultaneously due to limited neural 122 

resources. This mechanism is similar to pooling: information about the target is pooled with infor-123 

mation about the flankers, leading to poorer representations. However, if the flankers are segmented 124 

away and represented in a different capsule, the target is released from the flankers’ deleterious ef-125 

fects and uncrowding occurs (Figure 2c). This segmentation can only happen if the network has learnt 126 

to group the flankers into a single higher-level object represented in a different capsule than the ver-127 

nier target. Segmentation is facilitated when more flankers are added because more low-level cap-128 

sules agree about the presence of the flanker group. 129 

Alternating configurations of different flankers, as in the third configuration of Figure 1b, usually do 130 

not lead to uncrowding (25). In some rare cases, the network produced uncrowding with such config-131 

urations (stimuli h, u ,v & J; Figure 2). Reconstructions show that in these cases the network simply 132 

could not differentiate between different shapes of the flankers (e.g. between circles and hexagons), 133 

and the flankers were segmented away from the target (Figure 2b). This further reinforces the notion 134 

that grouping and segmentation differentiate crowding from uncrowding: whenever the network 135 

reaches the conclusion that flankers form a group, segmentation is facilitated. When this happens, 136 

the vernier and flankers are represented in different capsules, leading to good performance. 137 
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 138 

 139 

Figure 2: a. CapsNets explain both crowding and uncrowding: The x-axis shows the various stimuli. Performance is shown 140 

on the y-axis as the % correct for each stimulus minus the % correct with only the central single flanker. For example, in 141 

column a, vernier offset direction is easier to read out with 5 square flankers than with 1 square flanker, as expected. Error 142 

bars are the standard error over 10 network trainings (we used 10 networks to match the typical number of observers in 143 

human experiments; 25, 36). The blue bars represent configurations for which uncrowding is expected (blue bars larger 144 
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than 0.0 are in accordance with the human data) and orange bars represent configurations for which crowding is expected 145 

(orange bars smaller than or around 0.0 are in accordance with the human data). b. Reconstructions: We reconstructed 146 

the input image based on the output capsules’ activities (see Methods). The reconstructions based on the two most 147 

activated capsules are shown. When the vernier is presented alone (top left), the reconstructions are good. When a single 148 

flanker is added (top right), the vernier reconstruction deteriorates (crowding) because the vernier is not well segmented 149 

from the flanker. When identical flankers are added (bottom left), the vernier reconstruction recovers, i.e., it is well seg-150 

mented from the flankers (uncrowding). With different flankers (bottom right), the vernier is not represented at all in the 151 

two winning capsules (crowding). Interestingly, when the network produces “unexpected” uncrowding (i.e., the network 152 

shows uncrowding contrary to humans; bottom left), the reconstructions strongly resemble the case of “normal” un-153 

crowding (compare middle and bottom left panels). In this case, the network was unable to notice the difference between 154 

circles and hexagons, and treated both stimuli in the same way. c. Segmentation and (un)crowding in CapsNets: If Cap-155 

sNets can segment the vernier target away from the flankers during the recurrent routing by agreement process, un-156 

crowding occurs. Segmentation is difficult when a single flanker surrounds the target because capsules disagree about 157 

what is shown at this location. In the case of configurations that the network has learned to group, many primary capsules 158 

agree about the presence of a group of shapes, which can therefore easily be segmented away from the vernier target. 159 

 160 

Experiment 2: The role of recurrent processing 161 

As mentioned, processing in CapsNets starts with a feedforward sweep followed by recurrent routing 162 

by agreement to refine grouping and segmentation. We hypothesize that humans may use recurrent 163 

processing to efficiently implement grouping and segmentation. To test this hypothesis, we psycho-164 

physically investigated the temporal dynamics of (un)crowding. We show that uncrowding is mediated 165 

by a time-consuming recurrent process in humans. When the target groups with the flankers, crowd-166 

ing occurs immediately. In contrast, when the target and flankers form separate groups, time-con-167 

suming recurrent computations are required to segment the flanker from the target. We successfully 168 

model these results with CapsNets.  169 

First, we performed a psychophysical crowding experiment with a vernier target flanked by either two 170 

lines or two cuboids (see Methods; Figure 3). The stimuli were displayed for varying durations from 171 

20 to 640ms and five observers reported the vernier offset direction. For short stimulus durations, 172 

crowding occurred for both flanker types, i.e., thresholds increased for both the lines and cuboids 173 

conditions compared to the vernier alone condition (lines: p = 0.0017, cuboids: p = 0.0013, 2-tailed 174 

one-sample t-tests). 175 

We quantified how performance changed with increasing stimulus duration by fitting a line 𝑦 =  𝑎𝑥 +176 

𝑏 to the data for each subject, and comparing the mean slope 𝑎 across subjects with 0 in one-sample 177 

2-tailed t-tests. The performance on the lines condition did not significantly change with increasing 178 
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stimulus duration (p = 0.057). These results are in accordance with previous results which show that 179 

crowding varies very little with stimulus duration (37; but see 38, 39). With the flanking cuboids we 180 

found a different pattern of results: performance dramatically improves with stimulus duration (p = 181 

0.0007). This improvement cannot be explained by local mechanisms, such as lateral inhibition (26, 182 

40) or pooling (41–43) since the inner flanking vertical lines are the same in the lines and cuboids. 183 

Hence, according to a local approach we should expect no difference in thresholds between the two 184 

flanking conditions.  185 

 186 

Figure 3: Temporal dynamics of uncrowding: Left: Human data. For cuboid flankers, strong crowding occurs up to 100ms 187 

of stimulus presentation, and then uncrowding gradually occurs for longer durations (i.e., performance improves; blue). 188 

The x-axis shows different stimulus durations and the y-axis shows the corresponding threhsolds (i.e., lower values indicate 189 

better performance). Error bars indicate standard error. Uncrowding does not occur with single line flankers, even for long 190 

stimulus durations (orange). We hypothesize that the cuboids are segmented from the vernier target through time-con-191 

suming recurrent processing (the line flankers are grouped with the target and cannot be segmented at all). Right: Model 192 

data. CapsNets can explain these results by varying the number of recurrent routing by agreement iterations. The x-axis 193 

shows different numbers of routing iterations during testing and the y-axis shows the corresponding error rates (i.e., lower 194 

values indicate better performance). Error bars indicate standard deviation across 30 trained networks (see Methods). 195 

Similarly to humans, both lines and cuboids lead to crowding with few routing by agreement iterations. Performance 196 

increases with routing iterations only for the cuboids. This suggests that recurrent processing helps to compute and seg-197 

ment the complex cuboids, but the lines are immediately strongly grouped with the vernier and can never be segmented. 198 

Hence, they do not benefit from the recurrent segmentation process.  199 

 200 

Crucially, uncrowding occurred for the cuboid flankers only when stimulus durations were sufficiently 201 

long (Figure 3). In contrast, the effect of the line flankers does not change over time. We propose that 202 

these results reflect the time-consuming recurrent computations needed to segment the cuboid 203 

flankers away from the target. Performance does not improve with the line flankers, because they are 204 

too strongly grouped with the vernier target, so recurrent processing cannot segment them away. 205 
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We trained CapsNets with the same architecture as in experiment 1 to discriminate vernier offsets, 206 

and to recognize lines, cuboids and scrambled cuboids (see Methods; the scrambled cuboids were 207 

included only to prevent the network from classifying lines vs. cuboids simply based on the number 208 

of pixels in the image). As in experiment 1, during training, each training sample contained one of the 209 

shape types, and the network had to classify which shape type was present and to discriminate the 210 

vernier offset direction. We used 8 routing by agreement iterations during training. As in experiment 211 

1, verniers and flankers were never presented together during training (i.e., there were no 212 

(un)crowding stimuli).  213 

After training, we tested the networks on (un)crowding stimuli, changing the number recurrent rout-214 

ing by agreement iterations from one (leading to a purely feedforward regime) to 8 iterations (a highly 215 

recurrent regime; Figure 3). We found that CapsNets naturally explain the human results. Using the 216 

same statistical analysis as for humans, we found that with more iterations, the cuboids are better 217 

segmented from the target, and performance improves (p = 0.003). On the other hand, the effect of 218 

the line flankers does not change over time (p = 0.64). These results were not affected by small 219 

changes in network hyperparameters (supplementary material). 220 

These findings are explained by the recurrent routing by agreement process. With cuboids, capsules 221 

across an extended spatial region need to agree about the presence of a cuboid, which is then seg-222 

mented into its own capsule. This complex process requires several recurrent iterations of the routing 223 

by agreement process. On the other hand, the lines are immediately strongly grouped with the vernier, 224 

so further iterations of routing by agreement do not achieve successful segmentation and, hence, 225 

cannot improve performance. 226 

 227 

Discussion 228 

Our results provide strong evidence that time-consuming recurrent grouping and segmentation is 229 

crucial for shape-level computations in both humans and artificial neural networks. We used 230 

(un)crowding as a psychophysical probe to investigate how the brain flexibly forms object 231 

representations. These results specifically target global, shape-level and time-consuming recurrent 232 

computations and constitute a well-controlled and difficult challenge for neural networks. It is well 233 

known that humans can solve a number of visual of tasks very quickly, presumably in a single 234 

feedforward pass of neural activity (44). ffCNNs are good models of this kind of visual processing (17, 235 

18, 45). However, neural activities are not determined by the feedforward sweep alone. Recurrent 236 
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activity is crucial for several reasons (6, 7, 46–49). First, information computed at a higher level can 237 

affect processing of local elements (for example, global configurations of flankers can affect 238 

processing of the local vernier target via feedback). Second, although feedforward networks can in 239 

principle implement any function (50), recurrent networks can implement these functions more 240 

efficiently, by recycling neural resources (48). Third, recurrent networks have the advantage of 241 

affording two distinct processing regimes (6): a fast feedforward pass able to quickly process 242 

information, and a time-consuming recurrent regime to perform more in depth global computations. 243 

CapsNets naturally include both a fast feedforward and a time-consuming recurrent regime. When a 244 

single routing by agreement iteration is used, CapsNets are rapid feedforward networks that can ac-245 

complish many tasks, such as vernier discrimination. With more routing iterations, a recurrent pro-246 

cessing regime arises, and, with it, complex global shape effects emerge, such as computing and seg-247 

menting the cuboids in experiment 2. We showed how these two regimes in CapsNets explain our 248 

psychophysical results about temporal dynamics of (un)crowding by showing how recurrent pro-249 

cessing kicks in when complex global processing is needed.  250 

One limitation in our experiments is that we explicitly taught the CapsNets which configurations to 251 

group together by selecting which groups of shapes were present during training (e.g., only groups of 252 

identical shapes in experiment 1). Effectively, this gave the network adequate priors to produce un-253 

crowding with the appropriate configurations (i.e., only identical, but not different flankers). Hence, 254 

our results show that, given adequate priors, CapsNets explain uncrowding. We have shown previ-255 

ously that ffCNNs do not produce uncrowding, even when they were similarly trained on groups of 256 

identical shapes and showed learning on the training data comparable to the CapsNets (15). This 257 

shows that merely training networks on groups of identical shapes is not sufficient to explain un-258 

crowding. It is the recurrent segmentation in CapsNets that is crucial. Humans do not start from zero 259 

and therefore do not need to be trained in order to perform crowding tasks. The human brain is 260 

shaped through evolution and learning to group elements in a useful way to solve the tasks it faces. 261 

As mentioned, (un)crowding can be seen as a probe into this grouping strategy. Hence, we expect 262 

that training CapsNets on more naturalistic tasks such as ImageNet may lead to grouping strategies 263 

similar to humans and may therefore naturally equip the networks with priors that explain (un)crowd-264 

ing results. At the moment, however, CapsNets have not been trained on such difficult tasks because 265 

the routing by agreement algorithm is computationally expensive. 266 

Recurrent networks are harder to train than feedforward systems, which explains the dominance of 267 

the latter during these early days of deep learning. However, despite this hurdle, recurrent networks 268 
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are emerging to address the limitations of ffCNNs as models of the visual system (7, 46, 48, 49, 51, 269 

52). Our results suggest that one important role of recurrence is shape-level computations through 270 

grouping and segmentation. We had previously suggested another recurrent segmentation network, 271 

hard-wired to explain uncrowding (53). However, CapsNets, bringing together recurrent grouping and 272 

segmentation with the power of deep learning, are much more flexible and can be trained to solve 273 

any task. Linsley et al. (49) proposed another recurrent deep neural network for grouping and seg-274 

mentation, and there are other possibilities too (54, 55). We do not suggest that CapsNets are the 275 

only implementation of grouping and segmentation.  276 

In conclusion, our results provide mutually reinforcing modelling and psychophysical evidence that 277 

time-consuming, recurrent grouping and segmentation play a crucial role for global shape 278 

computations in humans. Recurrence kicks in when efficient grouping and segmentation of complex 279 

global shapes is required. We showed that CapsNets are a good model of this process. ffCNNs and 280 

other local feedforward models of vision, on the other hand, adopt a fundamentally different strategy 281 

for vision, which seems inadequate for human-like global shape computations.  282 

 283 

Methods 284 

The code to reproduce all our results will be available with the journal version of this contribution. 285 

All models were implemented in Python 3.6, using the high-level estimator API of Tensorflow 1.10.0. 286 

Computations were run on a GPU (NVIDIA GeForce GTX 1070). We used the same basic network 287 

architecture in all experiments (Figure 4a). We implemented early feature extraction by using three 288 

convolutional layers without padding, each followed by an ELU non-linearity. We used dropout (56) 289 

after the first and second convolutional layers. The outputs of the last convolution were reshaped into 290 

m primary capsule types outputting n-dimensional activation vectors. The number of output capsule 291 

types was equal to the number of different shapes used as input. The network was trained end-to-292 

end through backpropagation. For training, we used an Adam optimizer with a batch size of 48 and a 293 

learning rate of 0.0004. To this learning rate, we applied cosine decays with warm restarts (57). 294 

This choice of network architecture was motivated by the following rationale (Figure 4b). After 295 

training, ideally, primary capsules detect the individual shapes present in the input image, and output 296 

capsules group and segment these shapes through recurrent routing by agreement. The network can 297 

only group shapes together if it was taught during training that these shapes should form a group. To 298 
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match this rationale, we set the primary capsules’ receptive field sizes to roughly the size of one shape, 299 

and we set the number of output capsules equal to the number of shape types.  300 

Inputs were grayscale images (Figure 4c&d). We added random Gaussian noise with mean 𝜇 = 0 and 301 

standard deviation randomly drawn from a uniform distribution 𝜎 ~ 𝒰(0.00,0.02). The contrast was 302 

varied either by first adding a random value between  -0.1 and 0.1 to all pixel values and then 303 

multiplying them with a random value drawn from a uniform distribution 𝒰(0.6, 1.2), or vice versa. 304 

The pixel values were then clipped between 0 and 1. 305 

 306 

Figure 4: a. Network architecture: We used capsule networks with three convolutional layers whose last outputs was 307 

reshaped into the primary capsule layer with m primary capsule types and n primary capsule dimensions. In this example, 308 

the number of primary and output capsules types is seven to match the seven shape types we used in experiment 1 (see 309 

caption c), but the number depended on the experiment. The primary and output capsule layers communicate via routing-310 

by-agreement. b. Ideal representations: After training, the primary capsules detect single shapes of different types at 311 

different locations. In this example, there are squares, circles and verniers. By routing the outputs of the primary capsules 312 

to the corresponding output capsules, the output capsules group these shapes in groups of one, three or five, based on 313 

the number of shapes detected by the primary capsules. If the left stimulus with three squares is presented, the primary 314 
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square capsules detect squares at three different locations. Through routing by agreement, the output squares capsule 315 

groups these three squares. If the middle stimulus with five circles is presented, the primary circle capsules detect circles 316 

at five different locations. Through routing by agreement, the output circles capsule represents a group of five circles after 317 

routing. Lastly, if a vernier is presented (right stimulus), it is detected by primary capsules and is represented in the vernier 318 

output capsule. c. Training stimuli for experiment 1: All shapes were shown randomly in groups of one, three or five, 319 

except verniers who were always presented alone. d. Testing stimuli for experiment 1: Example stimuli for the four test 320 

conditions: In the vernier-alone condition (left), we expected the network to perform well on the vernier discrimination 321 

task. In crowding conditions (middle-left), we expected a deterioration of the vernier discrimination as in classical crowding. 322 

In uncrowding conditions with many identical flankers (middle-right), we expected a recovery of the vernier discrimination. 323 

In no-uncrowding conditions with different flanker types (right), we expected crowding. After training, the network has 324 

learnt about groups of identical shapes and verniers, but has never encountered these (un)crowding stimuli.  325 

 326 

Experiment 1:  327 

Modelling 328 

Human data for experiment 1 is based on (25). We trained CapsNets with the above architecture to 329 

solve a vernier offset discrimination task and classify groups of identical shapes. The training dataset 330 

included vernier stimuli and six different shape types (Figure 4c). Shapes were presented in groups of 331 

one, three or five shapes of the same type. The group was centered in the middle of the image, with 332 

a jitter of 2 pixels along the x-axis and 6 pixels along the y-axis. 333 

The loss function included a term for shape type classification, a term for vernier offset discrimination, 334 

a term for the number of shapes in the image, and a term for reconstructing the input based on the 335 

network output (see equations 1-5). Each loss term was scaled so that none of the terms dominated 336 

the others. For the shape type classification loss, we implemented the same margin loss as in (2). This 337 

loss enables the detection of multiple objects in the same image. For the vernier offset loss, we used 338 

a small decoder to determine vernier offset directions based on the activity of the vernier output 339 

capsule. The decoder was composed of a single dense hidden layer followed by a ReLU-nonlinearity 340 

and a dense readout layer of two nodes corresponding to the labels left and right. The vernier offset 341 

loss was computed as the softmax cross entropy between the decoder output and the one-hot-en-342 

coded vernier offset labels. The loss term for the number of shapes in the image was implemented 343 

similarly, but the output layer comprised three nodes representing the labels one, three or five shape 344 

repetitions. For the reconstruction loss, we trained a decoder with two fully-connected hidden layers 345 

(h1: 512 units, h2: 1024 units) each followed by ELU nonlinearities to reconstruct the input image. 346 

The reconstruction loss was then calculated as the squared difference between the pixel values of the 347 

input image and the reconstructed image. The total loss is given by the following formulas: 348 
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𝐿𝑡𝑜𝑡𝑎𝑙 =  𝛼𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 + 𝛼𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡349 

+ 𝛼𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝐿𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 + 𝛼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛      (1) 350 

𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 =   ∑ 𝑇𝑘 max(0,  (𝑚+ − ‖𝑣𝑘‖)2) + 𝜆(1 − 𝑇𝑘) max(0,  (‖𝑣𝑘‖ − 𝑚−)2)      (2)

𝑘

 351 

𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡)                  (3) 352 

𝐿𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠353 

= 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡)    (4) 354 

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =  ∑(𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) − 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗))2                                

𝑖,𝑗

                 (5) 355 

Where the 𝛼 are real numbers scaling each loss term, 𝑇𝑘 = 1 if shape class k is present, ‖𝑣𝑘‖ is the 356 

norm of output capsule 𝑘, and 𝑚+, 𝑚− and 𝜆 are parameters of the margin loss with the same values 357 

as described in (2). 358 

After training, we tested vernier discrimination performance on (un)crowding stimuli (figure 4d), and 359 

obtained input reconstructions. We trained 10 different networks and averaged their performance. 360 

Before this experiment, the network had never seen crowding nor uncrowding stimuli, but it knew 361 

about groups of shapes and about the vernier discrimination task. Therefore, the network could not 362 

trivially learn when to (un)crowd by overfitting on the training dataset. This situation is similar for 363 

humans: they know about shapes and verniers, but their visual system has never been trained on 364 

(un)crowding stimuli. 365 

 366 

Experiment 2:  367 

Psychophysical experiment: 368 

Observers 369 

For experiment 2, we collected human psychophysical data. Participants were paid students of the 370 

Ecole Polytechnique Fédérale de Lausanne (EPFL). All had normal or corrected-to-normal vision, with 371 

a visual acuity of 1.0 (corresponding to 20/20) or better in at least one eye, measured with the Frei-372 

burg Visual Acuity Test. Observers were told that they could quit the experiment at any time they 373 

wished. Five observers (two females) performed the experiment. 374 

Apparatus and stimuli 375 
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Stimuli were presented on a HP-1332A XY-display equipped with a P11 phosphor and controlled by a 376 

PC via a custom-made 16-bit DA interface. Background luminance of the screen was below 1 cd/m2. 377 

Luminance of stimuli was 80 cd/m2. Luminance measurements were performed using a Minolta Lu-378 

minance meter LS-100. The experimental room was dimly illuminated (0.5 lx). Viewing distance was 379 

75 cm. 380 

We determined vernier offset discrimination thresholds for different flanker configurations. The ver-381 

nier target consisted of two lines that were randomly offset either to the left or right. Observers indi-382 

cated the offset direction. Stimulus consisted of two vertical 40’ (arcmin) long lines separated by a 383 

vertical gap of 4’ and presented at an eccentricity of 5° to the right of a fixation cross (6’ diameter). 384 

Eccentricity refers to the center of the target location. Flanker configurations were centered on the 385 

vernier stimulus and were symmetrical in the horizontal dimension. Observers were presented two 386 

flanker configurations. In the lines configuration, the vernier was flanked by two vertical lines (84’) at 387 

40’ from the vernier. In the cuboids configuration, perspective cuboids were presented to the left and 388 

to the right of the vernier (width = 58’, angle of oblique lines = 135◦, length = 23.33’). Cuboids con-389 

tained the lines from the Lines condition as their centermost edge. 390 

Procedure 391 

Observers were instructed to fixate a fixation cross during the trial. After each response, the screen 392 

remained blank for a maximum period of 3 s during which the observer was required to make a re-393 

sponse on vernier offset discrimination by pressing one of two push buttons. The screen was blank 394 

for 500 ms between response and the next trial. 395 

An adaptive staircase procedure (PEST; 58) was used to determine the vernier offset for which ob-396 

servers reached 75% correct responses. Thresholds were determined after fitting a cumulative Gauss-397 

ian to the data using probit and likelihood analyses. In order to avoid extremely large vernier offsets, 398 

we restricted the PEST procedure to not exceed 33.3’ i.e. twice the starting value of 16.66’. Each con-399 

dition was presented in separate blocks of 80 trials. All conditions were measured twice (i.e., 160 400 

trials) and randomized individually for each observer. To compensate for possible learning effects, the 401 

order of conditions was reversed after each condition had been measured once. Auditory feedback 402 

was provided after incorrect or omitted responses. 403 

Modelling: 404 

To model the results of experiment 2, we trained our CapsNets to solve a vernier offset discrimination 405 

task and classify verniers, cuboids, scrambled cuboids and lines. The training dataset included vernier 406 

stimuli and one of three different shape types (lines, cuboids, scrambled cuboids). The scrambled 407 
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cuboids were included to make the task harder, and to prevent the network from classifying cuboids 408 

simply based on the number of pixels in the image. The line stimuli were randomly presented in a 409 

group of 2, 4, 6 or 8. Both, cuboids and shuffled cuboids were always presented in groups of two 410 

facing one another. The distance between these shapes was varied randomly between one and six 411 

pixels. The loss function was very similar to experiment 1, but without the loss term for shape repeti-412 

tions, since there were no repetitions (each term is the same as in eqs. 1-5): 413 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 + 𝛼𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝛼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (6) 414 

After training, we tested the network’s vernier discrimination performance on (un)crowding stimuli 415 

(verniers surrounded by either lines, cuboids or scrambled cuboids), while varying the number of 416 

recurrent routing by agreement iterations. We trained the same network 50 times and averaged per-417 

formance over these trained networks, excluding 21 networks for which vernier discrimination per-418 

formance with both line and cuboid flankers was at ceiling (>=95%) or floor (<=55%). This exclusion 419 

criterion is used for cleaner results and does not impact the crucial result showing that uncrowding 420 

occurs with increasing routing iterations only with cuboid, but not with line flankers. The effect still 421 

occurs when all 50 networks are included in the analysis, but the fact that certain networks are at 422 

floor or ceiling is misleading. Before this experiment, the network had never seen (un)crowding stim-423 

uli, but it knew about cuboids, scrambled cuboids and about the vernier discrimination task. There-424 

fore, the network could not trivially learn when to (un)crowd by overfitting on the training dataset. 425 
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Supplementary Material 552 

Experiment 1 553 

Results are robust against stimuli and hyperparameters changes 554 

To avoid cherrypicking our hyperparameters, we ran several networks with different hyperparameter 555 

sets, and show that our results are robust with respect to these changes. 556 

The results of experiment 1 remain qualitatively similar for different image sizes and network 557 

hyperparameters. Below is a selection of results using different sets of hyperparameters. In all these 558 

cases, both crowding and uncrowding occur, similarly to the results shown in Figure 2. 559 

 560 

 561 
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Supplementary Figure 1: Results for 16x72 pixel images. Both crowding and uncrowding occur similarly to the results in 562 

figure 2. Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. With 563 

these small images, we often encountered ceiling effects. We trained 20 networks and dropped those that were at 564 

ceiling (i.e., we dropped networks that were at 100% performance for all conditions). 565 

 566 

 567 

Supplementary Figure 2: 20x72 pixel images. Both crowding and uncrowding occur similarly to the results in figure 2. 568 

Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. Stimuli not 569 

shown for panels b&c, for clarity. 570 
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 571 

Supplementary Figure 3: 30x72 pixel images. Both crowding and uncrowding occur similarly to the results in figure 2. 572 

Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. 573 

 574 

Performance deterioration is due to crowding 575 

As a control to check that performance dropped because of crowding and not merely because of the 576 

simultaneous presentation of a vernier target and another shape, we measured performance when 577 

the vernier was presented outside, rather than inside, flanking shapes. Performance does not drop in 578 
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this case, compared to when the vernier is presented alone. This suggests that performance drops 579 

because of crowding in the networks. 580 

 581 

Supplementary Figure 4: Performance deterioration is due to crowding. The x-axis shows different conditions shown on 582 

the right, the y-axis shows vernier offset discrimination percent correct. Vernier accuracy does not decrease when the 583 

vernier is presented outside flanking shapes compared to the vernier alone condition. 584 

 585 

Experiment 2 586 

Results are robust against stimuli and hyperparameters changes 587 

To avoid cherrypicking our hyperparameters, we ran several networks with different hyperparameter 588 

sets, and show that our results are robust with respect to these changes. 589 

The results of experiment 2 remain qualitatively similar for different network hyperparameters. Below 590 

is a selection of results using different sets of hyperparameters. In both these cases, performance on 591 

the cuboids condition, but not the lines condition, drastically improves with the number of recurrent 592 

routing by agreement iterations (network a: lines: p = 0.041 vs. cuboids p = .0.0005, network b: lines: 593 

0.11 vs. cuboids p=0.006). In network a, the lines show a marginally significant improvement, but the 594 

p-value is 100 times smaller than for the cuboids. 595 
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 596 

Supplementary Figure 5: Experiment 2 results are reproduced with different network hyperparameters. The x-axis shows 597 
different numbers of routing iterations during testing and the y-axis shows the corresponding error rates (i.e., lower values 598 
indicate better performance). Error bars indicate standard deviation across N trained networks (see Methods).  599 
Performance increases drastically with recurrent routing iterations only for the cuboids condition, and not for the lines 600 
condition. A difference with the results shown in figure 3 is that performance with cuboids flankers is worse than 601 
performance with line flankers at early iterations. This may be explained by the far greater amount of pixels in cuboids 602 
than lines, increasing the interference between the cuboids and the vernier until the cuboids are segmented away. As the 603 
results exhibited in Figure 3 show, this effect can be mitigated through adequate hyperparameter choice. However, in this 604 
experiment, we focused on demonstrating that only the cuboids benefit from additional routing iterations, and this result 605 
is very stable across hyperparameter changes. 606 
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