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Abstract 18 

Experimental error, especially through genotype misclassification and pedigree errors, negatively 19 

affects breeding decisions by creating ‘noise’ that compounds the genetic signals for selection. 20 

Unlike genotype-by-environment interactions, for which different methods have been proposed 21 

to address, the effect of ‘noise’ due to pedigree errors and misclassification has not received 22 

much attention in most crops. We used two case studies in sweetpotato, based on data from the 23 

International Potato Center’s breeding program to estimate the level of phenotype 24 

misclassification and pedigree error and to demonstrate the consequences of such errors when 25 

combining phenotypes with the respective genotypes. In the first case study, 27.7% phenotype 26 

misclassification was observed when moving genotypes from a diversity panel through in-vitro, 27 

screenhouse and field trialing. Additionally, 22.7% pedigree error was observed from 28 

misclassification between and within families. The second case study involving multi-29 

environment testing of a full-sib population and quantitative trait loci (QTL) mapping showed 30 

reduced genetic correlations among pairs of environments in mega-environments with higher 31 

phenotype misclassification errors when compared to the mega-environments with lower 32 

phenotype misclassification errors. Additionally, no QTL could be identified in the low genetic 33 

correlation mega-environments. Simulation analysis indicated that phenotype misclassification 34 

was more detrimental to QTL detection when compared to missingness in data. The current 35 

information is important to inform current and future breeding activities involving genomic-36 

assisted breeding decisions in sweetpotato, and to facilitate putting in place improved workflows 37 

that minimize phenotype misclassification and pedigree errors. 38 
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Introduction 44 

It is a generally accepted concept that the environment in which an organism is placed affects the 45 

expression and function of genes responsible for a trait (Allard and Bradshaw, 1964; Baye et 46 

al., 2011). The magnitude of phenotypic plasticity to adapt to different environments is 47 

genotype-dependent, hence the environment can interact with a genotype to shape the phenotypic 48 

traits, leading to genotype-by-environment (GE) interaction (Genard et al., 2017). In plant 49 

breeding, GE interaction is expressed as either genotypic rank-change among genotypes due to 50 

varied responses to changing environments or as absolute change in trait values without a rank 51 

change (Crossa, 2012). Since these interactions are unpredictable as the environments 52 

themselves, they confound breeding efficiency and reduce genetic gains from plant breeding 53 

(Crossa, 2012; Osei et al., 2018). 54 

The need to account for GE interactions in making plant breeding decisions has become 55 

even dire with the current advent in applying genomic selection to increase breeding efficiency. 56 

Defined by Meuwissen et al. (2001), genomic selection is a breeding tool that uses information 57 

from all molecular markers across the genome to predict the breeding value of an individual. To 58 

be applied, this tool requires testing of models using phenotypic and genotypic information from 59 

a sample of the breeding population selected to represent the diversity (training population) in 60 

the said breeding population that is targeted for prediction (prediction population). This approach 61 

therefore calls for generating both phenotypic and genotypic data of the training population, and 62 

only genotypic data for the untested prediction population. The development of next-generation, 63 

high-throughput genotyping methods like genotyping-by-sequencing (Elshire et al., 2011) have 64 

drastically reduced genotyping costs thereby enhancing generation of large volumes of genotypic 65 

data quite fast. This has therefore left phenotyping as the bottleneck in plant breeding. 66 

Precise phenotypic data of the training population is a prerequisite for improving the 67 

accuracy of predicting untested genotypes in genomic selection models (Velazco et al., 2017). 68 

However, GE interactions are known to increase with increasing number of genotypes and 69 

environments. Allard and Bradshaw (1964) showed that GE interactions calculated as 70 

�� �����	
����� 

��!

�!�!
 , lead to exponential increase in interactions as both genotypes and 71 

environments increase. For example, they showed that two genotypes in two environments 72 

would result in about four GE interactions while 10 genotypes in 10 environments would result 73 

in up to 400 GE interactions. Plant breeding experiments always deal with far greater numbers of 74 

genotypes. Additionally, the unbalanced nature of the number of genotypes and experimental 75 

designs in most plant breeding experiments increases heterogeneity thereby complicating the 76 

variance-covariance structures of phenotypic observations (Bernal-Vasquez et al., 2014). Linear 77 

mixed models have been generally applied to analyze for GE interactions in plant breeding 78 

experiments (Piepho, 1997; 1998; Piepho and Moehring, 2005; Smith et al., 2005, Crossa et 79 

al., 2006).  80 

The sheer large number of genotypes tested in early breeding stages means that 81 

experimental plots are large hence leading to local heterogeneity within experiments. To further 82 

improve prediction accuracies, different spatial adjustment models have been fronted to help deal 83 

with heterogeneity in experiments especially in these large early stage breeding trials (Lado et 84 

al., 2013; Bernal-Vasquez et al., 2014; Piepho et al., 2015; Velazco et al., 2017; Ward et al., 85 

2019). Multidisciplinary teams are therefore continually working to improve the precision of 86 

measuring the phenotypes of the training populations to improve predictive ability of genomic 87 

selection in plant breeding, as summarized by Ward et al. (2019). Several of these teams have 88 

shown that considering GE interactions and spatial adjustments contributed to increased 89 
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predictive ability. Lado et al. (2013) showed increased predictive ability with spatial adjustment 90 

of trial data in wheat. Elias et al. (2018) showed increase in predictive ability by about 3.4% in 91 

cassava following spatial adjustment. Ward et al. (2019) showed that correcting for spatial 92 

variation improved across location heritability by 25% but not prediction accuracy whereas 93 

correcting for GE interactions increased prediction accuracy by 9.8% in early breeding stage 94 

evaluation of wheat.  95 

Whereas random GE interactions and spatial variation have been statistically proven to 96 

affect the precision of measuring the phenotype, the question that is not often answered is: how 97 

much of the variation observed from one experiment to the next is actually due to GE 98 

interactions? Although already a known problem in the statistical world (Schlimmer and 99 

Granger, 1986), with suggestions on data quality and cleaning (Rahm and Do, 2000; Guillet 100 

and Hamilton, 2007), experimental noise especially resulting from human error is the most 101 

difficult to correct using statistical methods. Such errors are mainly due to mislabeling, hence 102 

misclassification of study genotypes in different experiments which may also be presented as GE 103 

interaction in data. Despite this, there are currently very few studies addressing and reporting 104 

experimental noise in plants (Biscarini et al., 2016). 105 

Sweetpotato is an important crop for food and nutrition security especially in sub-Saharan 106 

Africa (SSA). Having a complex, autohexaploid, genome ensured that genomics-assisted 107 

breeding has lagged behind for this crop. However, global efforts are now in place to ensure that 108 

new breeding tools such as genomic selection and marker-assisted selection are applied to 109 

benefit small-holder farmers and consumers of sweetpotato in SSA. In the current study we 110 

aimed to answer the following questions: i) how much mislabeling can be expected through 111 

different stages of population development for trialing within a breeding program, ii) what would 112 

be the effect of such mislabeling mistakes on marker-trait associations, iii) what are the effects of 113 

different proportions of mislabeling versus missingness using simulations on real data; iv) what 114 

would be the implications of such findings on designing a genomics-assisted breeding strategy 115 

for sweetpotato. We use two case studies and simulation based on data from some of the 116 

sweetpotato populations being used for genetic studies in preparation for deploying genomics-117 

assisted breeding methods for sweetpotato improvement. All data are based on the global 118 

sweetpotato breeding program of the International Potato Center (CIP) through its various 119 

regional and sub-regional breeding platforms. 120 

Materials and Methods 121 

Case Study 1: Genetic fidelity in the Mwanga Diversity Panel (MDP), a genetic study 122 

breeding population 123 

Genetic materials 124 

The MDP population was developed from the sweetpotato breeding platform for east and central 125 

Africa of the International Potato Center (CIP). It is made up of a diallel cross among 16 parents 126 

from this breeding platform, coming from two gene pools (here A and B) separated by SSR 127 

markers (David et al., 2018). There are 64 families (8B by 8A crosses) each with 30 genotypes 128 

on average. Sweetpotato is mainly outcrossing, self-incompatible and heterozygous. Apart from 129 

the crossing step where propagation is by seed, sweetpotato is clonally propagated throughout 130 

the other stages of the breeding process. Therefore, each seed is potentially a different genotype. 131 

This population was established for the purpose of genetic studies in developing tools for genetic 132 

linkage in multi-family breeding populations, genome-wide association mapping and genomic 133 

selection for complex autopolyploid genomes. 134 
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 135 

Population establishment and trialing 136 

The process of establishing this population is shown in the flowchart below (Figure 1). In 137 

summary, the crossing among parents was done in CIP-Uganda, where the seed inventory was 138 

established. Then seed was shipped to CIP-Kenya for in vitro germination, where the population 139 

is maintained in vitro. Sweetpotato, which almost behaves like a weed, is not in vitro-friendly 140 

hence requires constant multiplication and regeneration in vitro. Also, sweetpotato seed requires 141 

scarification protocols to germinate the seed which means that not all seed were successfully 142 

germinated the first time per family and new seed shipments were required for such families 143 

from CIP-Uganda to CIP-Kenya. After in vitro establishment, the population was then shipped 144 

back to CIP-Uganda for trialing. Since the population could not be established in vitro at the 145 

same time, in vitro plantlets were also shipped back to CIP-Uganda from CIP-Kenya in batches. 146 

As each individual seed in sweetpotato is a potential new variety, the in vitro plantlets 147 

need to be grown in a screenhouse for cloning. Additionally, for experimentation, screenhouse 148 

plants need to be multiplied further through vines to have enough planting materials for 149 

experiments. The most important virus disease for sweetpotato is sweetpotato virus disease 150 

(SPVD), a complex caused by the synergistic interaction of Sweet potato feathery mottle virus 151 

and Sweet potato chlorotic stunt virus, transmitted by aphids and whiteflies, respectively (Clark 152 

et al., 2012). Since the CIP support platform in Uganda is located in Namulonge, a hotspot for 153 

SPVD, the vines cloned from screenhouses need to be multiplied in net tunnels that keep away 154 

the virus vectors to furnish virus-free planting materials for experiments. As part of quality 155 

control (QC) and quality assurance (QA), each net tunnel is planted with only genotypes from 156 

the same family.  The vines for experimentation are taken from these net tunnels to the field 157 

experiments in Uganda. As part of QC/QA also, the two teams at CIP-Uganda and CIP-Kenya 158 

worked closely together. However, with a large population, barcodes were not used at all stages 159 

hence anticipation of some degree of human error.  160 

Molecular quality control for genetic fidelity through the various transfer stages 161 

During the first season of field trialing (2018), we randomly sampled about 5% of the population 162 

from in vitro, screenhouse and field experiments from one of the three field locations. Given that 163 

this is a breeding population developed from a diallel cross, our specific objectives were: i) to 164 

evaluate genetic fidelity following movement from in vitro to screenhouse and then to field; ii) to 165 

examine the level of mislabeling between and within families due to the population 166 

establishment process. The field and screenhouse sampling were done at the National Crop 167 

Resources Research Institute (NaCRRI) in Uganda, while in vitro sampling was carried out in 168 

the Biosciences eastern and central Africa - International Livestock Research Institute (BecA-169 

ILRI) Hub based in Nairobi, Kenya. The random sampling resulted in 13 out of the 64 families 170 

sampled, with an average of seven genotypes per family resulting in 94 samples hence three 171 

DNA plates were sent for genotyping (one each from in vitro, screen house and field). Although 172 

structure analysis does not require a high-density marker set, the complexity of the sweetpotato 173 

genome has ensured that a QC/QA low density marker set for routine use was still unavailable 174 

for sweetpotato breeding programs at CIP and African National Research Institutions (NARIs). 175 

Therefore, the three plates were genotyped at high density using Diversity Arrays Technology’s 176 

(DArT) sequencing-based technology (DArTseq) implemented by the Integrated Genotyping 177 

Service and Support (IGSS), based at BecA-ILRI in Nairobi. The high-density genotyping 178 

resulted in about 41,194 SNPs (Supplementary Table 1). Hard filtering of these based on 179 
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polymorphic information content (PIC) ≥ 0.25, minimum allele frequency ≥ 20% and call rate ≥ 180 

90% left 11,622 SNPs that were used to develop a distance matrix and a phylogenetic tree. We 181 

used diploidized SNPs (SNPS without ploidy dosage information) for this study. The distance 182 

matrix and phylogenetic tree were generated using DARwin 6.0.21 (Perrier and Jacquemoud-183 

Collet, 2006). Afterwards the clustering was examined based on positions on the tree and Sankey 184 

diagrams developed using the Alluvial package (Bojanowski and Edwards, 2016) in R. 185 

 186 

Results of the QC experiment 187 

The phylogenetic tree based on distance matrix (Figure 2) indicated expected clustering of same 188 

genotypes from in vitro, screenhouse and field of a larger percentage of the genotypes tested. 189 

However, an additional percentage of tested genotypes such as I28 (meaning in vitro 28) and its 190 

counterparts in the screenhouse and field, S28 and F28, respectively, did not cluster as expected 191 

indicating a level of mislabeling error (Supplementary Figure 1). The summary of the tree 192 

order, genotype names, phenotypically assigned families, families suggested by the genetic 193 

distance matrix, and the female and male parents of each phenotypically assigned family are 194 

shown in Supplementary Table 2. Analysis of the tree order indicated that 26 out of 94 195 

genotypes tested did not cluster as expected among in vitro, screen house and field samples 196 

thereby indicating about 27.7% labeling errors as the germplasm moved from in vitro to 197 

screenhouse and then to the field (Figure 3, Top). Analysis for between and within family 198 

mislabeling indicated that 64 out of the 282 tested genotypes did not belong to the phenotypic 199 

assigned families as indicated by genetic distance. This indicated that we had about 22.7% 200 

mislabeling error between and within families (Figure 3, Bottom). 201 

 202 

Case Study 2. Quantitative trait loci-by-environment (QTL x E) analysis of a biparental 203 

population  204 

Genetic materials 205 

A 315-progeny biparental population developed from a cross between Beauregard and Tanzania 206 

cultivars was evaluated in a multi-environment testing (MET) experiment in three countries: 207 

Peru, Ghana and Uganda. The two parents segregate for various traits of interest in sweetpotato 208 

such as β-carotene, starch, dry matter and yield related traits. Beauregard is a US-bred variety 209 

while Tanzania is an African farmer selected variety. Additional information about this 210 

population can be found in Pereira et al. (2019) and Gemenet et al. (2019; submitted).  211 

Population establishment and trialing 212 

The chain of trial establishment is presented in Figure 4. Crossing of the two parents, seed 213 

inventory, in vitro germination/maintenance, DNA extraction were all carried out in CIP-Peru. 214 

DNA was then shipped to the Genomic Science Laboratory (GSL) at the North Carolina State 215 

University (NCSU) for genotyping. Additionally, the in vitro plantlets were shipped to Ghana 216 

and Uganda. Screenhouse/net tunnel and field multiplication for trialing was carried out in Peru, 217 

Ghana and Uganda. After multiplication, six field experiments were carried out in three locations 218 

of Peru over two years (2016-2017), eight field experiments were carried out in three locations of 219 

Ghana over three years (2016-2018), and six field experiments were carried out in three locations 220 

of Uganda over two years (2017-2018). The trials in Peru were grown in Ica (latitude 14° 01' 221 

44.7" S, longitude 75° 44' 37.5" W), San Ramon (11°07'29"S, 75° 21' 25" W) and Pucallpa (8° 222 

23' 34.3'' S, 74° 34' 57.4'' W). In Uganda, the experiments were grown in Namulonge (0° 31' 223 
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17.99" N, 32° 36' 32.39" E), Serere (1° 29' 59.99" N, 33° 32' 59.99" E) and Kachwekano (1° 15' 224 

0" S, 29° 57' 0" E). In Ghana, the experiments were grown in Wenchi (7° 44' 0" N, 2° 6' 0" W), 225 

Fumesua (6° 42' 39.41"N, 1° 31' 2.03"W) and Nyankpala (9° 24' 0" N, 0° 58' 60" W). In Peru, 226 

the experiments in Ica were grown under two treatments: terminal drought (where irrigation was 227 

stopped at 70 days after transplanting (DAT)) and control (optimal) where irrigation was 228 

continued until harvest at 120 DAT. They are hereby abbreviated as Ica16D, Ica16C, Ica17D, 229 

Ica17C, indicating the location, year and treatment (D = drought; C = control) while the 230 

experiments in San Ramon and Pucallpa were grown only under optimal conditions in 2016, 231 

hereby abbreviated as SR16 and Puc16, respectively. In Uganda, all experiments were grown 232 

under optimal conditions and abbreviated as Nam16 and Nam17 for Namulonge in 2016 and 233 

2017 respectively, Ser16 and Ser17 for Serere in 2016 and 2017 respectively, and Kac16 and 234 

Kac17 for Kachwekano in 2016 and 2017 respectively. In Ghana, except for Nyankpala and 235 

Fumesua in 2016 both abbreviated as (Nya16 and Fum16, respectively), all other experiments 236 

were grown under terminal drought and control (optimal) treatments as described for Peru. They 237 

are abbreviated as Wen17D and Wen17C for Wenchi; Nya17D, Nya17C, Nya18D and Nya18C 238 

for Nyankpala 2017 and 2018 respectively (D = drought; C = control). Locations are shown in 239 

Supplementary Figure 2. 240 

  All the 315 genotyped progeny and parents were evaluated in Peru and Uganda. In 241 

Ghana, due to problems in multiplication, subsets ranging from 238-270 genotypes were 242 

evaluated in the eight experiments. The design was alpha lattice for all experiments in Peru, 243 

while randomized complete block design was used for experiments in Ghana and Uganda, each 244 

with at least two replications. Several yield- and quality-related traits were measured in these 245 

trials as described in Pereira et al. (2019) and Gemenet et al. (2019; submitted). Data were 246 

collected per plot and converted to per hectare based on plot sizes per experiment. For the 247 

purposes of this case study, we used only the total storage root yield in tons per hectare (rytha), 248 

for two reasons: First this trait is easier to standardize measurement across the different trials 249 

without introducing too much bias. It is measured by weighing all storage roots per plot 250 

regardless of whether they are of marketable size or not. Separating roots into marketable and 251 

non-marketable size creates subjectivity as there is not an automated way and breeders in these 252 

regions use an estimation (i.e. anything less than 100g is non-marketable and vice-versa, which 253 

is subjective as the size is by visual estimation). Secondly, because storage root yield is our 254 

primary trait in addition to other quality attributes. Our objectives were: i) to calculate genetic 255 

correlations between pairs of environments; ii) to define mega-environments among the study 256 

test sites; iii) to map QTL within and between mega-environments; iv) to simulate different 257 

proportions of misclassification through permutation, and missingness to estimate their effects on 258 

QTL detection. The raw data used in this analysis is presented in Supplementary Table 3. 259 

Data analysis 260 

Phenotypic data 261 

To analyze the phenotypic data a two-stage multi-environment testing (MET) analysis approach 262 

was applied because different experimental designs were used across environments. In the first 263 

stage, single environment analyses were performed for all environments individually. A mixed 264 

model, taking into account the respective experimental design, was fitted to the phenotypic data 265 

(rytha trait). When plot coordinates were available, i.e. for the Peru trials, and when spatial field 266 

effects were significant, a spatial adjustment was incorporated in the mixed model. Filtering out 267 
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such significant spatial field effects reduces the residual noise so that the actual genetic signal 268 

becomes more pronounced. Genotype was considered as a fixed effect in these mixed models, so 269 

that best linear unbiased estimators (BLUEs) for the genotypic rytha means were obtained per 270 

environment. In the second stage, another mixed model was fitted to the table of estimated 271 

means. A weighting scheme based on the standard errors of the estimated genotype means per 272 

environment was used in this mixed model. This meant that, on average, more weight was given 273 

to trials with a higher heritability. Based on the genetic correlations between environments 274 

estimated using this fitted mixed model, mega-environments were determined. Finally, and in a 275 

similar way, a mixed model was fitted using only estimated genotype means from the 276 

environments belonging to a mega-environment, which was then used for inference about that 277 

specific mega-environment. The genetic variances of, and the genetic correlations between, 278 

environments belonging to a certain mega-environment were estimated, and best linear unbiased 279 

predictors (BLUPs) across that mega-environment. Also BLUEs across each mega-environment 280 

were estimated by fitting a similar mixed model taking genotype as a fixed effect. The BLUEs 281 

were then used in QTL mapping. 282 

Mapping of quantitative trait loci in mega-environments 283 

Genotyping of the mapping population was done using the GBSpoly protocol optimized for 284 

sweetpotato and described by Wadl et al. (2018). Variant calling and dosage assigning for the 285 

hexaploid data was carried out as described in Pereira et al. (2019) and Mollinari et al. (2019). 286 

QTL mapping was carried out based on the phased genetic linkage map (Mollinari et al., 2019) 287 

developed using the MAPpoly program (Mollinari and Garcia, 2019) optimized for polyploids. 288 

The genetic linkage map is available interactively at https://gt4sp-genetic-289 

map.shinyapps.io/bt_map/. The QTL analysis was done following the random effect model 290 

approach developed for polyploids and described by Pereira et al. (2019). Analysis of QTL for 291 

single environments (SE) within mega environments (ME) was carried out based on the BLUEs 292 

from the first analytical stage of the two-stage mixed model analysis described above. QTL 293 

analysis at the ME level was carried out using BLUEs from the second analytical stage.  294 

Simulations to compare effects of missingness vs misclassification on QTL mapping 295 

In order to assess the detection rate of previously identified QTL, we performed QTL analyses 296 

with increasing proportion of randomly permuted individuals, to represent misclassified 297 

individuals (200 simulations each at 10%, 20%, 30%, 40% and 50%) using rytha and flesh color 298 

(FC) adjusted means. The simulations were based on data from Peru only whose quality had 299 

been upheld and for which QTL have already been reported (Pereira et al., 2019; Gemenet et 300 

al., 2019; submitted). Subsequently, we replaced the permuted individuals from each simulation 301 

with missing data and carried out new QTL analyses on these reduced samples to represent 302 

missingness. We chose to include flesh color together with rytha in the simulation study to 303 

represent both complex and simple traits respectively. As for the MET data above, QTL 304 

detection for the simulated data was carried out using QTLpoly software (Pereira et al., 2019) 305 

based on a forward search followed by a backward elimination with the respective pointwise 306 

thresholds of � � 0.01 and 0.001.  307 

 308 

Results 309 

Single environment analysis 310 
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Significant genotypic variation was observed among genotypes in all single environments (SE) 311 

as indicated by box plots of BLUEs in Figure 5. It is also evident from Figure 5D that 312 

considering spatial variation significantly improved correlation among single experiments in 313 

Peru which had a field map for rows and columns to allow for some spatial adjustments, as 314 

compared to Ghana and Uganda which did not. We dropped Kac17 and Nya16 from further 315 

analysis after preliminary analysis showed that the yields of these trials were extremely outlying, 316 

relatively low and high respectively, compared to the other trials in the same country.  317 

Multi-environment analysis 318 

At the second stage of the MET analysis, genotype distributions among BLUPs per experiment 319 

indicated genetic variation among the 18 experiments taken together, as indicated by boxplots 320 

based on BLUPs (Figure 6A). Additionally, correlations among BLUPs for the 18 environments 321 

indicated two clear MEs (Figure 6B). Only two of the experiments in Ghana showed some 322 

correlation with some experiments from Peru and Uganda, and these were not correlated with the 323 

other experiments in Ghana. ME1 was made up of five experiments from Ghana, while ME2 was 324 

made up from 11 experiments: six from Peru, three from Uganda and two from Ghana, though 325 

the two environments from Ghana were less correlated with the rest. For further analyses, we 326 

chose to use only nine experiments from Uganda and Peru which had higher correlations among 327 

BLUPs of ME2. Genetic correlations among pairs of environments were low-to-moderate 328 

ranging from r = 0.29 to r = 0.65 in ME1 (five Ghana environments; Figure 6C) and moderate-329 

to-high, ranging from r = 0.37 to r = 0.99 in ME2 (nine environments from Peru and Uganda; 330 

Figure 6D). 331 

Quantitative trait loci (QTL) analysis 332 

Analyzing for QTL within the two mega-environments captured only one QTL for ME2 on 333 

linkage group (LG) 15 and no QTL for ME1 (Figure 7A). The QTL explained 16.7% of the 334 

observed variation in rytha across the ME2. Consequently, we analyzed for QTL for the single 335 

environments in ME2. Four distinct QTL were identified for SEs in ME2: one QTL was on LG 336 

3, one on LG 13 and two on LG15 (Figure 7B; Table 1). The second QTL on LG 15 was 337 

associated with Nam16, an environment in Uganda, while the rest of the QTL were associated 338 

with environments from Peru (Table 1). Individual QTL explained between 10.9 and 22.1% of 339 

the total observed variation for rytha (Table 1). Allelic effects analysis of parental haplotypes for 340 

the ME2 QTL on LG 15 indicated that Beauregard contributed two alleles that increased and 341 

three alleles that reduced rytha whereas Tanzania contributed three alleles each to the increase 342 

and reduction of rytha respectively (Figure 7C). Results also indicate that Tanzania contributed 343 

more to the increase in rytha in ME2, when compared to Beauregard (Figure 7C). 344 

Simulated data analysis for misclassification and missingness 345 

Simulations showed that the QTL on LG 15 previously identified by Pereira et al. (2019), which 346 

also explained most of the phenotypic variance for rytha (�� 
 20%), had its detection severely 347 

reduced as permuted individual proportions increased (Table 2). While this particular QTL was 348 

detected as much as 87.5% and 61.0% for 10% and 20% permuted data, respectively, only a 25% 349 

detection rate was observed for 30% permuted data. The noise generated by permutation was 350 

more prone to detection reduction when compared to analyses involving an increasing proportion 351 

of missing data. From 99.0% to 26.0% of detection rate was observed when 10% to 50% of data 352 

was missing. For the remaining minor QTL (�� 
 8~11%) previously identified (on LGs 8 and 353 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/747469doi: bioRxiv preprint 

https://doi.org/10.1101/747469
http://creativecommons.org/licenses/by-nc/4.0/


9 

 

13), detection rate was consistently low (<22.0%) even for 10% of missing data. On average, 354 

logarithm of p-values (LOP) was reduced from 4.49 to 1.35 for 10% to 50% permuted 355 

individuals, and from 5.00 to 2.61 for 10% to 50% missing data (Supplementary Figure 3 and 356 

4). Regarding the simple trait, FC, two highly significant QTL had been reported (Gemenet et 357 

al., 2019; submitted), on LG 3 and LG12. Using simulated data for QTL analysis, the QTL on 358 

LG 3 (�� 
 54%) was consistently detected (>93.5%) regardless of the permutation or missing 359 

data proportions, while the QTL on LG 15 (�� 
 29%) had its detection reduced to 72.0% at 360 

50% of permutation rate, where average LOP went down to 3.54 (Supplementary Figure 5). 361 

For missing data proportions, LOP was still consistently high (Supplementary Figure 6). Due 362 

to sampling error and lack of a genome-wide type-I error control, the number of false positives 363 

(putative QTL outside the support intervals of QTL previously reported) increased slightly as the 364 

proportion of missing data also increased in comparison to permuted data (Table 3). 365 

 366 

Discussion 367 

Case Study 1: More than 20% pedigree error likely to affect future predictions based on 368 

the MDP population negatively. 369 

Experimental noise is detrimental to studies seeking to combine phenotypic and genomic data 370 

such as QTL analysis, genome-wide association mapping and genomic selection. In Case Study 371 

1, we found 27.7% error due to mislabeling from in vitro, screenhouse and field, and 22.7% error 372 

for mislabeling between and within families. The difference between the two errors is that the 373 

former just indicates whether a genotype retains the same label from in vitro, screen house and 374 

field regardless of family assignment, whereas the former looks at clustering based on family 375 

assignment. Effects of genotype mislabeling have been reported in humans, animals and plants. 376 

Buyske et al. (2009) showed that to retain the same power for marker-trait association in 377 

humans, a 39-fold more sample size was required if the mislabeling error was 5%. Long et al. 378 

(1990) observed that a 20% error in pedigree labeling resulted in 9.3, 3.2 and 12.4% reduction in 379 

genetic gain when using phenotypic BLUPs, for litter size, backfat and average daily gain, 380 

respectively, in pigs. This implies that the degree of sensitivity to pedigree errors are also 381 

influenced by trait architecture. Using an F1 population data previously analyzed for rytha 382 

(Pereira et al., 2019) and FC (Gemenet et al., 2019; submitted) in sweetpotato, we noticed that 383 

QTL detection was in fact more severely impacted for traits with lower heritability, like rytha, 384 

compared to high heritability traits like FC, when permuted data was simulated (Table 2 and 385 

Supplementary Table 4).  386 

Mislabeling between families is also expected to have a negative effect on predictions 387 

especially in breeding programs where full-sib and half-sib family means are used in selection. 388 

In pigs, it was shown that 20% pedigree errors reduced genetic gain by 7.0, 2.5 and 7.5% in litter 389 

size, backfat and average daily gain, respectively, when using family means for selection (Long 390 

et al., 1990). In sweetpotato at CIP, most breeding programs are now adopting population hybrid 391 

breeding schemes which rely on progeny testing for selection. The current data does not allow 392 

estimation of the reduction in genetic gain expected when using either breeding values and 393 

family means for selection since we have not genotyped the whole population yet and also our 394 

experiment is not designed in a case-control manner. In plants, several prediction models were 395 

tried out to identify those that are relatively tolerant to pedigree errors using sugar beet. The 396 

study by Biscarini et al. (2016) indicated that local classification methods such as K-nearest 397 

neighbor and random forest tolerated the pedigree noise better compared to methods using global 398 
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data properties. Knowing the estimated pedigree errors in the current Case Study 1 is important 399 

as it will allow to explore such tolerant methods for breeding value prediction in future analyses 400 

and decisioning. 401 

Case Study 2: Lower genetic correlations and lack of significant QTL in some mega-402 

environments indicate a level of phenotype misclassification in the mapping population. 403 

Differential QTL expression in relation to environmental variables is expected in MET analyses 404 

especially for complex quantitative traits (Boer et al., 2007). In our Case Study 2, we used 405 

mixed models to account for GE interactions as well as the associated genetic correlation 406 

structures and extended these to QTL mapping by matching the phenotypes to the respective 407 

genotypes as covariates. Following MET analysis, only one of the QTL identified in SEs of ME2 408 

was stable across the ME2. The QTL on LG 15 at position 4.19 cM can therefore be classified as 409 

a constitutive QTL for rytha in sweetpotato in the current genetic background whereas the other 410 

QTL on LG 3, 13 and LG 15 position 151.18 cM as adaptive QTL for those specific 411 

environments (Vargas et al., 2006). The only QTL of ME2 was mapped before in a combined 412 

analysis of all environments in Peru and possible candidate genes underlying this QTL are 413 

described in Pereira et al. (2019). Based on phenotypic data, the environments from Peru were 414 

all correlated possibly due to better data quality and the availability of field maps for spatial 415 

adjustments using rows and columns, when compared to the environments in Uganda and Ghana. 416 

These improved correlations in Peru were also extended to the QTL results where most of the 417 

significant QTL in SEs were identified in environments from Peru, with only one QTL being 418 

identified in one environment of Uganda. These results therefore confirm the findings of 419 

previous studies that spatial adjustment improves genetic correlations among environments 420 

(Lado et al., 2013; Elias et al., 2018; Ward et al., 2019). Although rytha, like many yield traits 421 

is quantitative and prone to GE interaction and QTL x E interaction (Boer et al., 2007; van 422 

Eeuwijk et al., 2010), we did not observe different QTL for the two MEs, rather, there was no 423 

significant QTL for ME1. Additionally, significant adaptive QTL were mainly identified for the 424 

environments from Peru. We therefore hypothesize that since population development and DNA 425 

extraction was carried out in Peru and no QC/QA was carried out for trials in Uganda or Ghana 426 

after shipping of in vitro genotypes, phenotype misclassification may have occurred in some 427 

environments. This would lead to phenotypes from some of the environments not matching 428 

entirely with the genotypic data, consequently resulting in lack of association between the trait 429 

and the markers, as demonstrated by simulations. This hypothesis is also supported by the fact 430 

that zero correlation was observed between some environments in Uganda and Ghana with the 431 

rest of the environments in the same country, at the single environment (SE) analysis step. 432 

Looking at the MEs defined at the second analytical stage, the genetic correlations among the 433 

environments in ME1 were lower than those observed among environments of ME2, even 434 

though ME2 contained environments from both Peru and Uganda while ME1 contained 435 

environments only from Ghana. Consequently, no QTL could be identified for ME1. Although a 436 

percentage of this can be attributed to GE interaction, we assume that the lack of correlation 437 

from one environment with the next could be a result of a certain degree of misclassification. 438 

Given that QTL detection in complex traits like rytha is difficult due to low trait heritability, we 439 

confirmed presence of misclassification by analyzing QTL in ME1 for a simple trait, flesh color, 440 

and the known high effect QTL already reported in (Gemenet et al., 2009; submitted) could not 441 

be captured either (data not shown). The QTL for ME2 could only explain 16.7% of the observed 442 

variation which is expected for complex traits like rytha as only QTL with relatively higher 443 
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effect can be captured in QTL tagging based on biparental populations, thereby leading to the 444 

concept of missing heritability (Crossa, 2012).  445 

 446 

Phenotype misclassification affects QTL detection more than missingness, and the 447 

magnitude of effects is trait specific. 448 

Our simulation results showed that misclassification leads not only to decreased detection power, 449 

but also to QTL contribution underestimation. We also showed that especially for complex traits, 450 

phenotype misclassification had more detrimental effects on QTL detection when compared to 451 

missingness in data. Additionally, we found that although both misclassification and missingness 452 

affected QTL detection in simple traits as proportions increased, the reduction in QTL detection 453 

was much lower compared to quantitative traits. Missingness is a well-documented problem 454 

especially in human genetics where some phenotypes are difficult to measure in large enough 455 

populations for effective marker-trait association studies (Jiang et al. 2018). Missingness can 456 

lead to both type-I and type-II error in analysis and several methods have been proposed to 457 

mitigate against (Hormozdiari et al. 2016; Jiang et al. 2018; Chen et al. 2018). Plant breeding 458 

datasets are always unbalanced due to missingness. Similar to our results, Galli et al. (2018) 459 

showed that although missingness slightly reduced predictive ability as proportions of missing 460 

data increased, the selected fraction was not much affected in genomic prediction of maize 461 

hybrids. Contrastingly, misclassification has more dramatic effects even for simple traits. for 462 

example, even though the simulation data used in our study based on good quality phenotypic 463 

data from Peru indicates that misclassifications resulted in lower effects on QTL detection in 464 

simple traits, analyzing flesh color, a simple trait from ME1 above made up of environments 465 

from Ghana in which most misclassification and pedigree errors are suspected did not capture the 466 

high effect QTL already reported for the same trait in several other populations and 467 

environmental backgrounds. Therefore, addressing misclassification and pedigree errors requires 468 

proper attention in breeding trials to enhance increased genetic gains. 469 

 470 

Implications for the sweetpotato breeding programs 471 

We have demonstrated the estimated level of pedigree error due to genotype misclassification by 472 

mislabeling and also demonstrated the likely consequences of such errors when combining the 473 

phenotypes with the respective genotypes using two case studies, and simulated data. Since 474 

breeding programs are moving more and more into genomic selection, genetic gain from such 475 

breeding activities will depend on the accuracy of predicting untested genotypes. Several 476 

methods have been proposed to help improve such prediction accuracy and could be adopted for 477 

sweetpotato breeding. Modeling of GE interaction and spatial adjustment using mixed models is 478 

one way to cater for environmental heterogeneity and improve such prediction accuracy (Piepho, 479 

1998; Burgueno et al., 2011; de los Campos et al., 2009; Crossa et al., 2010, 2011; Bernal-480 

Vasquez et al., 2014). In this study we have observed that genetic fidelity due to proper labeling 481 

combined with spatial adjustment where necessary, improved the genetic signal for tagging QTL. 482 

Ability to tag QTL is important because linkage disequilibrium between markers and QTL is 483 

important in improving prediction accuracy in genomic selection (Nakaya and Isobe, 2012; 484 

Spindel et al., 2016). Additionally, use of multi-trait, multi-environment prediction has been 485 

shown to improve prediction accuracy (Covarrubias-Pazaran et al., 2018; Sun et al., 2017; 486 

Mitchel et al., 2019) and genetic gain from genomics-assisted breeding. Such multi-trait 487 

analyses, also known as multivariate analyses, take advantage of the genetic correlations between 488 
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simple secondary traits and complex yield traits included in both training and prediction 489 

populations to improve prediction accuracy of the complex trait.  490 

In case of misclassification and pedigree errors, a few statistical approaches have been 491 

explored to improve prediction accuracy such as using less sensitive prediction methods 492 

(Biscarini et al., 2016) and the use of realized relationship matrices to correct pedigree errors 493 

(Munoz et al., 2013). These can be adopted in sweetpotato especially in the case of the MDP 494 

population described in Case Study 1 to improve prediction accuracy of future studies. However, 495 

the use of improved statistical analytic methods is a reactionary approach to improving 496 

prediction accuracy and marker-trait associations, and its benefits may be limited depending on 497 

how much human error is present in a given trial. To better take advantage of the advances in 498 

genomics-assisted breeding, sweetpotato breeding would make faster genetic gains from 499 

adopting improved breeding process and plot management practices to avoid both pedigree 500 

errors due to genotype misclassification and experimental errors. This would require putting in 501 

place and applying next generation data management and analytical decision support tools for 502 

participating sweetpotato breeding programs (Rathore et al., 2018). We propose that the 503 

sweetpotato breeding process be mapped out and documented in each breeding program. 504 

Additionally, standard operating procedures (SOPs) should be documented and implemented at 505 

each stage of the breeding process such as: crossing and seed inventory, experimental designs 506 

and trial establishment, phenotyping and digitalized data capture, standard trait ontologies, data 507 

checks and quality metrics, meta-data recording, sample tracking and genotyping workflows, 508 

marker-assisted selection and genomic selection. Additionally, barcoding and QC/QA of 509 

breeding and trialing populations should be adopted and applied routinely.  510 
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 684 

Tables 685 

Table 1. Summary of QTL analysis results from a multi-environment testing (MET) experiment 686 

across 18 environments of Peru, Ghana and Uganda 687 

QTL LG Experiment Posn 
(cM) 

LSI 
(cM) 

USI 
(cM) 

p-Values h2 

1 3 Ica16C 3.10 0.00 37.44 2.00E-05 22.1 
2 13 Ica16C 90.20 73.91 138 5.08E-04 10.9 
3 13 Ica17C 106.20 87.35 130.30 1.51E-04 15.9 
4 15 Ica16C 4.90 0.00 36.02 4.16E-05 11.5 
5 15 Ica16D 4.90 0.00 8.02 4.69E-05 18.2 
6 15 Puc16 6.26 0.00 43.10 1.12E-04 14.3 
7 15 Nam16 151.18 97.15 159.00 5.87E-05 13.2 
8 15 ME2 4.19 0.00 36.02 8.16E-05 16.7 

QTL=quantitative trait loci, LG=linkage group, posn=position, LSI=lower support interval, 688 

USI=Upper support interval, h2=heritability od the QTL, i.e. %variation explained by QTL. 689 

 690 

 691 

 692 
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 701 

 702 

Table 2. Number of putative QTL in different proportions of missing data and permuted 703 

individuals. Each proportion was simulated 200 times. A QTL was considered ‘true’ if located 704 

within support intervals of previously identified QTL, and ‘false’ otherwise.  705 

Trait L
G QTL 

Missing data Permutation 
10 20 30 40 50 10 20 30 40 50 

rytha 8 False 4 14 4 4 4 6 2 3 6 0 
True 35 33 17 22 17 31 29 13 6 9 
% True 17.5 16.5 8.5 11.0 8.5 15.5 14.5 6.5 3.0 4.5 

13 False 3 6 4 9 4 4 4 1 3 2 
True 44 43 29 20 22 33 26 11 4 9 
% True 22.0 21.5 14.5 10.0 11.0 16.5 13.0 5.5 2.0 4.5 

15 False 1 20 16 25 19 9 22 25 23 6 
True 198 167 141 104 52 175 122 50 24 15 
% True 99.0 83.5 70.5 52.0 26.0 87.5 61.0 25.0 12.0 7.5 

FC 3 False 5 5 6 11 14 11 7 12 10 8 
True 200 200 200 200 200 200 200 198 200 187 
% True 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 100.0 93.5 

12 False 0 1 1 6 7 0 5 7 1 6 
True 200 199 200 196 199 200 197 197 183 144 
% True 100.0 99.5 100.0 98.0 99.5 100.0 98.5 98.5 91.5 72.0 

LG=linkage group, QTL=quantitative trait loci, rytha=total root yield in tons per hectare, 706 

FC=flesh color 707 

 708 

 709 

 710 

 711 

 712 

 713 
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 716 

 717 

 718 

 719 

 720 

 721 

 722 

Table 3. Number of new putative QTL (regarded as false positives) per linkage group detected in 723 

different proportions of missing data and permuted individuals. Each proportion was simulated 724 

200 times. 725 

Trait Simulation 
Prop 
(%) 

Linkage groups Total 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

rytha Missing  10 72 1 32 3 5 0 2 4 0 0 10 10 3 1 1 144 
20 59 3 50 7 2 2 1 14 3 0 18 17 6 13 20 215 
30 56 8 39 11 5 6 5 4 2 0 12 24 4 6 16 198 
40 52 5 37 15 4 1 11 4 9 3 16 23 9 6 25 220 
50 49 8 27 18 1 7 14 4 16 2 18 20 4 11 19 218 

Permutation 10 62 2 34 5 5 1 2 6 0 1 14 16 4 3 9 164 
20 42 1 24 7 3 3 3 2 3 1 19 17 4 9 22 160 
30 31 5 20 5 4 4 2 3 3 2 12 16 1 2 25 135 
40 21 2 17 7 4 5 3 6 7 4 7 7 3 7 23 123 
50 13 5 16 6 3 6 8 0 2 6 10 14 2 11 6 108 

FC Missing  10 7 2 5 23 0 1 1 0 0 1 0 0 2 6 4 52 
20 13 11 5 19 0 0 3 1 2 6 0 1 9 10 1 81 
30 11 9 6 15 5 2 7 7 4 2 0 1 6 15 8 98 
40 16 19 11 29 7 4 13 4 6 8 3 6 17 16 11 170 
50 13 11 14 31 13 5 11 5 11 8 5 7 14 11 14 173 

Permutation 10 10 10 2 11 2 1 3 2 2 12 1 0 4 12 4 76 
20 12 17 3 19 7 3 4 3 3 8 1 5 10 11 6 112 
30 10 8 12 14 11 3 7 2 5 5 7 7 12 5 7 115 
40 11 8 8 12 6 4 7 4 7 7 4 1 18 5 4 106 
50 16 11 8 10 4 3 6 3 7 3 6 6 10 8 8 109 

Prop=proportion, rytha=total root yield per hectare, FC=flesh color. 726 

 727 

Figure Captions 728 

Figure 1. Flow chart of population development of the Mwanga Diversity Panel (MDP) 729 

population from crossing to field evaluation 730 
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Figure 2. Unweighted neighbor-joining tree based on dissimilarities of 94 genotypes replicated 731 

from field, screenhouse and in vitro (hence 282 samples in total) using 11,622 DArTseq SNP 732 

markers. Green dots indicate samples from field, black dots indicate samples from screenhouse, 733 

and red dots indicate samples from in vitro. 734 

Figure 3. Top: A Sankey diagram showing mislabeling from in vitro, screenhouse and field of 735 

94 randomly selected genotypes of the MDP population based on the tree order of the genetic 736 

distance matrix using 11,622 SNP markers. The y-axis indicates the cluster order of the 737 

genotypes from the phylogenetic tree. The purple color indicates those that are mislabeled while 738 

the pink color indicates genotypes which cluster well from in vitro, screenhouse and field. 739 

Bottom: A Sankey diagram showing mislabeling among different phenotypically assigned 740 

families (Family PA) and clustering based on genetic distance matrix (Family GA). The mixed 741 

families Mixed1, Mixed2 and Mixed3 were assigned when more than two families appeared on 742 

the same clade of the phylogenetic tree. The y-axis represents the family names. The purple color 743 

represents misplacement within families, the pink color represents agreement in family 744 

assignment between phenotypic and genetic distance. 745 

Figure 4. Chain of events from crossing to trial establishment in three countries with 746 

sweetpotato breeding platforms of the International Potato Center (CIP). 747 

Figure 5. Boxplots (A, B, C) and correlation charts (D, E, F) among best linear unbiased 748 

estimators (BLUEs) for total storage root yield measured in 18 single experiments in Peru, 749 

Uganda and Ghana. 750 

Figure 6. Boxplots (A), correlations and mega-environments (ME) among best linear unbiased 751 

predictors (BLUPs; B) and genetic correlations within ME1 (C) and ME2 (D) from MET 752 

analysis of 18 experiments from Peru, Uganda and Ghana.  753 

Figure 7. QTL plots for mega environments (ME1 and ME2; A) and single environments 754 

included in ME2 (experiments from Peru and Uganda; B). Allelic effects of parental haplotypes 755 

to the observed variation explained by the significant QTL on LG 15 (C) 756 

 757 

Supplemental Figures Captions 758 

Supplementary Figure 1. A zoomed out phylogenetic tree (from Figure 1), showing the 759 

clustering of some genotypes selected from in vitro (red with prefix I), screenhouse (black with 760 

prefix S) and field (blue with prefix F). The majority of genotypes are consistently clustered. 761 

However, some of them are not e.g. I28 which is clustering differently from S28 and F28. 762 

Supplementary Figure 2. A map showing the experimental locations in Peru, Ghana and 763 

Uganda used in the evaluation of a biparental mapping population. 764 

Supplementary Figure 3. QTL mapping for increasing proportion of permuted individuals (10, 765 

20, 30, 40 and 50%) from the non-permuted, original data (0%) for rytha (Pereira et al. 2019). 766 

Colored lines are their respective LOP average for 200 simulations each. 767 

Supplementary Figure 4. QTL mapping for increasing proportion of missing data (10, 20, 30, 768 

40 and 50%) from the non-missing, original data (0%) for rytha (Pereira et al. 2019). Colored 769 

lines are their respective LOP average for 200 simulations each. 770 
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Supplementary Figure 5. QTL mapping for increasing proportion of permuted individuals (10, 771 

20, 30, 40 and 50%) from the non-permuted, original data (0%) for FC (Gemenet et al. 2019). 772 

Colored lines are their respective LOP average for 200 simulations each. 773 

Supplementary Figure 6. QTL mapping for increasing proportion of missing data (10, 20, 30, 774 

40 and 50%) from the non-missing, original data (0%) for FC (Gemenet et al. 2019). Colored 775 

lines are their respective LOP average for 200 simulations each. 776 

 777 

Supplementary Data Captions 778 

Supplementary Table 1. DArTseq single nucleotide polymorphism markers used in Case Study 779 

1 780 

Supplementary Table 2. Genotype list and family assignments of genotypes used in Case Study 781 

1 782 

Supplementary Table 3. Raw data from field experiments in Peru, Ghana and Uganda 783 

measured on a biparental mapping population used in Case Study 2. 784 

 785 
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