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Abstract  

Objective: We assessed pre-operative structural brain networks and clinical characteristics of 

patients with drug resistant temporal lobe epilepsy (TLE) to identify correlates of post-surgical 

seizure outcome at 1 year and seizure relapses up to 5 years. 

Methods: We retrospectively examined data from 51 TLE patients who underwent anterior 

temporal lobe resection (ATLR) and 29 healthy controls. For each patient, using the pre-operative 

structural, diffusion, and post-operative structural MRI, we generated two networks: ‘pre-

surgery’ network and ‘surgically-spared’ network. The pre-surgery network is the whole-brain 

network before surgery and the surgically-spared network is a subnetwork of the pre-surgery 

network which is expected to remain unaffected by surgery and hence present post-operatively. 

Standardising these networks with respect to controls, we determined the number of abnormal 

nodes before surgery and expected to remain after surgery. We incorporated these 2 

abnormality measures and 13 commonly acquired clinical data from each patient in a robust 

machine learning framework to estimate patient-specific chances of seizures persisting after 

surgery.     

Results: Patients with more abnormal nodes had lower chance of seizure freedom at 1 year and 

even if seizure free at 1 year, were more likely to relapse within five years. In the surgically-spared 

networks of poor outcome patients, the number of abnormal nodes was greater and their 

locations more widespread than in good outcome patients. We achieved 0.84 ± 0.06 AUC and 

0.89 ± 0.09 specificity in detecting unsuccessful seizure outcomes at 1-year. Moreover, the 
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model-predicted likelihood of seizure relapse was significantly correlated with the grade of 

surgical outcome at year-one and associated with relapses up-to five years post-surgery.  

Conclusion: Node abnormality offers a personalised non-invasive marker, that can be combined 

with clinical data, to better estimate the chances of seizure freedom at 1 year, and subsequent 

relapse up to 5 years after ATLR. 

Introduction 

Epilepsy surgery is an effective treatment for bringing seizure remission in drug-resistant focal 

epilepsies, however, it is underutilised (Wiebe et al., 2001; Langfitt and Wiebe, 2008; Vakharia et al., 

2018). One reason for the under-referral of patients is the reservations regarding the uncertainty of its 

outcome (Haneef et al., 2010; Vakharia et al., 2018). In around 30-40% of cases, seizures continue 

despite surgery and the multidisciplinary team are unable to accurately predict this risk prior to surgery 

(Janszky et al., 2005; Spencer and Huh, 2008; Téllez-Zenteno and Wiebe, 2008; de Tisi et al., 2011; Bell 

et al., 2017). Therefore, to better inform this clinical decision making, there is a need to predict seizure 

outcomes both in the short-term, and the likelihood of seizure relapse in the long term (Cohen-Gadol 

et al., 2008; de Tisi et al., 2011). 

The incomplete removal of a wider epileptogenic network is increasingly being recognised as one of 

the reasons for continued seizures post-surgery (Spencer, 2002; Richardson, 2012). Many studies, 

driven by the aforementioned hypothesis, have attempted predicting seizure outcomes from pre-

surgical data (Bonilha et al., 2015; Munsell et al., 2015; Goodfellow et al., 2016; Bell et al., 2017; Keller 

et al., 2017; Morgan et al., 2017; Proix et al., 2017; Sinha et al., 2017; Gleichgerrcht et al., 2018). Most 
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studies, however, have investigated brain networks without incorporating the knowledge of the 

planned/performed surgery into the analysis. Naturally, the outcome of epilepsy surgery will depend 

not only on the pre-surgery brain network, but also on how the surgery (i.e., its location and extent) 

will affect the brain network (Taylor et al., 2018). Including surgical data allows the inference of a 

‘surgically-spared’ network – the subnetwork for which none of the connections are altered by surgery 

and are therefore expected to remain after the surgery. Thus, the presence of epileptogenic structures 

in the surgically-spared network, a likely cause for seizure relapse in short or long term after surgery, 

needs investigation. 

Studies employing quantitative imaging have consistently demonstrated that in temporal lobe epilepsy 

there are structural abnormalities that involve brain structures beyond the hippocampus and the 

temporal lobe (Bernasconi et al., 2004; Keller and Roberts, 2008; McDonald et al., 2008; Concha et al., 

2012; Otte et al., 2012; Deleo et al., 2017). Accumulating evidence suggests that these abnormalities 

configure a network of abnormal structures that may be involved in the generation of seizures 

(Spencer, 2002; Bonilha et al., 2013; Bernhardt et al., 2015; Bonilha and Keller, 2015). Indeed, the 

pathophysiological mechanisms associated with epileptogenesis have a strong basis in aberrant neural 

connectivity (Liu et al., 2016; Besson et al., 2017). Therefore, quantifying the abnormalities before, and 

expected to remain after, surgery may inform postoperative seizure outcome.  

The main goal of our study was to understand how structural network abnormality related to seizure 

outcomes after temporal lobe epilepsy surgery. We investigated the abnormality of the ‘surgically-

spared’ networks because, at a conceptual level, post-operative outcomes will likely be determined by 

what remains post-surgery. Our study addresses three main questions: a) do patients with more 
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abnormalities have worse postoperative seizure outcomes? b) does surgery have a greater effect on 

node abnormality in seizure-free patients? c) if the node abnormality measure is to be used alongside 

common clinical variables of a patient, would it generalise to make patient-specific predictions on the 

chances of seizure freedom after surgery? Our study shows that the node abnormality is an important 

measure to be considered alongside other pre-surgical clinical factors to evaluate the risk of poorer 

seizure outcomes in patients with refractory TLE.   

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2019. ; https://doi.org/10.1101/747725doi: bioRxiv preprint 

https://doi.org/10.1101/747725
http://creativecommons.org/licenses/by-nc/4.0/


 6 

 

 

Methods 

Participants 

We studied 51 patients who underwent unilateral anterior temporal lobe resection at the National 

Hospital of Neurology and Neurosurgery, London, United Kingdom and 29 healthy controls. Presurgical 

clinical information included: sex, age at epilepsy onset, age at surgery, epilepsy duration, number of 

AEDs taken before surgery, history of status epilepticus, history of secondary generalised seizures, side 

of surgery, evidence of MRI pathology, evidence of hippocampal sclerosis, history of depression, 

history of psychosis, and history of any other psychiatric disorders. Patients were followed up after 

surgery and classified according to the ILAE scale of seizure outcome at 12-month intervals (Wieser et 

al., 2001). One year after the surgery, 34 patients were completely seizure free (ILAE 1), 8 patients 

continued to have auras only (ILAE 2), and 9 patients were not seizure free (ILAE 3-6). This group of 

patients constitute the same cohort as in our previous study (Taylor et al., 2018). 

ILAE surgical outcomes of seizure freedom were recorded annually at years 1 and 2 for all 51 patients, 

at year 3 for 45 patients, year 4 for 37 patients, and at year 5 for 31 patients. We considered that a 

patient had a seizure relapse if, at any given year after year 1, the ILAE outcome of the patient changed 

from ILAE 1-2 to ILAE 3-6. If the ILAE outcome of a patient did not change to ILAE 3-6 and the follow-

up duration was less than five years, it cannot be ascertained if the patient would have relapsed upon 

a full five-year follow-up. Therefore, beyond the known follow-up period, we did not include such 

patients in our analysis. The full preoperative clinical information, postoperative ILAE outcomes, and 

relapse data for each patient is provided in Table S1. 
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We used 𝜒" test to check for the differences between the outcome groups in sex, side of surgery, 

evidence of hippocampal sclerosis, evidence of MRI pathology, history of status epilepticus, evidence 

of generalised seizures, history of depression, psychosis, and any other psychiatric disorders. 

Differences in age at epilepsy onset, age at surgery, epilepsy duration, and number of anti-epileptic 

drugs taken preoperatively between the outcome groups, were assessed with two-tailed non-

parametric Wilcoxon ranksum test. Table 1 shows the summary of patient details. 

[Table 1] 

As a control group, we studied 29 healthy individuals, with no significant medical history of neurological 

or psychiatric problems. The control group was age and gender matched to the patient group. Control 

data was used as a normative measure for the metrics obtained from patients. The study was approved 

by the NHNN and the Institute of Neurology Joint Research Ethics Committee, and written informed 

consent was obtained from all subjects. 

MRI acquisition, data processing, and surgery network 

For each patient in this study, T1-weighted structural (sMRI) and diffusion-weighted (dMRI) data were 

acquired before the surgery. Within one year after the surgery, T1-weighted sMRI data was acquired 

again for each patient. Detailed imaging protocols are described in Supplementary Methods. 

Postoperative sMRI was used to accurately delineate the resected tissue. Complete details on how we 

drew the resection mask for these subjects are published in (Taylor et al., 2018). Briefly, the 

postoperative sMRI data was linearly registered to the preoperative sMRI using FSL, then the patient-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2019. ; https://doi.org/10.1101/747725doi: bioRxiv preprint 

https://doi.org/10.1101/747725
http://creativecommons.org/licenses/by-nc/4.0/


 8 

 

 

specific resection masks were manually drawn, and finally validated by two independent raters for a 

majority subset. 

Next, we applied the same data processing pipeline as in our previous study (Taylor et al., 2018) to 

incorporate the information of surgery for inferring the two networks: whole-brain pre-surgery 

network and surgically-spared subnetwork. Different processing steps involved in generating these 

networks are detailed in Supplementary Methods. In brief, the preoperative sMRI data were 

parcellated into 114 cortical and subcortical regions of interest (ROIs) derived from the predefined 

Geodesic Information Flow atlas and separately in 82 ROIs using the Freesurfer Desikan-Killiany atlas 

in the native space of each participant. We registered the parcellated ROIs, resection mask, and tracts 

from deterministic tractography on dMRI data in native space. The pre-surgical streamline network is 

the connectivity matrix depicting the number of streamlines connecting two ROIs. The surgically-

spared streamline network is inferred after removing the streamlines that intersected the resection 

mask. By definition, surgery can only cause an immediate reduction in the number of streamlines. 

Therefore, we specified that the surgically-spared network contains only those network edges which 

are not expected to change in streamline count following surgery (i.e., edges where their streamlines 

do not pass through/into the resection cavity). These concepts are illustrated in Figure 1. 

[Figure 1] 

T1-weighted MRI and dMRI data were also acquired for 29 control participants using the same MRI 

scanner and imaging protocols as the patients. 
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Node abnormality computation 

The overall pipeline summarising different steps to compute node abnormality is illustrated in Figure 

2. For each subject, we inferred networks based on the mean generalised fractional anisotropy (gFA) 

property of the streamlines obtained from the dMRI data (Tuch, 2004). We standardised the pre-

surgery gFA network of each patient against controls as follows: for each connection present between 

ROIs 𝑖 and 𝑗 in a patient, the connection distribution was obtained from the equivalent connection 

between ROIs 𝑖 and 𝑗 from the control networks. The z-score for that connection was calculated as the 

number of standard deviations away from the mean, where the standard deviation and mean were 

obtained from the control distribution. Networks inferred from deterministic tractography are sparse, 

so we z-scored only those connections in patients for which an equivalent connection existed in at least 

10 (∼35%) controls (de Reus and van den Heuvel, 2013). This is depicted in Figure 2a. 

[Figure 2] 

After obtaining the pre-surgery z-scored gFA network, we removed the connections present in the 

surgery-affected network to obtain the surgically-spared z-transformed gFA network. High |𝑧| indicates 

high deviation from normality. Thus, the pre-surgery network maps the abnormal links present before 

the surgery and surgically-spared network maps the abnormal links that would remain unaffected 

immediately after the surgery. This is illustrated in Figure 2b-d. 

To study how different regions (nodes) are affected in these networks, we computed node 

abnormalities (Figure 2e) in the pre-surgery and surgically-spared networks by counting the number of 
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abnormal links to each node. We normalised the number of abnormal links to a node by its degree in 

the pre-surgical network, thus expressing node abnormality in percentage terms. 

Quantification of node abnormality load raises two questions: first, what is the definition of an 

abnormal connection? second, when is a node considered abnormal? The former is essential for the 

application of a threshold on the abnormality network to count the number of abnormal links at each 

node. For the latter, another threshold is needed to define beyond what percentage level a node 

should be considered abnormal. We therefore varied the z-score threshold from 2.1 to 4.5 in 

increments of 0.1 and the percentage abnormality threshold from 1% to 50% in increments of 1%. At 

each point on this two-dimensional grid, we computed how many nodes were abnormal in pre-surgical 

and surgically-spared networks. This is illustrated in Figure 2f for six example threshold pairs. Finally, 

having quantified the abnormality load for each patient, we assessed its discriminatory ability in 

predicting seizure outcomes and seizure relapse. 

Quantifying the change in abnormality load after ATLR 

To investigate the effect of surgical treatment on reduction of abnormalities, we compared the change 

in abnormality load between the pre-surgery and the surgically-spared networks. The ROIs in the left 

and right hemispheres of patients were expressed as ipsilateral or contralateral to surgery. Then, we 

categorised each ROI into 6 ipsilateral and 6 contralateral areas i.e., temporal, subcortical, parietal, 

occipital, frontal, and cingulate cortices. In each area, we determined the number of abnormal nodes 

in the pre-surgery and surgically-spared networks patient-specifically. Then, we averaged the number 

of abnormal nodes in each area for the seizure free (ILAE 1) and non-seizure free (ILAE 3-6) groups of 

patients. Finally, by computing the proportion of abnormal nodes in every area (i.e., ratio of mean 
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abnormal ROIs to the total number of ROIs in each area) for the pre-surgery and surgically-spared 

network, we noted the change due to the surgery in all patients. 

Predictive model design for generalizability assessment 

We predicted the patient-specific probability of seizure relapse using preoperative clinical data, pre-

surgery node abnormality, and the surgically-spared node abnormality. We performed this using 

support vector machine (SVM) implemented in MATLAB ‘fitcsvm’ classification library (Platt, 1999; 

Guyon et al., 2002). We applied a linear kernel because this enables the interpretation of weight 

vectors (i.e., the relative importance of each feature in the prediction), which were used to rank the 

importance of metrics in identifying patients who would have suboptimal seizure outcome. SVMs were 

initially trained with all 15 preoperative metrics: 13 clinical, 1 pre-surgery node abnormality, and 1 

surgically-spared node abnormality. To identify the most informative metrics, after each round of SVM 

training, we removed the least important metric (in terms of its weight vector) and trained a new SVM 

with the remaining metrics. We repeated this process until only a single metric remained (Guyon et al., 

2002; Fagerholm et al., 2015). At each stepwise removal we recorded:  a) the performance of classifier 

in classifying totally seizure free (ILAE 1) and non-seizure free (ILAE 3-6) patients, and b) the Spearman’s 

rank correlation between the predicted probability of seizure relapse for each patient with the actual 

severity of seizure outcomes at one-year after surgery (ILAE class). 

The performance of the classifier was estimated using binary classification. Given that ILAE 2 patients 

tend to relapse (Table 1, S1), and thus, are in the spectrum between the totally seizure free (ILAE 1) 

and non-seizure free (ILAE 3-6) patients, we first excluded the ILAE outcome group 2 patients 

(Fairclough et al., 2018). With these patients removed, our dataset consisted of 43 samples, 34 of which 
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were labelled 1 corresponding to ILAE 1, and 9 were labelled -1, corresponding to ILAE 3-6. On this 

dataset, we performed nested-cross validation by combining a three-way split of the data (training-

validation-testing) with leave-one-out cross-validation (CV) and grid search for SVM parameter (box-

constraint) tuning. This was done to avoid upward bias in the metrics of performance estimates (Guyon 

and Elisseeff, 2003; Tsamardinos et al., 2018). Additionally, we avoided any bias in the selection of the 

most discriminatory threshold pair (i.e., z-score and percentage abnormality) to determine the node 

abnormality by computing it at every step of cross-validation after removing the test subject 

(Smialowski et al., 2009). 

Specifically, in nested-cross validation, an external leave-one-out is implemented in which one patient 

is left out at every step for testing and the remaining patients used for training and validation. Training 

and validation were performed in the internal leave-one-out CV in which one patient is again left out 

for validation and the remaining used for model training combined with model parameter tuning. In 

our analysis, we tuned the model on 100 logarithmically spaced grid points between 1 and 10. At every 

point, the SVM is trained and its performance tested using the patient left out for validation by 

estimating AUC. We selected the model parameter that gave the highest cross-validated AUC. The 

classifier generalisation capability is then evaluated by computing the classification AUC, accuracy, 

sensitivity, and specificity using the patient originally left for testing in the external cross-validation. 

We also noted the probability with which each test patient was classified as non-seizure free. The 

intuition being that the predictive model, though blind to the non-seizure free outcome categories (i.e., 

all ILAE 3 to ILAE 6 are labelled as -1), would classify the patients with worse surgical outcome with a 

higher probability. 
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To determine where the ILAE outcome group 2 subjects fall on the spectrum, we treated all 8 ILAE 

outcome group 2 patients as test subjects. SVMs were trained and tuned, as described above, on all 

the remaining seizure free (ILAE 1) and non-seizure free (ILAE 3-6) patients (43 patients). On the 

classifier with highest discrimination between the seizure free and non-seizure free patients, we tested 

the features of ILAE 2 patients to note only the probability of classification to the non-seizure free 

group. We refer to these probabilities as the likelihood of seizure relapse because a high probability 

indicates a predicted propensity towards a non-seizure free outcome. Having obtained the likelihood 

of seizure relapse for all 51 patients, we compared this with the surgical outcome categories at year 1 

and the actual seizure relapse in five years post-surgery. Note that the labels for all training data are 

binary and based on 12-month ILAE1 versus ILAE3-6 outcomes only.  The model is therefore blind to 

severity of outcome (i.e. ILAE class 2, 3, 4, 5), and also blind to outcomes beyond 12 months. 

Statistical analysis and data availability 

To investigate if a greater number of abnormal nodes are associated with suboptimal seizure outcomes 

post-surgery, we applied the non-parametric Wilcoxon rank-sum test. One-tailed p value was 

computed using the ranksum function in MATLAB incorporating the exact method. Effect size between 

groups was computed using Cohen’s d score, and the correlation coefficients between likelihood of 

seizure relapse and the severity of seizure outcome were determined using Spearman’s rank-order.  

To enable reproducibility of our work, we will make available all the anonymised pre-surgery and 

surgically-spared brain networks of 51 patients, brain networks of 29 controls, codes for node 

abnormality computations, and all the trained machine learning models on the data presented in our 

manuscript (link to be generated upon acceptance of the manuscript).  
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Results 

The results are organised in three parts. First, we assessed if patients with greater number of abnormal 

nodes are predisposed to have suboptimal seizure outcome after surgery. Second, we investigated the 

effect of surgery in reducing the node abnormality load between the seizure-free and non-seizure 

groups. Third, we determined the generalisability of node abnormality measure, if it is to be 

incorporated in a clinical setting alongside other clinical attributes, to estimate the chances of seizure 

recurrence for new patients. The overall pipeline is shown in Figure 2 and explained in Methods. The 

full clinical data for each patient is provided in Table S1. 

Abnormality load corresponds with surgical outcome and post-surgery seizure relapse 

We investigated the abnormality load in surgically-spared and pre-surgical networks. Figure 3(a-d) 

illustrates abnormal nodes in the surgically-spared networks for four patients. The patients in panels 

(a) and (b) were seizure free (ILAE 1) and having auras (ILAE 2) respectively at one-year after surgery 

and did not relapse subsequently; they had a relatively low node abnormality load. The patient in panel 

(c) initially had auras only (ILAE2) at one-year post-surgery but later relapsed; this patient showed a 

higher abnormal node count in the surgically-spared network. The patient in panel (d), with the highest 

number of abnormal nodes, had the worst surgical outcome of ILAE 5 at one year, which persisted 

upon follow-up. In these four cases a greater abnormality load was associated with seizure relapse, 

and worse outcomes. 
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Figure 3(e) shows the node abnormality load in surgically-spared network for the entire patient cohort. 

Patients who were not seizure free (ILAE 3-6) at one-year post surgery, had significantly more number 

of abnormal nodes than patients who were seizure free (𝑝 = 0.002, 𝑑 = 0.8 between ILAE 1 and ILAE 

3-6 and 𝑝 = 0.009, 𝑑 = 0.6 between ILAE 2 and ILAE 3-6). Here, we chose to analyse ILAE 2 as a 

separate group because clinical data (Table 1, S1) suggests that these patients, albeit free from 

disabling seizures at year-one, have a greater propensity to relapse in later years (Fairclough et al., 

2018). Studying only the subset of patients who were seizure-free (i.e. ILAE 1, 2) at 1 year (Figure 3f-g), 

patients who relapsed had more abnormal nodes than the patients who did not relapse (𝑝 = 0.04, 𝑑 =

0.75). Therefore, node abnormality can discriminate the patients in which seizures continued or 

recurred after surgery from the patients who were free from disabling seizures. 

[Figure 3] 

Node abnormality in Figure 3, computed from the surgically-spared network, was defined as the nodes 

with at least 10% of abnormal (𝑧 > 2.8) connections. At this choice of thresholds, the discrimination 

(AUC) between the seizure free and non-seizure free group was the highest. Comparable results are 

found for other threshold values (Supplementary Figure S1), and with an alternative network 

parcellation (Supplementary Figure S4). Thus, the discriminatory ability of node abnormality measure 

is consistent across the choice of threshold or the choice of parcellation scheme.  

We found similar results in the pre-surgery networks. ILAE 3-6 patients had significantly more abnormal 

nodes than ILAE 1 patients (𝑝 = 0.02). However, the size of this effect was less pronounced than in the 

surgically-spared networks, with relatively poorer discriminatory ability (Supplementary Figures S1, 

and S2). Therefore, our findings suggest that the surgically-spared network, which is the surgically 
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informed subnetwork of the pre-surgery network, is more discriminatory in identifying seizure free 

from non-seizure free patients. 

Surgery-related effect on reducing abnormality load 

How much effect does surgery have on reducing the abnormality load? We investigated the differences 

between the surgically-spared, and pre-surgery networks in terms of their abnormality load, and 

whether the projected change in abnormality load due to surgery was greater and more widespread in 

one outcome group compared to another. The proportion of abnormal nodes in different brain areas 

for ILAE 1 (seizure free) and ILAE 3-6 (not seizure free) groups are shown in Figure 4. 

[Figure 4]  

In terms of the spatial extent of surgery, the expected reduction in the proportion of abnormal nodes 

was more widespread in the seizure free group than in the non-seizure free group. The ILAE 1 group 

had a drop in the proportion of abnormal nodes in the surgically-spared network, compared to the pre-

surgical network, in seven areas: five ipsilateral and two contralateral (Figure 4a-b). In ILAE 3-6 group, 

however, the drop in the proportion of abnormal nodes was limited to three ipsilateral areas: temporal, 

occipital, and frontal (Figure 4c-d). Similar surgery related effect was found for node abnormality 

computed at different threshold values (Supplementary Figure S3). 

In terms of reduction in the amount of abnormality load, ILAE 1 patients had larger proportional 

reductions than ILAE3-6 patients (𝑝 = 0.01), however, their absolute reduction did not differ 

significantly (𝑝 = 0.28) (Supplementary Figure S5). Thus, we suggest that the temporal lobe epilepsy 
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surgery causes a greater and widespread reduction in abnormality load in the seizure free group than 

in the non-seizure free group.  

Personalised prediction of unsuccessful surgeries 

We assessed the generalisability of the abnormality measure when used alongside other clinical 

attributes to predict patient-specific chances of poorer outcomes. Implementing nested-cross 

validation, we built machine learning models which classified new unseen (test) patients as either 

belonging to ILAE 1 or ILAE 3-6 group at 12 months. The model also scored each patient with a 

probability of belonging to either of the classes. Notably, the models were blind to three aspects of the 

data (a) all ILAE 2 patients, (b) ILAE classification 3, 4, 5 (the model simply sees these as ‘poor outcome’), 

and (c) outcomes at later years. 

[Figure 5] 

We incorporated up to 15 features in the model: 13 clinical attributes, the pre-surgical abnormality 

load, and the surgically-spared abnormality load. These features describe the presurgical attributes of 

patients and we evaluated them based on their combined ability in accurately predicting surgical 

outcomes at one-year. However, some features may be less informative than others in predicting 

surgical outcomes; including less informative features causes a drop in the prediction performance. 

Therefore, by implementing stepwise removal of less informative features, we obtained combinations 

of preoperative features that identified patients with poor seizure outcome at one-year after surgery 

in 100% cases (i.e., specificity). The area under the ROC curve (AUC) at every step of feature elimination 

is plotted in Figure 5(a) and magnified at one example point (marked with a star) in Figure 5(b) with 
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the corresponding confusion matrix shown in the inset. Average prediction performance across all 

stepwise feature removals was robust at; AUC = 0.84 ± 0.07, accuracy = 0.79 ± 0.05, specificity = 0.89 

± 0.09, sensitivity = 0.77 ± 0.06. Supplementary Table 2 tabulates these prediction metrics in classifying 

seizure free and non-seizure free outcomes at every step. The lower panel in Figure 5(a) maps feature 

importance after each iteration of feature removal. The node abnormality in the surgically-spared 

network stood out as the most informative feature; it was more than 1.5 standard deviations away 

from the next most important features: age at surgery, and number of AEDs taken before surgery. 

Thus, including the abnormality measures to characterise pre-surgical attributes of intractable TLE 

patients led to a high and robust classification performance in predicting surgical outcomes at one-year 

after surgery. 

We next analysed the scores/probabilities assigned by the model to each patient to have a non-seizure 

free surgical outcome. Larger probabilities indicated a greater predicted likelihood of postoperative 

seizure at year 1 (i.e., the ILAE3+ group). Since the model was trained only on binary ILAE1 and ILAE3-

6 outcomes it was blind to the spectrum of ILAE class data. We found that despite being blinded to 

such information, the predicted likelihood of seizure relapse was positively correlated with ILAE 

surgical outcome scale at year-one (Figure 5c).  This positive association is consistent, even for the 

model trained using only the surgically-spared node abnormality feature (Figure 5a). Spearman's 𝑟ℎ𝑜 

values are plotted at each step-wise removal of features in Figure 5(a) and magnified for an example 

point in Figure 5(c). To confirm this result, we applied robust regression to obtain the regression slope 

and tested the significance of the steepness of the regression slope using permutation test (1000 

permutations, 𝑝 = 0.004 in Supplementary Figure S6). Therefore, our result shows that the pre-
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surgical clinical profile of patients, when assessed along with the abnormality measures, can inform 

about the grade of seizure outcomes which a patient would expect after surgery.  

[Figure 6] 

How informative are the pre-surgical features in predicting seizure recurrences in the long-term? We 

analysed this by checking the association between the predicted likelihood of seizure relapse and the 

actual relapse data for patients who were seizure free (ILAE 1,2) at year one. Patients who were not 

seizure free at year one (ILAE 3-6) were not included in the relapse category. We found no association 

with seizure relapse when the pre-surgical features of patients were characterized using a combination 

of clinical and network abnormality measures (Supplementary Figure S7). However, significant 

association with relapse was present at year 3, 4, and 5 when the pre-surgical features of patients were 

characterized using only the abnormality load in surgically-spared network (Figure 6). Hence, we 

suggest that in determining the long-term seizure recurrences, pre-surgical clinical attributes are less 

informative than the measure of abnormality load expected to be present in a patient after surgery. 

In summary, we achieved excellent performance in predicting seizure outcomes at one year when 

intractable TLE patients were assessed based on abnormality measures and clinical attributes. This 

combined pre-surgical profiling of patient attributes was also informative about the grades of seizure 

outcomes (ILAE class) at year one. However, beyond the first year after surgery, node abnormality in 

the surgically-spared networks were more informative about seizure relapses.  
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Discussion 

We investigated the association of surgical outcomes and relapse with the abnormality load computed 

in whole-brain pre-surgical network, and surgically spared subnetwork. Patients were more likely to 

have a poorer seizure outcome at one-year post surgery or a seizure relapse in five years, if more 

abnormal nodes were present in the surgically-spared network. Investigating the spatial effect of 

surgery on abnormality load, we found that the seizure free group of patients would have had a more 

widespread reduction of abnormal nodes. We found that the abnormality load in pre-surgery and 

surgically-spared networks, combined with clinical attributes of patients, generalised to predict 12-

month postoperative seizure freedom with 100% specificity and 0.91 AUC. With this combined 

characterization of patient attributes, we predicted the likelihood of seizure relapse patient-specifically 

which were correlated with the ILAE class, hence, informative of the seizure outcome expected at 12 

months after surgery. Finally, we showed that node abnormality located in the surgically-spared 

networks were particularly informative in identifying patients who were initially seizure free but would 

relapse after the first year of surgery and up to 5 years. 

Altered white-matter tract integrity, extending beyond the ipsilateral temporal lobe to the extra-

temporal and contralateral regions, has been extensively studied in TLE (Concha et al., 2012; Otte et 

al., 2012). Diffusion abnormalities with predictive value of postoperative outcomes are seen at the 

individual tract (Keller et al., 2017), and also at the whole-brain network level (Bonilha et al., 2013). It 

is indeed possible that areas which are anatomically normal, compared to controls, are epileptogenic 

via some other mechanism. Making an assumption that epileptogenic areas are most likely abnormal, 

our results show the presence of abnormal areas outside the temporal lobe which are spared by 
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surgery. We suggest that net abnormality load, being a prognostic marker of seizure outcome, may be 

linked with epileptogenicity and have the potential to support epileptogenic networks. 

A recent study on a different dataset with different imaging protocols, investigated network 

abnormality as a personalised predictor of surgical outcomes (Bonilha et al., 2015). In that study, pre-

surgery networks were constructed based on the number of streamlines connecting different regions. 

Similar to our study, connections between ROIs were normalised (z-transformed) against a control 

distribution. The similarity between our results suggest that: a) normalised patient networks using a 

local control distribution may enable reproducibility, comparison, and possibly grouping of patients 

between sites, and b) non-invasive personalised network biomarkers for predicting the likelihood of 

specific post-surgery outcomes in TLE are possible. We further showed the benefit of incorporating the 

information about the location of surgery to predict the surgical outcome. 

The current standard for individualised prediction of surgical outcome primarily relies on clinical 

variables. However, there is considerable controversy in the literature regarding the presurgical clinical 

factors that may help predict surgical outcome. The review by (Bonilha and Keller, 2015) discussed 

discordant findings between different studies; features found predictive of seizure outcome in some 

studies are not predictive in others. Combining variables as nomograms, gave only modest 

concordance-statistics (c-statistics) of ∼ 0.5 on validation models (Jehi et al., 2015). A more recent 

study estimated the probability of seizure freedom using combinations of up to 27 clinical variables on 

a mixed cohort of TLE and ETLE patients (Bell et al., 2017). Our findings indicated that combining clinical 

variables with brain connectome derived features such as: abnormality load in pre-surgery and 

surgically-spared networks, can improve prediction of surgical outcomes in the short-term. Particularly 
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for long-term predictions, the abnormalities in the surgically-spared networks, which are expected to 

remain after surgery, may be a more reliable measure because they associate with relapses. Hence, we 

propose to combine our node abnormality measure with clinical variables in a large mixed-cohort 

patient (Bell et al., 2017) to improve estimation of the probability of seizure freedom/relapse after 

surgery. 

In combining multivariate data, machine learning techniques delineate, rank, and fit input features of 

the training set to draw a decision boundary in a high dimensional space that maximises prediction 

(Bonilha et al., 2015; Munsell et al., 2015; Gleichgerrcht et al., 2018; Taylor et al., 2018; Morgan et al., 

2019). While a binary classification of seizure free and non-seizure free outcomes at 12 months is 

important, predicting long-term trajectories of seizure freedom is also crucial to inform clinical 

management decisions.  In our study, the classifier not only predicted the surgical outcome at one-year 

but also predicted the likelihood of seizure relapse. This additional information may be clinically useful 

for advising patients about their chances of poor outcome post-surgery beyond the first 12 months 

and represents a key novelty of our work.  

The outcome of epilepsy surgery will not just depend on the brain network before the surgery but also 

on the location and extent of surgery (Ji et al., 2015; Taylor et al., 2018). In this study, we retrospectively 

included the information of surgery by drawing a resection mask and inferring an expected surgically-

spared network. A limitation of our work is that we are only inferring the expected postoperative 

network, rather than deriving it from postoperative dMRI data (Winston et al., 2014).  However, an 

analysis using actual postoperative dMRI data would only have very limited value in terms of improving 

the pre-operative decision making, since the outcome could only be seen after the surgery has been 
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performed. In contrast, our approach can be used before the actual surgery to evaluate likelihood of 

success. A prospective application would involve drawing a resection mask for an intended surgery on 

sMRI of a patient acquired before surgery (Taylor et al., 2018). Surgical data (either retrospectively 

delineated or prospectively planned) enables the study of expected changes after surgery (Taylor et 

al., 2018). We showed that this information improves the prediction performance more so than just 

the pre-surgery networks which are naïve to surgical information. We envisage a software tool where 

multiple standard operations could be selected (e.g. selective amygdalohippocampectomy, or anterior 

temporal lobe resection) and their impact on the abnormality load compared.  Tailored resections 

could also be tested to see what the effect of a larger resection might be. Such a tool could then be 

used to prospectively guide decision making regarding personalised resection strategies.  

With regard to the extent of surgical resection, (Schramm, 2008) showed that the amount of tissue 

resected does not necessarily relate to improved surgical outcome. What is included in the resection, 

however, may have a significant influence on outcome (Siegel et al., 1990; Bonilha et al., 2012). The 

question arises: will a tailored resection, designed to reduce the number of abnormal nodes, lead to a 

better outcome? While more investigations are needed to confirm this hypothesis, we found that the 

seizure free patient group had a more widespread reduction of abnormality load due to surgery. 

Simulated computer models may facilitate a more detailed analysis to investigate alternative surgical 

strategies in a personalised manner (Sinha et al., 2017). 

Our findings must be interpreted in the context of some caveats. Node abnormality may be 

representative of a) network reorganisation in response to seizures, b) neurodegenerative process due 

to seizures, c) structures facilitating seizures, or combinations of (a)-(c). In our study we could not 
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disentangle these aspects with respect to node abnormality. We did not detect any significant 

correlation between clinical variables and node abnormalities. Though our sample size is reasonably 

large (Bonilha et al., 2015; Munsell et al., 2015; Keller et al., 2017; Gleichgerrcht et al., 2018), it is not 

of the size of typical epidemiological studies. Neural architecture depends on several subject-specific 

factors including language dominance, handedness, and other physiological variables. These 

relationships may further influence the node abnormality measure. Thus, our results should motivate 

a larger study to test its generalisability, ideally across multiple sites. Finally, we highlight, based on the 

pre-surgical, surgically-spared networks, and clinical variables, the chances of at least one relapse in 

five-years. However, the trajectory of seizure remission and relapse is more complicated. Patients may 

have repeated remissions and relapses due to drug-effects, environmental factors, or other causes. 

In summary, we have shown evidence of node abnormality being an important non-invasive marker of 

surgical outcome and its severity at year one post-surgery. Node abnormality is also related with 

likelihood of seizure relapse in long-term. We demonstrate improvement in prediction performance 

when including surgery information with the pre-surgery network and clinical data. We believe this to 

be an important step towards complementing clinical decision making on patient and surgery selection 

for intractable TLE as well as for patient counselling regarding the risks of seizure severity expected 

after surgery. 
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Table 1: Demographic and clinical data of patients 

Year 1 outcome 
 

Variables 
ILAE 1 ILAE 2 ILAE 3-6 Significance 

Patients (n) 34 8 9  

Sex 
(Male/Female) 16/18 2/6 2/7 

𝜒"1,2 = 0.54, p1,2 = 0.46 
𝜒"1,3+ = 0.93, p1,3+ = 0.33 
𝜒"2,3+ = 0.19, p2,3+ = 0.66 

Age at Onset 
(mean ± std) 12.2 ± 10.3 14.2 ± 11.4 19 ± 12 

p1,2 = 0.62 
p1,3+ = 0.04 
p2,3+ = 0.43 

Age at Surgery 
(mean ± std) 38 ± 11.9 38.6 ± 10.3 46.5 ± 10.2 

p1,2 = 0.96 
p1,3+ = 0.08 
p2,3+ = 0.13 

Epilepsy Duration 
(mean ± std) 25.8 ± 15.8 24.3 ± 17.3 27.5 ± 7.3 

p1,2 = 0.74 
p1,3+ = 0.54 
p2,3+ = 0.54 

Side 
(Left/Right) 22/12 3/5 5/4 

𝜒"1,2 = 1.02, p1,2 = 0.31 
𝜒"1,3+ = 0.01, p1,3+ = 0.91 
𝜒"2,3+ = 0.06, p2,3+ = 0.79 

Hippocampal sclerosis 24 (70.5%) 6 (75%) 5 (55.5%) 
𝜒"1,2 = 0.03, p1,2 = 0.85 
𝜒"1,3+ = 0.21, p1,3+ = 0.64 
𝜒"2,3+ = 0.11, p2,3+ = 0.74 

Number of AEDs before 
surgery (mean ± std) 6.3 ± 2.4 7.6 ± 2.9 9.2 ± 3.3 

p1,2 = 0.10 
p1,3+ = 0.01 
p2,3+ = 0.46 

Preoperative MRI 
(Normal/Abnormal) 5/29 1/7 2/7 

𝜒"1,2 = 0.16, p1,2 = 0.69 
𝜒"1,3+ = 0.001, p1,3+ = 0.97 
𝜒"2,3+ = 0.01, p2,3+ = 0.91 

History of status 
epilepticus 5 (15.7%) 0 (0%) 3 (33.3%) 

𝜒"1,2 = 0.30, p1,2 = 0.58 
𝜒"1,3+ = 0.63, p1,3+ = 0.43 
𝜒"2,3+ = 1.35, p2,3+ = 0.25 

Secondary generalised 
seizures 28 (82.3%) 6 (75%) 6 (66.7%) 

𝜒"1,2 = 0.0005, p1,2 = 0.98 
𝜒"1,3+ = 0.32, p1,3+ = 0.57 
𝜒"2,3+ = 0.02, p2,3+ = 0.88 

Depression 8 5 2 𝜒"1,2 = 2.96, p1,2 = 0.09 
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𝜒"1,3+ = 0.13, p1,3+ = 0.72 
𝜒"2,3+ = 1.42, p2,3+ = 0.23 

Psychosis 2 0 0 𝜒"1,2 = 0.05, p1,2 = 0.83 
𝜒"1,3+ = 0.02, p1,3+ = 0.88 

Other psychiatric 
disorders 8 3 4 

𝜒"1,2 = 0.13, p1,2 = 0.72 
𝜒"1,3+ = 0.68, p1,3+ = 0.41 
𝜒"2,3+ = 0.04, p2,3+ = 0.84 

Relapsed by end of 
Year 2 0 (0%) 3 (37.5%) 9 (100%)  

Relapsed by end of 
Year 3 3 (8.8%) 5 (62.5%) 9 (100%)  

Relapsed by end of 
Year 4 5 (14.7%) 6 (75%) 9 (100%)  

Relapsed by end of 
Year 5 7 (20.6%) 6 (75%) 9 (100%)  
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Figure 1: Estimating patient-specific surgery network. Preoperative T1w MRI of an example patient in 

panel a) and postoperative T1w MRI in panel c) were used to delineate the tissue resected by surgery. 

The resected tissue shown by the red resection mask in panel b) was used with the preoperative 

diffusion MRI to infer brain networks. Pre-surgery network inferred based on the number of 

streamlines connecting different ROIs in panel d) ignores the surgery information by not taking the 

resection mask into consideration. The patient-specific surgery network is illustrated in panel e) which 

shows the connections that were affected by the surgery. Panel f) shows the surgically-sparred 

subnetwork. 
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Figure 2: Overall pipeline. Pre-surgical gFA network architecture for each patient in panel a) is inferred 

and edges are standardised against a control distribution to obtain a z-score transformed network in 

panel b). The connections affected by the surgery shown in surgery network in panel c) are removed 

to obtain surgically-spared network in panel d). Panel e) shows the concept of node abnormality for 

two example nodes. By normalising the number of abnormal links to a node with its degree, the 

heterogeneity in the degree of network nodes is accounted for. A high degree node can be less 

abnormal compared to a low degree node depending on the number of abnormal connections. f) 

Different thresholds required for the computation of node abnormality are shown. z-score at which a 

link is considered abnormal is on the y-axis and the cut-off at which a node is considered abnormal is 

shown on the x-axis. g-h) Abnormal node count in pre-surgery and surgically-spared networks are 

incorporated in a machine learning classifier along with the clinical predictors to predict surgical 

outcomes with its severity at year-one and estimate chances of seizure relapse in five years. 
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Figure 3: Association between the number of abnormal nodes in surgically-spared network with 

year-one surgical outcome and relapse. a-d) Four patients are shown with their year-one surgical 

outcome and relapse information. Panel a) and b) show fewer abnormal nodes in patients with ILAE 1 

and ILAE 2 outcomes respectively with no relapse. Panel c) shows a patient with many abnormal nodes 

remaining yet having an ILAE 2 outcome at year-one but relapsing subsequently. Panel d) shows a large 

number of abnormal nodes remaining in a patient who was never seizure-free in five years. e) 

Significantly more abnormal nodes remained in ILAE 3+ patients compared to ILAE 1 and ILAE 2. f) 

Alluvial flow diagram showing proportion of relapsed patients with ILAE 1 or ILAE 2 at year-one. g) In 
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ILAE 1-2 patients, those who relapsed had significantly more abnormal nodes in the surgically-spared 

network. 
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Figure 4: Effect of surgery in reducing node abnormality is more widespread in the seizure free group. 

a) Proportion of abnormal nodes computed for pre-surgery and surgically-spared networks are colour 

coded for six ipsilateral and contralateral brain areas in the seizure free (ILAE 1) group. b) Bar plot 

shows the drop in surgically-spared network compared to pre-surgery network in five ipsilateral 

(temporal subcortical, occipital, frontal, and cingulate) and two contralateral (temporal and sub-

cortical) areas in the seizure free (ILAE 1) group. Error bars represent the standard error of the 
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proportion of abnormal nodes in each area. c) Different brain areas in pre-surgery and surgically-spared 

network are colour coded based on the proportion of abnormal nodes in the non-seizure-free group 

(ILAE 3+) d) Corresponding bar plot showing a drop in node abnormality in surgically-spared network 

in three ipsilateral areas: temporal, occipital, and frontal in the not-seizure-free group (ILAE 3+). 
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Figure 5: Prediction of seizure outcomes at year-one.  a) AUC of SVMs that predicted seizure free (ILAE 

1) and non-seizure free (ILAE3+) outcomes at one year after surgery are plotted in black. Blinded to the 

exact ILAE categories, the model predicted 12-month likelihood of seizure relapse for each patient. The 

Spearman’s rank correlation between likelihood of seizure relapse and the severity of surgical 

outcomes (ILAE class) at year-one are plotted in green. The lower panel of a) shows the relative feature 

importance of each SVM on a normalised scale between 0 and 1. The leftmost SVM, plotted at x = 1, 

incorporated all 15 features (13 clinical, node abnormality in pre-surgery and surgically-spared 

networks) to predict seizure free (ILAE 1) and non-seizure free (ILAE3+) outcomes at one year after 

surgery. Amongst all features, the relative importance of surgically-spared node abnormality was the 

highest whereas the relative importance of MRI abnormality was the least. Therefore, in the next 

iteration at x = 2, a new SVM was retrained using the 14 features, after removing the MRI abnormality 
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feature. This stepwise removal of metrics was continued until only a single metric (surgically-spared 

node abnormality) remained. b) ROC curve is plotted at an example combination of features that 

yielded highest classification performance (AUC=0.91, specificity=1, sensitivity=0.79, accuracy=0.84). 

c) At the same example point, the correlation between the predicted likelihood of seizure relapse and 

the severity of seizure outcome at year 1 is shown. The predicted likelihood of seizure relapse was 

significantly different between ILAE 2 and ILAE 3-5 patients combined (𝑝 = 0.003, 𝑑 = 0.95). 
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Figure 6: Predicted likelihood of seizure relapse at one-year was higher in patients who had seizure 

relapse at later years.  The predicted 12-month likelihood of seizure relapse was estimated from the 

SVM model trained with only the surgically-spared node abnormality feature. The likelihood of seizure 

relapse for patients who were never seizure free (i.e. ILAE 3-6 at year 1) are shown in red. Amongst the 

patients who were initially seizure-free (i.e., ILAE 1 or ILAE 2 at year 1), higher likelihood of seizure 

relapse was predicted for those who had a subsequent relapse. This is despite the model being blinded 

to the outcomes at later years. 
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