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Abstract 14 

Identifying the molecular programs underlying human organ development and how they differ from 15 

those in model species will advance our understanding of human health and disease. 16 

Developmental gene expression profiles provide a window into the genes underlying organ 17 

development as well as a direct means to compare them across species. We use a transcriptomic 18 

resource for mammalian organ development to characterize the temporal profiles of human genes 19 

associated with distinct disease classes and to determine, for each human gene, the similarity of its 20 

spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat and rabbit. We find 21 

that half of human genes differ from their mouse orthologs in their temporal trajectories. These 22 

include more than 200 disease genes associated with brain, heart and liver disease, for which mouse 23 

models should undergo extra scrutiny. We provide a new resource that evaluates for every human 24 

gene its suitability to be modeled in different mammalian species. 25 

 26 

Keywords: human disease, animal models, organogenesis, gene expression. 27 

 28 

Introduction 29 

The genetic programs underlying human organ development are only partially understood, yet they 30 

hold the key to understanding organ morphology, physiology and disease [1–6]. Gene expression is 31 

a molecular readout of developmental processes and therefore provides a window into the genes 32 

and regulatory networks underlying organ development [7,8]. By densely profiling gene expression 33 

throughout organ development, we get one step closer to identifying the genes and molecular 34 

processes that underlie organ differentiation, maturation and physiology [9–13]. We also advance 35 

our understanding of what happens when these processes are disturbed and lead to disease. 36 

Spatiotemporal gene expression profiles provide a wealth of information on human disease genes, 37 

which can be leveraged to gain new insights into the etiology and symptomatology of diseases 38 

[8,14–16].  39 

 40 

Much of the progress made in unraveling the genetic programs responsible for human organ 41 

development has come from research in model organisms. Mice and other mammals (e.g., rats and 42 

rhesus macaques) are routinely used as models of both normal human development and human 43 

disease because it is generally assumed that the genes and regulatory networks underlying 44 

development are largely conserved across these species. While this is generally true, there are also 45 

critical differences between species during development, which underlie the large diversity of 46 
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mammalian organ phenotypes [1–6,8]. Identifying the commonalities and differences between the 47 

genetic programs underlying organ development in different mammalian species is therefore 48 

paramount for assessing the translatability of knowledge obtained from mammalian models to 49 

understand human health and disease. Critically, gene expression profiles can be directly compared 50 

between species, especially when they are derived from matching cells/organs and developmental 51 

stages. Gene expression therefore offers a direct means to evaluate similarities and differences 52 

between species in organ developmental programs. While the relationship between gene 53 

expression and phenotypes is not linear, identifying when and where gene expression differs 54 

between humans and other species will help identify the conditions (i.e., developmental stages, 55 

organs, genes) under which model species may not be well suited to model human development 56 

and disease. 57 

 58 

Here, we take advantage of a developmental gene expression resource [13], which densely covers 59 

the development of seven major organs in humans and other mammals, to characterize the 60 

spatiotemporal profiles of human disease genes and gain new insights into the symptomatology of 61 

diseases. We also determine for each human gene (including disease-associated genes) the 62 

similarity of its spatiotemporal expression with that of its orthologs in mouse, rat, rabbit and rhesus 63 

macaque. Our analyses and datasets therefore provide a new resource for assessing the suitability 64 

of different mammalian species to model the action of individual genes and/or processes in both 65 

healthy and pathological human organ development.  66 

 67 

Results 68 

An expression atlas of human organ development  69 

The resource [13] provides human gene expression time series for seven major organs: brain 70 

(forebrain/cerebrum), cerebellum (hindbrain/cerebellum), heart, kidney, liver, ovary and testis 71 

(Figure 1A). The time series start at 4 weeks post-conception (wpc), which corresponds to early 72 

organogenesis for all organs except the heart (mid-organogenesis), and then cover prenatal 73 

development weekly until 20 wpc. The sampling restarts at birth and spans all major developmental 74 

milestones, including ageing (Figure 1A; total of 297 RNA-sequencing (RNA-seq) libraries). Matching 75 

datasets are available for mouse (316 libraries), rat (350 libraries) and rabbit (315 libraries) until 76 

adulthood and for rhesus macaque starting at a late fetal stage (i.e., embryonic (e) day 93, 77 

corresponding to 19 wpc human [13]; 154 libraries; Methods). 78 

 79 
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We used weighted gene co-expression network analysis to identify the main clusters (modules) of 80 

highly correlated genes during human organ development (Methods). We then characterized each 81 

module according to its developmental profile (Figure 1B; Figure S1A), functional and disease 82 

enrichments (Figure 1b; Table S1), and proportion of transcription factors (TFs) [17], RNA-binding 83 

proteins (RBPs) [18] and developmentally dynamic long noncoding RNAs (lncRNAs) [19] (Figure 1B). 84 

As expected, there is a clear match between the disease enrichments of each module and its organ 85 

developmental profile (Figure 1B). For example, module M3 comprises 2,420 genes mainly 86 

expressed in the liver and it is associated with a number of liver-related diseases (e.g., fatty liver). 87 

Module M20 (822 genes) comprises genes mainly expressed in the heart and is associated with a 88 

number of cardiomyopathies. Consistent with previous work [13], we observe that modules 89 

associated with higher expression early in development have a significantly higher fraction of TFs 90 

than modules associated with higher expression late in development (Pearson’s ρ: -0.71, P-value = 91 

5 x 10-6; Figure S1B), a result that is consistent with TFs directing most of organogenesis. The 92 

modules identified also provide a wealth of information on poorly characterized genes, that through 93 

"guilt-by-association" can be assigned putative functions (Table S2). We identified a strong positive 94 

correlation between the fraction of protein-coding genes in a module that are among the least 95 

studied in the human genome [20] and the module’s fraction of dynamic lncRNAs (ρ: +0.77, P-value 96 

= 2 x 10-7). Modules rich in dynamic lncRNAs and poorly studied protein-coding genes are frequently 97 

associated with high expression in the gonads (Figure 1B) but are also found in association with high 98 

expression in each of the other organs (e.g., module M9 for brain and module M11 for cerebellum).  99 

 100 

The breadth of developmental expression (i.e., the organ- and time-specificity of a gene) informs on 101 

gene function, because it is expected to correlate with the spatiotemporal manifestation of 102 

phenotypes. TFs, RBPs and members of the seven major signaling pathways all play key roles during 103 

development but have distinct spatiotemporal profiles (Figure S2; time- and organ-specificity are 104 

strongly correlated [13]). Consistent with previous observations [18], RBPs are generally 105 

ubiquitously expressed, with only 6% (100) showing time- and/or organ-specificity (Figure S3). 106 

Among these are the developmental regulators LIN28A and LIN28B, which are expressed at the 107 

earliest stages across somatic organs; the heart-specific splicing factor RMB20, which has been 108 

associated with cardiomyopathy; gonad-specific RBPs predicted to bind to piRNAs; and several 109 

members of the ELAV family of neuronal regulators. Signaling genes also tend to be ubiquitously 110 

expressed (Figure S2), but they include a higher fraction (19-20%) of time- and/or organ-specific 111 

genes than RBPs. As expected, the greatest variation in the breadth of spatiotemporal expression is 112 
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found among classes of TFs (Figure S2). Myb TFs are mostly ubiquitously expressed (Figure S4), 113 

whereas homeobox, POU-homeobox (Figure S5) and forkhead (Figure S6) TFs display high time- and 114 

organ-specificity (Figure S2). Although only 16% of zinc finger TFs show spatiotemporal specificity, 115 

they constitute ~1/4 of all time- and/or organ-specific TFs due to their high abundance. Another 116 

~1/4 corresponds to homeobox TFs, and the remaining half derive from various classes of TFs. 117 

Notable among homeobox TFs are the Hox genes, which are critical for pattern specification at the 118 

earliest stages of development [21]. In the developmental span examined in our study, Hox genes 119 

play an important role during the development of the urogenital system and the early hindbrain 120 

(but not cerebrum) (Figure S7). 121 
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 122 

Figure 1. An expression atlas of human organ development. (A) Description of the dataset. The dots mark the sampled 123 

stages in each organ (median of 2 replicates). (B) Modules in the gene co-expression network (number of genes in each 124 

module in parentheses), their correlation with organs and developmental time (full developmental profiles in Figure 125 

S1A), their fraction of TFs, RBPs, developmentally dynamic lncRNAs and poorly studied protein-coding genes, and 126 

examples of overrepresented diseases (FDR < 1%, hypergeometric test; Table S1). The modules are ordered vertically 127 

by decreasing number of genes. Module 0 (bottom) includes genes not assigned to any of the other modules. 128 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747782doi: bioRxiv preprint 

https://doi.org/10.1101/747782
http://creativecommons.org/licenses/by/4.0/


 7 

Spatiotemporal profiles of disease genes 129 

The breadth of developmental expression can also inform on the etiology and phenotypic 130 

manifestation of human diseases. We integrated a dataset of human essential genes [22] with the 131 

set of genes associated with inherited disease in the manually curated Human Gene Mutation 132 

Database (“disease genes”) [23] to compare the breadth of developmental expression of genes in 133 

distinct classes of phenotypic severity (Figure 2A). We found a clear association between expression 134 

pleiotropy (i.e., fraction of total samples in which genes are expressed) and the severity of 135 

phenotypes (Figure 2B). Essential genes that are not associated with disease are likely enriched for 136 

embryonic lethality and are, congruently, the most pleiotropic. Genes that when mutated range 137 

from lethality to causing disease (often developmental disorders affecting multiple organs) are less 138 

pleiotropic than embryonic lethals but are more pleiotropic than genes only associated with disease 139 

(both P-value = 2 x 10-16, Wilcoxon rank sum test, two-sided; Figure 2B). Finally, non-lethal disease 140 

genes are more pleiotropic than genes not associated with deleterious phenotypes (P-value = 2 x 141 

10-5; Figure 2B). A similar association is obtained when looking independently at organ- and time-142 

specificity (Figure S8A). 143 

 144 

Human diseases differ in terms of severity, age of onset and organs affected, all of which should be 145 

reflected in the spatiotemporal expression profiles of underlying disease genes. We therefore 146 

looked at the time- and organ-specificity of genes associated with different classes of disease [23] 147 

(Figure 2C). As expected, the specificity of the spatiotemporal profiles of disease genes differs 148 

considerably among disease classes. Genes implicated in developmental disorders, cancer and 149 

diseases of the nervous system tend to be ubiquitously expressed (spatially and temporally), 150 

whereas genes causing heart and reproductive diseases tend to have more restricted expression 151 

(Figure 2C). Further insights were obtained by analysing the temporal trajectories of disease genes 152 

within the organs they affect. We used a soft clustering approach to identify the most common 153 

expression profiles in each organ and assigned each gene a probability of belonging to each of the 154 

clusters (Methods; Table S2). Disease genes are enriched within specific clusters, which are disease 155 

and organ-specific. For example, genes associated with heart disease are significantly enriched 156 

among genes characterized by a progressive increase in expression throughout heart development, 157 

whereas genes associated with metabolic diseases are enriched among genes that exhibit a strong 158 

up-regulation in the liver in the first months after birth (Figure S8B-C).  159 

 160 
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Within the brain, we focused on the temporal trajectories of genes associated with three 161 

neurodevelopmental disorders: primary microcephaly, autism and schizophrenia (Methods). 162 

Consistent with these disorders having different etiologies and ages of onset, the associated genes 163 

are significantly enriched among distinct temporal profiles in the brain (Figure 2D). Genes causing 164 

primary microcephaly show their highest expression at the earliest developmental stages followed 165 

by a progressive decrease in expression, whereas genes implicated in schizophrenia show the 166 

opposite profile: a progressive increase in expression throughout development (Figure 2D). Genes 167 

associated with autism are expressed throughout prenatal development and subsequently display 168 

a sharp decrease in expression near birth (Figure 2D). The two temporal profiles in the brain that 169 

are enriched with microcephaly- and autism-associated genes are also enriched with essential genes 170 

(P-value < 10-16, binomial test).  171 

 172 

Most (86%) disease genes that we analyzed are associated with phenotypes in multiple organs, but 173 

this still leaves hundreds of genes that affect exclusively one organ. Many of these genes present a 174 

puzzle in biomedical research because, as previously noted [24,25], they are not expressed in an 175 

organ-specific manner. Our analysis of developmental transcriptomes further strengthens this 176 

puzzle. Genes known to cause organ-specific phenotypes exhibit dynamic temporal profiles in a 177 

similar number of organs as genes causing phenotypes across multiple organs (i.e., median of 4 178 

organs for both gene sets; Figure S9A). This raises the question as to why mutations that mostly 179 

disrupt the coding-sequences of genes temporally dynamic in multiple organs lead to diseases that 180 

are organ-specific. A number of different factors may explain this phenomenon, including 181 

alternative splicing (e.g., mutations may affect only organ-specific isoforms) [26], functional 182 

redundancy [25], and/or dependency on the characteristics of specific cell types (e.g., protein-183 

misfolding diseases in long-lived neurons). It has also been suggested that pathologies tend to be 184 

associated with the organ where the genes display elevated expression [24]. This prompted us to 185 

ask where genes associated with organ-specific diseases exhibit their maximum expression during 186 

development. We focused on heart, neurodevelopmental, psychiatric, and metabolic diseases (the 187 

latter tested in association with the liver). We found a strong association between the organ of 188 

maximum expression during development and the organ where the pathology manifests (Figure 189 

2E). Thus, we found that 56% of the genes exclusively associated with heart disease show maximal 190 

expression in the heart (vs. 15% for all genes, P-value = 2 x 10-16, binomial test; Figure 2E), that 56% 191 

of the genes with an exclusively metabolic phenotype show maximal expression in the liver (vs. 19% 192 

for all genes, P-value = 2 x 10-16; Figure 2E), and that genes exclusively associated with 193 
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neurodevelopmental diseases are enriched for maximal expression in the brain (39% vs. 32% for all 194 

genes, P-value = 0.03; Figure 2D). The duration of gene expression may also help to explain organ-195 

specific pathologies, at least for heart disease. Genes expressed in multiple organs that have heart-196 

specific phenotypes are ubiquitously expressed during heart development but show a significantly 197 

higher time-specificity (i.e., shorter expression window) in the other organs (all P-value < 10-4, 198 

Wilcoxon rank sum test, two-sided; Figure 2F). We note, however, that time-specificity does not 199 

help to explain metabolic- or neurodevelopmental-specific phenotypes, as we see no difference in 200 

the time-specificity of genes in the affected organs versus the others (Figure 2F; Figure S9B). Overall, 201 

the association of pathology with level of gene expression, and to a lesser extent with duration of 202 

gene expression, suggest that the development of organ-specific pathologies can at least in some 203 

cases be explained by differences in the abundance (spatial and/or temporal) of the cell type(s) that 204 

express the mutated gene in the different organs. 205 
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 206 

Figure 2. Spatiotemporal profiles of disease genes. (A) Number of expressed (RPKM > 1) protein-coding genes in 207 

different classes of phenotypic severity. (B) Expression pleiotropy of genes in different classes of phenotypic severity 208 

(P-values from Wilcoxon rank sum test, two-sided). (C) Organ- and time-specificity (median across organs) of genes 209 

associated with different classes of diseases. In red are diseases associated with genes with time/organ-specificity lower 210 

than non-disease-associated genes and in blue those with higher (darker colors mean that the difference is significant, 211 

P ≤ 0.05, Wilcoxon rank sum test, two-sided). (D) Genes associated with primary microcephaly (n = 15), autism (n = 164) 212 

and schizophrenia (n = 46) are significantly enriched (binomial test) in distinct expression clusters in the brain (on the 213 

left are the clusters identified through soft clustering of the brain developmental samples). The genes associated with 214 

each disorder are significantly enriched in only one of the 8 clusters (right). (E) Organs where genes associated with 215 

organ-specific phenotypes show maximum expression. P-values from binomial tests. (F) Time-specificity in the different 216 

organs of genes with heart- and metabolic-specific phenotypes.  In (B), (C) and (F), the box plots depict the median ± 217 

the 25th and 75th percentiles, with the whiskers at 1.5 times the interquartile range. 218 
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Presence/absence expression differences are rare between species 219 

The extensive use of mice, rats and other mammals in biomedical research is predicated upon the 220 

assumption of an overall conservation of developmental programs between humans and these 221 

species. This assumption has been largely supported by comparative analyses of developmental 222 

expression profiles [13] and by comparative analyses of the human and mouse trans-acting 223 

regulatory circuitry [27]. However, this broad conservation does not preclude developmental 224 

expression differences in individual genes that can profoundly impact the translatability of 225 

phenotypes between humans and other species.  226 

 227 

We first compared human genes and their orthologs in mouse, rat, rabbit and rhesus macaque in 228 

terms of stark differences in spatiotemporal profiles: presence/absence of gene expression in a 229 

given organ and large differences in expression pleiotropy across multiple organs. Differences 230 

between humans and each of the other species in terms of the presence or absence of gene 231 

expression in an organ are rare. In a comparison of human and mouse, only 1-3% of protein-coding 232 

genes (177 – 372 genes depending on the organ) are robustly expressed (RPKM ≥ 5) in human but 233 

not in mouse (RPKM ≤ 1). These percentages are similar for the comparisons with the other species 234 

(i.e., 1-2% of genes robustly expressed in human are not expressed in rat/rabbit/rhesus macaque). 235 

Although rare, these differences also include disease genes. For example, among genes robustly 236 

expressed in heart in human but not in mouse are 17 genes associated with heart disease. These 237 

include NKX2-6, which causes conotruncal heart malformations in human [28] that, congruently, are 238 

not recapitulated by a mouse knockout [29]. The developmental profile of NKX2-6 in the human 239 

heart is ancestral; the heart expression was lost specifically in rodents, and this is therefore an 240 

example of a disease gene that would probably be better studied in the rabbit (Figure 3A). Genes 241 

associated with neurological diseases are depleted among the set of genes expressed in the human 242 

but not in the mouse brain (12 differ vs. 28 expected, P-value = 4 x 10-4, binomial test). Among the 243 

exceptions is CHRNA2, a gene expressed in the human brain starting at birth that has been 244 

implicated in epilepsy [30,31]. Once again, and congruently, this clinical phenotype is not 245 

recapitulated in the mouse knockout [29] (Figure 2B).  246 

 247 

The global breadth of spatiotemporal expression is also very similar between human genes and their 248 

orthologs in mouse, rat, rabbit and rhesus macaque. They are highly correlated in terms of their 249 

organ-specificity (Pearson's r = 0.85-0.86, all P-value < 10-16), time-specificity (r = 0.68-0.84 for 250 

individual organs and 0.83-0.84 for median time-specificity, all P-value < 10-16) and, therefore, for 251 
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global expression pleiotropy (r = 0.84-0.90, all P-value < 10-16). There are only 141 genes expressed 252 

in at least half the human samples but in fewer than 10% of the mouse samples, and 172 genes with 253 

the opposite pattern (Figure S9C). These genes are depleted for essential genes (P-value = 8 x 10-6, 254 

binomial test) and disease genes (P-value = 0.02, binomial test). Overall, differences in the breadth 255 

and presence/absence of gene expression between humans and other species are confined to a 256 

small set of genes. However, when present, they can translate into relevant phenotypic differences. 257 

 258 

Figure 3. Suitability of the mouse as a model. (A) Developmental profile of NKX2-6 in human, mouse, rat, rabbit and 259 

opossum. NKX2-6 is robustly expressed in the human heart but not in mouse, and the conotruncal heart malformations 260 

observed in human are not recapitulated by a mouse knockout. The human heart profile of NKX2-6 is ancestral as it is 261 

similar to the profiles in rabbit and opossum. (B) Developmental profile of CHRNA2 in human and mouse. CHRNA2 is 262 

robustly expressed in the human brain but not in mouse, and the epileptic phenotypes observed in human are not 263 

recapitulated by a mouse knockout.  264 

 265 

Organ-specific temporal differences are common 266 

It is not uncommon for genes with broad spatiotemporal profiles to evolve new organ 267 

developmental trajectories in specific species or lineages [13]. Differences between mammalian 268 

species in organ developmental trajectories were first identified using a phylogenetic approach that 269 

included distantly related species (i.e., the marsupial opossum which diverged from human ~160 270 

million years ago [32]) [13]. Therefore, only a restricted set of human genes was evaluated for 271 

potential trajectory differences (e.g., 3,980 genes in the brain). Here, we compared the human 272 

developmental profiles in each of the organs with their orthologs in mouse, rat, rabbit and rhesus 273 

macaque in a pairwise manner (Methods; Tables S3-S8; because of the shorter rhesus macaque’s 274 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747782doi: bioRxiv preprint 

https://doi.org/10.1101/747782
http://creativecommons.org/licenses/by/4.0/


 13 

time series, this analysis was only performed for brain, heart and liver). This allowed us to duplicate 275 

or triplicate (depending on the organ) the number of orthologous genes analyzed for differences in 276 

their developmental trajectories. Figure 4A shows examples of genes with different developmental 277 

trajectories between human and mouse.  278 

 279 

Consistent with the original study [13], we found differences between the organs in the proportion 280 

of genes with trajectories differences between humans and each of the other species (Figure 4B): 281 

differences are highest in testis and liver and lowest in brain. There are also expected differences 282 

between species: a smaller fraction of genes differs between human and rhesus macaque (diverged 283 

~29 million years ago) than between human and each of the glires (diverged ~90 million years ago). 284 

However, we also identified a higher proportion of genes that differ between human and mouse 285 

than between human and rabbit (despite the same divergence time), a result consistent with the 286 

original observation that rodents have evolved a larger number of trajectory differences [13].   287 

 288 

Genes with different developmental trajectories between human and mouse are common: 51% of 289 

the genes tested differ in at least one organ. Most of these genes (67%) differ in only one organ 290 

(25% of genes differ in two organs, and 8% differ in 3 or more), despite on average showing dynamic 291 

temporal profiles in 5-6 organs. Genes with differences in developmental trajectories are depleted 292 

for TFs (P-value = 2 x 10-5, Fisher’s exact test, two-sided) and are functionally enriched for protein 293 

metabolism (Benjamini-Hochberg corrected P-value = 1 x 10-4, overrepresentation enrichment 294 

analysis). Interestingly, genes with different trajectories in the brain (but not in the other organs) 295 

are enriched among a set of genes identified as carrying signs of positive-selection in their coding-296 

sequences across mammalian species [33] (P-value = 0.008, Fisher’s exact test).  297 

 298 

The genes depicted in Figure 4A are associated with diseases that affect the organ in which human 299 

and mouse display different trajectories. For these genes, the disease etiology may not be fully 300 

recapitulated by mouse models. The mouse knockouts are still expected to affect the development 301 

of the organ associated with the disease, but the cellular and developmental context of the 302 

phenotypes in mouse could differ substantially from those in human. It is therefore noteworthy that 303 

genes associated with human disease are less likely than non-disease genes to differ in their 304 

trajectories between human and mouse (Figure 4C; and between human and the other species; data 305 

not shown). Genes causing diseases that affect the brain, heart and liver are significantly depleted 306 

for trajectory differences between human and mouse in each of the organs (Figure 4C, P-value = 307 
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0.0006 for the brain, P-value = 0.05 for the heart and P-value = 3 x 10-5 for the liver, Fisher’s exact 308 

test). Nevertheless, that leaves more than 200 disease genes whose developmental profiles may 309 

not be fully recapitulated in the mouse (Figure 4C).  310 

 311 

We also posed the question as to whether genes underlying diseases with different ages of onset 312 

are equally likely to differ between human and mouse. Although the number of disease genes 313 

associated with an exclusive congenital or exclusive postnatal onset is low, we found that genes 314 

with congenital onsets almost never differ in terms of their developmental trajectories between 315 

human and mouse (i.e., only 1 out of 82 genes causing disease in the brain, heart or liver; Figure 4C) 316 

whereas genes with postnatal onsets are more likely to show differences (although this difference 317 

is only statistically significant for the liver, P-value = 0.03, binomial test; Figure 4C). Overall, we 318 

suggest that for genes with differences in developmental trajectories (Tables S3-S8), existing mouse 319 

models of human diseases should undergo extra scrutiny and the possibility of studying alternative 320 

models should be carefully considered. 321 

 322 

Figure 4. Developmental trajectory differences. (A) Examples of human disease genes with different developmental 323 

trajectories between human and mouse in the affected organ. (B) Percentage of genes in each organ that have different 324 

trajectories between human and mouse, rat, rabbit and rhesus. On the top are the number of genes that have a different 325 

trajectory between human and mouse. (C) Percentage of genes in brain, heart and liver that differ in trajectories 326 

between human and mouse. P-values for comparisons between disease and non-disease genes are from Fisher’s exact 327 

tests and P-values for comparisons of disease genes with different ages of onset are from binomial tests.   328 

 329 

 330 
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Discussion 331 

We integrated datasets of human essential and disease genes with developmental gene expression 332 

profiles in order to shed new light on the causes and phenotypic manifestations of human diseases. 333 

We found that the breadth of spatiotemporal expression correlates positively with the severity of 334 

phenotypes and that it differs considerably among genes associated with different disease classes. 335 

We also found that disease-associated genes are enriched within specific developmental modules 336 

in the organs affected, and that genes associated with different brain developmental disorders show 337 

distinct temporal profiles during brain development. There is therefore a clear association between 338 

spatiotemporal profiles and the phenotypic manifestations of diseases.  339 

 340 

The analysis of developmental transcriptomes further strengthened the apparent paradox of 341 

ubiquitously expressed genes often having organ-specific phenotypes [24,25]. We could not 342 

distinguish genes associated with organ-specific phenotypes from those associated with multi-343 

organ phenotypes based on the breadth of spatiotemporal profiles. However, for genes associated 344 

with organ-specific phenotypes, there is a strong association between the organ affected and the 345 

organ of maximal expression during development. This association suggests that at least some 346 

organ-specific pathologies could be explained by differences between organs in the spatial and 347 

temporal abundance of the cells expressing the mutated gene. 348 

 349 

Gene expression links genes with their organismal phenotypes and hence offers a direct means to 350 

compare both across species. It can, therefore, inform on the likelihood that insights obtained from 351 

studies in model species are directly transferable to human. We found that stark changes in gene 352 

expression (e.g., presence/absence of expression) are rare between species. However, they do 353 

sometimes occur in disease genes, and in these cases, they may explain why for these genes mouse 354 

models fail to recapitulate the human phenotypes. Strikingly, we also found that differences 355 

between humans and other species in terms of the genes' temporal trajectories during organ 356 

development are common. About half of human genes exhibit a different developmental trajectory 357 

from their mouse orthologs in at least one of the organs. In further support of the use of model 358 

organisms for disease research, we found that disease genes are less likely to differ than the average 359 

gene. Nevertheless, we still identified more than 200 genes known to be causally associated with 360 

brain, heart and/or liver disease, that differ in developmental trajectories between human and 361 

mouse in the affected organ.  362 

 363 
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Different reasons, that are not mutually exclusive, can account for the differences in temporal 364 

trajectories observed between species. Differences in developmental trajectories can be created by 365 

gene expression differences between species in homologous cell types, differences between species 366 

in cellular composition, and/or differences between species in the cell types that express 367 

orthologous genes. All of these differences can decrease the likelihood that the phenotype 368 

associated with a human gene will be fully recapitulated in a model species. However, differences 369 

in trajectories created by changes in the identity of the cell types that express an orthologous gene 370 

in different species will lead to the greatest phenotypic divergence. Endeavors that seek to clarify 371 

the causes of trajectory differences therefore represent a key next step, given that they will identify 372 

further genes and processes that are challenging to model in other species. The use of single-cell 373 

technologies will greatly aid these efforts [34].  374 

 375 

Gene expression is only one of several steps connecting genes to their phenotypes. Similarities and 376 

differences in gene expression between species will not always translate into conserved and 377 

divergent phenotypes, respectively. This notwithstanding, detailed comparisons of developmental 378 

gene expression profiles, as performed here, can substantially help to assess the translatability of 379 

the knowledge gathered on individual genes from model species to humans.  380 
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Methods 397 

Resource 398 

From a mammalian resource on organ development [13], we analyzed data from 1,443 strand-399 

specific RNA-seq libraries sequenced to a median depth of 33 million reads: 297 from human, 316 400 

from mouse (outbred strain CD-1 - RjOrl:SWISS), 350 from rat (outbred strain Holtzman SD), 315 401 

from rabbit (outbred New Zealand breed) and 165 from rhesus macaque. The organs, 402 

developmental stages and replicates sampled in each species are described in Table S9. The mouse 403 

time series started at e10.5 and there were prenatal samples available for each day until birth (i.e., 404 

e18.5). There were postnatal samples for 5 stages: P0, P3, P14, P28 and P63. The rat time series 405 

started at e11 and there were prenatal samples available for each day until birth (i.e., e20). There 406 

were postnatal samples for 6 stages: P0, P3, P7, P14, P42 and P112. The rabbit time series started 407 

at e12 and there were 11 prenatal stages available up to and until e27 (gestation lasts ~ 29-32 days). 408 

There were postnatal samples for 4 stages: P0, P14, P84 and P186-P548. Finally, the time series for 409 

rhesus macaque started at a late fetal stage (e93) and there were 5 prenatal stages available up to 410 

and until e130 (gestation last ~ 167 days). There were postnatal samples for 8 stages: P0, P23, 5-6 411 

months of age, 1 year, 3 years, 9 years, 14-15 years, and 20-26 years. For mouse, rat and rabbit 412 

there were typically 4 replicates (2 males and 2 females) per stage, except for ovary and testis (2 413 

replicates). For human and rhesus macaque, the median number of replicates was 2. 414 

 415 

Gene co-expression networks 416 

We built gene co-expression networks using weighted correlation network analysis (WGCNA 1.61) 417 

[35]. We used as input data the read counts after applying the variance stabilizing (VS) 418 

transformation implemented in DESeq2 (1.12.4) [36]. Each stage was represented by the median 419 

across replicates. In addition to protein-coding genes, we included a set of 5,887 lncRNAs that show 420 

significant differential temporal expression in at least one organ and that show multiple signatures 421 

for being enriched with functional genes [19]. We only excluded genes that failed to reach an RPKM 422 

(reads per kilobase of exon model per million mapped reads) across all stages and organs higher 423 

than 1. Using WGCNA we built a signed network (based on the correlation across all stages and 424 

organs) using a power of 10 and default parameters. We then correlated the eigengenes for each 425 

module with the sample traits (i.e., organ and developmental stage).   426 

 427 

We characterized each module in terms of biological processes and disease enrichments (GLAD4U) 428 

using the R implementation of WebGestalt (FDR ≤ 0.01; version 0.0.5) [37]. The lists of TFs are from 429 
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the animalTFDB (version 2.0) [17], the list of RNA-binding proteins are from the work of Gerstberger 430 

and colleagues [18], and the lists of genes from the main signaling pathways are from the following 431 

Gene Ontology (GO) categories: GO:0016055 (Wnt signaling pathway); GO:0007179 (transforming 432 

growth factor beta receptor signaling pathway); GO:0007224 (hedgehog signaling pathway); 433 

GO:0007169 (transmembrane receptor protein tyrosine kinase signaling pathway); GO:0030522 434 

(intracellular receptor signaling pathway); GO:0007259 (JAK-STAT cascade); and GO:0007219 435 

(Notch signaling pathway). 436 

 437 

Inherited disease genes 438 

The list of genes associated with human inherited disease was obtained from the manually curated 439 

HGMD (PRO 17.1) [23]. We only used genes with disease-causing mutations (DM tag; Table S2). 440 

Genes associated with DM mutations were mapped onto the Unified Medical Language System 441 

(UMLS), and aggregated into one or more of the following high level disease types: Eye, Nervous 442 

system, Reproductive, Cancer, Skin, Heart, Blood, Blood Coagulation, Endocrine, Immune, Digestive, 443 

Genitourinary, Metabolic, Ear Nose & Throat, Respiratory, Developmental, Musculoskeletal, and 444 

Psychiatric [23]. We also characterized the developmental profiles of 15 genes with dynamic 445 

temporal profiles in the brain that are associated with primary microcephaly (out of a set of 16 genes 446 

associated with this condition [38]), 171 associated with autism (out of 233 [39]) and 46 associated 447 

with schizophrenia (out of 75 [40]; we only considered loci where at most two genes were 448 

associated with the causative variant). There were only 7 genes with dynamic temporal profiles in 449 

the brain associated with both autism and schizophrenia. The list of human essential genes was 450 

obtained from the work of Bartha and colleagues [22].  451 

 452 

The time- and organ-specificity indexes were based on the Tau metric of tissue-specificity [41] and 453 

were retrieved from the developmental resource [13]. Both indexes range from 0 (broad expression) 454 

to 1 (restricted expression). The pleiotropy index is to the number of samples where a gene is 455 

expressed (RPKM > 1) over the total number of samples.  456 

 457 

The most common temporal profiles in each organ were identified using the soft-clustering 458 

approach (c-means) implemented in the R package mFuzz (2.32.0) [42,43]. The clustering was 459 

restricted to genes previously identified as showing significant temporal differential expression in 460 

each organ (i.e., developmentally dynamic genes) [13]. We used as input the VS-transformed 461 

counts. The number of clusters was set to 6-8 depending on the organ.  462 
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Comparing developmental trajectories  463 

For each organ, we compared the developmental trajectories of orthologous genes previously 464 

identified as showing significant temporal differential expression [13]. We used as input the VS-465 

transformed counts (median across replicates) for matching stages between human and each of the 466 

other species. The developmental stage correspondences across species were retrieved from the 467 

developmental resource [13]. We used GPClust [44–46], which clusters time-series using Gaussian 468 

processes, to cluster the combined data for human and each of the other species. We set the noise 469 

variance (k2.variance.fix) to 0.7 and let GPClust infer the number of clusters. For each gene, GPClust 470 

assigned the probability of it belonging to each of the clusters. Therefore, for each gene we obtained 471 

a vector of probabilities that could be directly compared between pairs of 1:1 orthologs. We 472 

calculated the probability that pairs of orthologs were in the same cluster and used an FDR cut off 473 

of 5% to identify the genes that differed in trajectory between human and each of the other species. 474 

In Tables S3-S8, we provide for each organ and species the P-values (adjusted for multiple testing 475 

using the Benjamini-Hochberg procedure [47]) for the null hypothesis that orthologs have the same 476 

trajectory, and their classification as ‘same’ or ‘different’ based on an FDR of 5%. 477 

 478 

General statistics and plots. Statistical analyses and plots were done in R (3.3.2) [48]. Plots were 479 

created using the R packages ggplot2 (2.2.1) [49], gridExtra (2.2.1) [50], reshape2 (1.4.2) [51], plyr 480 

(1.8.4) [52], and factoextra (1.0.4) [53].  481 
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 620 

Supplementary figure legends 621 

Figure S1. Human weighted gene co-expression network. (A) Organ developmental profiles for 622 

each module; shown is the module’s eigengene. (B) Modules with a high fraction of TFs are 623 

associated with expression in early development whereas modules with a low fraction of TFs are 624 

associated with expression in late development. Shaded area corresponds to the 95% confidence 625 

interval. (C) There is a strong positive correlation between the fraction of developmentally dynamic 626 

lncRNAs in a module and the fraction of poorly studied protein-coding genes. Poorly studied genes 627 
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are those with 3 or fewer publications (left) or those with 8 or fewer publications (right). Data on 628 

the number of publications are from Stoeger and colleagues. Shaded area corresponds to the 95% 629 

confidence interval. 630 

 631 

Figure S2. Breadth of developmental expression of key groups of developmental genes. Time and 632 

organ-specificity of selected sets of TFs, signaling genes and RBPs. Both indexes range from 0 (broad 633 

expression) to 1 (restricted expression) (Methods). The boxplots depict the median ± 25th and 75th 634 

percentiles, whiskers at 1.5 times the interquartile range. 635 

 636 

Figure S3. Spatiotemporal profile of time and/or organ-specific RBPs (organ- and/or median time-637 

specificity ≥ 0.8). In each organ, the samples are ordered from early to late development. 638 

 639 

Figure S4. Spatiotemporal profiles of TFs with a Myb DNA binding domain. In each organ, the 640 

samples are ordered from early to late development. 641 

 642 

Figure S5. Spatiotemporal profiles of TFs with a POU domain. In each organ, the samples are 643 

ordered from early to late development. 644 

 645 

Figure S6. Spatiotemporal profiles of TFs with a Forkhead domain. In each organ, the samples are 646 

ordered from early to late development. 647 

 648 

Figure S7. Spatiotemporal profiles of Hox genes. In each organ, the samples are ordered from early 649 

to late development. 650 

 651 

Figure S8. Spatiotemporal profiles of disease genes. (A) Organ- and time-specificity (median across 652 

organs) for genes in different classes of phenotypic severity (P-values from Wilcoxon rank sum test, 653 

two-sided). The boxplots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the 654 

interquartile range. (B) Distribution of genes associated with heart disease among the 6 heart 655 

clusters. Cluster 1 is enriched for heart disease-associated genes both when using all genes 656 

associated with a heart phenotype (n = 230) and when restricting the set to those exclusively 657 

associated with the heart (n = 46) (P-values from binomial tests). (C) Distribution of genes associated 658 

with metabolic diseases among the 6 liver clusters. Cluster 5 is enriched for metabolic disease-659 

associated genes both when using all genes associated with a metabolic phenotype (n = 379) and 660 
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when restricting the set to those exclusively associated with metabolism (n = 103) (P-values from 661 

binomial tests).  662 

 663 

Figure S9. Spatiotemporal profiles of disease genes. (A) Number of organs where genes have 664 

dynamic temporal profiles as a function of the number of organs where they are known to cause 665 

disease. (B) Time-specificity in different organs for genes associated exclusively with 666 

neurodevelopmental phenotypes. (C) Relationship between human and mouse expression 667 

pleiotropy. The blue dots denote disease-associated genes and the orange dots denote disease-668 

associated genes expressed in at least 50% of the samples in one species but in less than 10% of the 669 

samples in the other. In (A) and (B) the boxplots depict the median ± 25th and 75th percentiles, 670 

whiskers at 1.5 times the interquartile range. 671 

 672 

Supplementary table legends 673 

Table S1. Top 5 biological processes and disease enrichments (FDR < 1%, hypergeometric test) for 674 

each of the 32 modules in the gene co-expression network. 675 

 676 

Table S2. Lists of human genes, the modules to which they belong in the global gene co-expression 677 

network, the clusters to which they were assigned in each organ (soft clustering), their associations 678 

with disease (‘DM’ means disease-causing), the number of organs where they show dynamic 679 

temporal profiles, the organ of maximal expression during development, their organ- and time-680 

specificity, and their global expression pleiotropy. 681 

 682 

Table S3. Comparison of brain temporal trajectories between human genes and their orthologs in 683 

mouse, rat, rabbit, and rhesus macaque. Trajectories were called different when the adjusted 684 

probability of the orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal 685 

profiles in the brain of humans and at least one of the other species were tested for trajectory 686 

differences. 687 

 688 

Table S4. Comparison of cerebellum temporal trajectories between human genes and their 689 

orthologs in mouse, rat, and rabbit. Trajectories were called different when the adjusted probability 690 

of the orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal profiles in 691 

the cerebellum of humans and at least one of the other species were tested for trajectory 692 

differences. 693 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747782doi: bioRxiv preprint 

https://doi.org/10.1101/747782
http://creativecommons.org/licenses/by/4.0/


 26 

 694 

Table S5. Comparison of heart temporal trajectories between human genes and their orthologs in 695 

mouse, rat, rabbit, and rhesus macaque. Trajectories were called different when the adjusted 696 

probability of the orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal 697 

profiles in the heart of humans and at least one of the other species were tested for trajectory 698 

differences. 699 

 700 

Table S6. Comparison of kidney temporal trajectories between human genes and their orthologs in 701 

mouse, rat, and rabbit. Trajectories were called different when the adjusted probability of the 702 

orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal profiles in the 703 

kidney of humans and at least one of the other species were tested for trajectory differences. 704 

 705 

Table S7. Comparison of liver temporal trajectories between human genes and their orthologs in 706 

mouse, rat, rabbit, and rhesus macaque. Trajectories were called different when the adjusted 707 

probability of the orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal 708 

profiles in the liver of humans and at least one of the other species were tested for trajectory 709 

differences. 710 

 711 

Table S8. Comparison of testis temporal trajectories between human genes and their orthologs in 712 

mouse, rat, and rabbit. Trajectories were called different when the adjusted probability of the 713 

orthologs being in the same cluster is ≤ 0.05. Only genes with dynamic temporal profiles in the testis 714 

of humans and at least one of the other species were tested for trajectory differences. 715 

 716 

Table S9. Organs, developmental stages, and number of replicates sampled in each species. 717 

 718 
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Figure S1: Human weighted gene co-expression network. (A) Organ developmental profiles for each module; shown is the module’s
eigengene. (B) Modules with a high fraction of TFs are associated with expression in early development whereas modules with a low
fraction of TFs are associated with expression in late development. Shaded area corresponds to the 95% confidence interval. (C) There is a
strong positive correlation between the fraction of developmentally dynamic lncRNAs in a module and the fraction of poorly studied
protein-coding genes. Poorly studied genes are those with 3 or fewer publications (left) or those with 8 or fewer publications (right). Data
on the number of publications are from Stoeger and colleagues16. Shaded area corresponds to the 95% confidence interval.

Figure S1
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Figure S2. Breadth of developmental expression of key groups of developmental genes. Time and organ-specificity of selected sets of
TFs, signaling genes and RBPs. Both indexes range from 0 (broad expression) to 1 (restricted expression) (Methods). The box plots depict
the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile range.

Figure S2

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●
●
●
●

●

●●

●
●

●●●●

●
●●
●

●

●

●●

●●

●

●
●

●●●●

0.00

0.25

0.50

0.75

1.00

Ti
ss
ue
−s
pe
cif
ici
ty

●●
●●
●
●●

●
●

●

●
●

●●

0.25

0.50

0.75

1.00

Homeobox Pou Forkhead bHLH ETS zf−C2H2 HMG TF_bZIP ZBTB MYB Other

Ti
m
e−
sp
ec
ific
ity

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●●●
●
●

●

●

●

●
●

●●

●
●
●

●

●●

●

●

0.00

0.25

0.50

0.75

1.00

Ti
ss

ue
−s

pe
ci

fic
ity

●
●●●
●●
●

0.25

0.50

0.75

1.00

JakStat Notch RTK Hedgehog TGF wnt Nuc Rec

Ti
m

e−
sp

ec
ifi

ci
ty

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●●
●

●●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

0.00

0.25

0.50

0.75

1.00

Ti
ss
ue
−s
pe
ci
fic
ity

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.25

0.50

0.75

1.00

ncRNA mRNA tRNA snoRNA rRNA snRNAribosome

Ti
m
e−
sp
ec
ifi
ci
ty

Transcription factors Signaling pathways RNA-binding proteins

O
rg

a
n

-s
p

e
ci

fic
ity

T
im

e
-s

p
e

ci
fic

ity

low

high

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747782doi: bioRxiv preprint 

https://doi.org/10.1101/747782
http://creativecommons.org/licenses/by/4.0/


CALR3
BOLL
PIH1D3
RNF113B
ADAD1
RBMXL3
DDX53
PIWIL3
NANOS2
ZCCHC13
APOBEC4
NCBP2L
PIWIL1
RBMXL2
RBM46
RNF17
DAZL
TDRD1
ADAD2
RPL10L
TDRD15
TLR8
RNASE3
TERT
IFIT1B
RNASE9
RNASE7
ZCCHC5
RNASE13
EIF4E1B
NXF5
PABPN1L
MOV10L1
RBM44
PAPOLB
ENDOU
RP11−111H13.1
TDRD12
TDRD5
CPEB1
NR0B1
PATL2
ISG20
OASL
NXF3
APOBEC3H
RNASE2
DQX1
LIN28A
LIN28B
RPS17
ANKHD1
EIF2S3L
DDX47
POLR2J3
ARL6IP4
ADAT3
PPAN
SARNP
AARSD1
PTCD1
PSMA6
RNASEK
EIF3C
SMN2
EIF5AL1
HELZ2
ARHGEF28
PPARGC1B
ZC3H12B
NANOS1
TLR3
OAS2
OAS1
ZC3H12A
DDX43
TDRD9
PIWIL2
MAEL
YBX2
ESRP1
RBM20
RPL3L
APOBEC2
A1CF
AZGP1
ADARB2
MKRN3
SIDT1
TDRD6
NPM2
SRRM4
ELAVL4
CELF4
CELF5
ELAVL3
CELF3

Human

−10 −5 0 5 10
log2(RPKM)

Figure S3. Spatiotemporal profiles of time and/or organ-specific RBPs (organ- and/or median time-specificity ≥ 0.8). In each organ, the
samples are ordered from early to late development.
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Figure S4. Spatiotemporal profiles of TFs with a Myb DNA binding domain. In each organ, the samples are ordered from early to late
development.
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Figure S5. Spatiotemporal profiles of TFs with a POU domain. In each organ, the samples are ordered from early to late development.
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Figure S6: Spatiotemporal profiles of TFs with a Forkhead domain. In each organ, the samples are ordered from early to late
development.
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Figure: Spatiotemporal profiles of Hox genes. In each organ, the samples are ordered from early to late development.
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Figure S8. Spatiotemporal profiles of disease genes. (A) Organ- and time-specificity (median across organs) for genes in different classes
of phenotypic severity (P-values from Wilcoxon rank sum test, two-sided). The box plots depict the median ± 25th and 75th percentiles,
whiskers at 1.5 times the interquartile range. (B) Distribution of genes associated with heart disease among the 6 heart clusters. Cluster 1
is enriched for heart disease-associated genes both when using all genes associated with a heart phenotype (n = 230) and when restricting
the set to those exclusively associated with the heart (n = 46) (P-values from binomial tests). (C) Distribution of genes associated with
metabolic diseases among the 6 liver clusters. Cluster 5 is enriched for metabolic disease-associated genes both when using all genes
associated with a metabolic phenotype (n = 379) and when restricting the set to those exclusively associated with metabolism (n = 103)
(P-values from binomial tests).
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Figure S9: Spatiotemporal profiles of disease genes. (A) Number of organs where genes have dynamic temporal profiles as a function of
the number of organs where they are known to cause disease. (B) Time-specificity in different organs for genes associated exclusively with
neurodevelopmental phenotypes. (C) Relationship between human and mouse expression pleiotropy. The blue dots denote disease-
associated genes and the orange dots denote disease-associated genes expressed in at least 50% of the samples in one species but in less
than 10% of the samples in the other. In (A) and (B) the box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the
interquartile range.
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