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Abstract 

 Genome-wide, polygenic risk scores (PRS) have emerged as a useful way to characterize genetic 

liability using genotypic data. There is growing evidence that PRS may prove useful to identify those at 

increased risk for developing certain diseases. The current utility of PRS in relation to alcohol use 

disorders (AUD) remains an open question. Using data from both a population-based sample [the 

FinnTwin12 (FT12) study] and a high risk sample [the Collaborative Study on the Genetics of 

Alcoholism (COGA)], we examined the association between PRSs derived from genome-wide 

association studies (GWASs) of 1) alcohol dependence/alcohol problems, 2) alcohol consumption, and 3) 

risky behaviors with AUD and other substance use disorder (SUD) symptoms. Individuals in the top 20%, 

10%, and 5% of PRSs had increasingly greater odds of having an AUD compared to the lower end of the 

continuum in both COGA (80th % OR = 1.95; 90th % OR = 2.03; 95th % OR = 2.13) and FT12 (80th % OR 

= 1.77; 90th % OR = 2.27; 95th % OR = 2.39). Those in the top 5% reported greater levels of licit (alcohol 

and nicotine) and illicit (cannabis) SUD symptoms. PRSs can predict elevated risk for SUD in 

independent samples. However, clinical utility of these scores in their current form is modest. As these 

scores become more predictive of SUD, they may become useful to practitioners. Improvement in 

predictive ability will likely be dependent on increasing the size of well-phenotyped discovery samples. 
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Introduction 

 Alcohol misuse is one of the leading contributors to preventable mortality and morbidity 

worldwide 1-3. Identifying individuals at heightened risk for developing alcohol related problems remains 

an important goal of medical practitioners. One important risk factor for alcohol misuse is one’s own 

genetic liability. Twin and family studies indicate that genetic influences on alcohol use disorders (AUD) 

account for approximately 50% of the variation in the population 4. Genome-wide association studies 

(GWASs) have identified multiple variants associated with AUD 5-7, alcohol consumption 7, 8, and 

maximum alcohol intake9. Using information from these GWASs, we are now able to aggregate risk 

across the genome by creating genome-wide polygenic scores (PRS) to predict risk in independent 

samples 5, 6, 8, 10.  

 Beyond being useful for research purposes, researchers have begun to examine the clinical utility 

of PRS to predict risk for medical outcomes. PRS for coronary artery disease (CAD), atrial fibrillation 

(AF), type 2 diabetes (T2D), inflammatory bowel disease (IBS), and breast cancer (BC) have been found 

to be as predictive of these diseases as well known monogenic mutations 11. Individuals in the top 5% of 

the PRS distributions had ~3 fold likelihood of having CAD, AF, T2D, IBS, or BC compared to the 

bottom 95%. For obesity, individuals in the top PRS decile were on average 13 kg heavier than those in 

the bottom decile 12. These studies demonstrate the potential for identifying individuals at heightened risk 

for various medical conditions using PRS. However, the clinical utility of PRSs for AUD in relation to 

substance use phenotypes remains an open question. 

 In the current analysis, we tested PRS in two target samples, a population-based sample and a 

clinically ascertained sample of families deeply affected by AUD, to evaluate the current state of alcohol-

related PRS for possible clinical utility. We use several discovery samples from large scale GWAS to 

create three PRS: a meta-analysis of two GWASs on alcohol-related problems 5, 6, a recent large-scale 

GWAS of alcohol consumption 8, and a GWAS for risky behaviors, including alcohol use 13. We chose to 
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test PRS based on multiple alcohol-related GWAS because multiple lines of evidence indicate alcohol 

consumption and dependence have only partially shared genetic etiology 5, 6, 14, 15. Additionally, we 

include a PRS for general risk behavior as there is robust evidence that the genetic risk for alcohol and 

other substance use disorders is shared with other disorders and behaviors related to reduced inhibitory 

control. This constellation of behaviors is often referred to as the externalizing spectrum 16-18.  We test the 

association of these PRS with a variety of substance use outcomes (including alcohol, nicotine, and other 

illicit substance use disorders), based on the robust finding that substance use disorders share an 

underlying genetic architecture, with the majority of the heritability shared across substances 16-18.  

Methods 

Samples 

The FinnTwin12 Study (FT12) is a population-based study of Finnish twins born 1983-1987 

identified through Finland’s Central Population Registry. A total of 2,705 families (87% of all identified) 

returned the initial family questionnaire late in the year in which twins reached age 11. Twins were 

invited to participate in follow-up surveys when they were ages 14, 17, and approximately 22 (during 

young adulthood). An intensively studies sample was selected as 1035 families, among whom 1854 twins 

were interviewed at age 14. The interviewed twins were invited as young adults to complete the Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA) 19 interview (n = 1,347) and provide 

DNA samples (see Kaprio 2013 for a full description). The current analysis uses data from the young 

adult wave (mean age = 21.9; range 20-26), which included retrospective lifetime diagnoses. 

 The Collaborative Study on the Genetics of Alcoholism (COGA) is a sample of high-risk families 

ascertained through adult probands in treatment for AUD and a smaller set of comparison families from 

the same communities. In the first 10 years, probands along with all willing first-degree relatives were 

assessed; recruitment was extended to include additional relatives. Data collection included the SSAGA 

19, neurophysiological and neuropsychological protocols, and collection of blood for DNA. In 2004, 

COGA began a prospective study of adolescents and young adults, targeting assessment of youth aged 
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12-22 from COGA families where at least one parent had been interviewed. These young participants 

were re-assessed every two years. The sample is racially/ethnically diverse (60.6% non-Hispanic White, 

24.9% Black, 11.1% Hispanic, and 3.4% other). Most (84%) have GWAS data. A full description of the 

COGA sample is available elsewhere 21-23. For the present study, we only focused on COGA participants 

of empirically assigned (as verified from GWAS data) European ancestry (n = 7,599) because each of the 

discovery GWAS samples were primarily of European ancestry. Ancestral mismatch between discovery 

and target samples can lead to bias in the performance of polygenic scores 24. 

Measures 

 Alcohol Use Disorder (AUD). We used SSAGA interviews to construct lifetime symptom counts 

of DSM-5 AUD 25 in each sample. Because individuals in COGA are potentially interviewed multiple 

times, we used the highest symptom count ever reported by each subject. In FT12, lifetime symptom 

counts were measured at the young adult interview. In addition to symptom counts, we created AUD 

thresholds for those who met criteria for mild (2+ symptoms), moderate (4+ symptoms), or severe (6+ 

symptoms) AUD 25 without clustering. In both FT12 and COGA, individuals who had never initiated 

alcohol use were coded as missing. 

 Other Substance Use Disorders (SUD). We constructed lifetime symptom counts of cannabis, 

cocaine, and opioid use disorders based on DSM-5 criteria. We measured nicotine dependence symptoms 

using the Fagerstrom Test for Nicotine Dependence (FTND), which assesses six symptoms and has 

values ranging from 0 to 10 in both COGA and FT12. Because many illicit SUDs were not measured or 

rare in the FT12 data, we limit analyses of illicit SUD to COGA. Like AUD, these symptom counts 

represent the maximum reported for each respondent across the course of the study. Symptom counts for 

each substance were limited to those who indicated ever using the corresponding substance. In the case of 

FTND, this is limited to those who report smoking 100+ cigarettes in their lifetime. 

 Polygenic Scores (PRS). We created PRS derived from publicly available large-scale GWASs. 

Information on genotyping and quality control is available in the supplemental information. We used the 
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well-established process of clumping and thresholding 26. Single nucleotide polymorphisms (SNPs) from 

discovery GWASs were clumped based on linkage disequilibrium (LD) in the 1000 genomes EUR panel 

using PLINK 27, based on an R2 = .25, with a 500 kb window. SNPs were weighted using the negative log 

of the association p-values. We then created scores based on differing thresholds of GWAS p-values 

(p<.0001, p<.001, p<.01, p<.05, p<.10, p<.20, p<.30, p<.40, p<.50). We converted PRS to Z-scores for 

interpretation. 

 We used four primary discovery GWASs to create three different PRSs. The first was from a 

recent GWAS of number of alcoholic drinks per week in approximately one million individuals provided 

by the GWAS & Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) 8. We obtained GSCAN 

summary statistics with all Finnish (which included FinnTwin12) and 23andMe (which are not publicly 

available) cohorts removed (available N = 534,683). The PRS for alcohol problems were derived from a 

meta-analysis of two GWASs: a GWAS on the problem subscale from the Alcohol Use Disorders 

Identification Test (questions 4-10; AUDIT-P) in 121,604 individuals from the UK Biobank 6 and the 

Psychiatric Genomcs Consurtium’s (PGC) GWAS of alcohol dependence (N = 46,568) 5. Both FT12 and 

COGA were in the initial AD GWAS and we obtained summary statistics with each cohort removed 

(meta-analysis results available in supplemental info). Finally, we derived a PRS for risky behaviors from 

a GWAS of the first prinicipal component of four risky behaviors (drinks per week, ever smoking, 

propensity for driving over the speed limit, and number of sexual partners) from 315,894 individuals in 

the UK Biobank 13. While this PRS does include alcohol consumption and smoking, it captures the shared 

variance between these substance use measures and the other two risky behaviors. These polygenic scores 

covered the domains of alcohol consumption (GSCAN DPW), alcohol problems (PROB ALC), and 

general externalizing (RISK PC). 

Analytic Strategy 

 We identified the most predictive PRS across p-value threshold from each of the discovery 

GWASs in both COGA and FT12 using the change in R2 above a baseline model with sex, age of last 
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observation, the first ten ancestral principal components (PCs), genotyping array, and data collection site 

(these latter two were only included in COGA analyses). We used linear/generalized-linear mixed-effects 

models with random intercepts to adjust for clustering at the family level and a pseudo-R2 for mixed 

models 28. After identifying the most predictive PRS, we estimated the joint effect of all PRS on AUD 

symptoms to examine whether each PRS explained unique variance. We next divided PRSs at various 

thresholds (80th, 90th, and 95th percentiles) to determine the increase in likelihood of AUD (using 

symptom severity thresholds of AUD) associated with being in the top end of split relative to the bottom 

portion of the split. Because increased risk ratios do not necessarily reflect clinical utility 29, we also 

calculated area under the curve (AUC) of the joint model containing all continuous PRS to estimate 

sensitivity/specificity (in supplemental information). Finally, we compared mean values of other 

substance use outcomes for the top 5% in each PRS to those in the bottom 95%. 

Results 

 Table 1 presents the descriptive statistics for each of the samples. Each sample has slightly more 

female than male participants. COGA has a broader age range and higher mean age. As COGA was 

primarily ascertained for families with multiple AUD members, the mean number of AUD symptoms 

(mean = 3.44) is significantly higher than in the population-based FT12 sample (mean = 1.63). 

Additionally, COGA participants had higher mean levels of FTND symptoms (mean = 4.17) than FT12 

participants (mean = 2.57). For other SUD symptoms in COGA, though symptom counts for cannabis, 

cocaine, and opioid use disorders are zero-inflated; there are a substantial number of participants who 

report non-zero levels of symptoms (see Table 1).  

 

Predictive Power of PRS 

 Figure 1 presents the ΔR2 using each PRS to predict AUD symptom count, in each sample, for 

each discovery GWAS p-value threshold. Within each sample, we chose the most predictive PRS for each 
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discovery GWAS in COGA (RISK PC = p <.10, GSCAN DPW = p <.05, PROB ALC = p <.50) and 

FT12 (RISK PC = p <.10, GSCAN DPW = p <.20, PROB ALC = p <.50). In COGA, the PRS for 

GSCAN DPW was the most predictive of AUD symptoms (ΔR2 = 1.80%). The RISK PC PRS was most 

predictive of AUD symptom count in FT12 (ΔR2 = 2.10%). These PRS were followed by PRS for risky 

behaviors in COGA (ΔR2 = 1.25%) and drinks per week in FT12 (ΔR2 = 1.17%), and PRS for alcohol 

problems (COGA = 1.18%; FT12 = 0.40%). 

Increase in Risk across the Polygenic Continuum 

 In order to estimate whether individuals at the extreme end of the PRS distribution were at 

elevated risk of AUD, we compared risk of AUD between those above and below a given threshold in the 

distribution. First, we determined whether each of these PRS contributed to AUD symptoms in a model 

containing all three, jointly. Figure 2 presents the parameter estimates for the independent and conditional 

effect of each PRS in both COGA and FT12. In the conditional model for COGA, each of the PRSs 

remains significantly associated with AUD symptoms, though the associations are attenuated (conditional 

model ΔR2 = 2.65%). In FT12, only the PRS for RISK PC remains significant in the joint model 

(conditional model ΔR2 = 2.45%). We averaged the three PRS into one composite PRS score of genetic 

risk in COGA and used the RISK PC PRS in FT12 to carry forward in the following analyses. 

 Next, we divided these PRSs at the 80th, 90th, and 95th percentile in each sample and estimated the 

odds ratio (OR) for AUD in the top portion of the distribution relative to the bottom portion of the 

distribution (e.g. splitting at the 80th percentile compares the top 20% to the bottom 80%). Table 2 

provides the estimates for all of those models. Across each threshold for AUD severity in COGA, we 

observed a similar pattern where restricting to the more extreme end of the polygenic distribution resulted 

in greater odds of meeting criteria for AUD. For example, there was increasing risk for a severe AUD 

when dividing 80th percentile (OR = 1.948; 95% CI = 1.665, 2.278), 90th percentile (OR = 2.027; 95% CI 

= 1.655, 2.482), and 95th percentile (OR = 2.126; 95% CI = 1.617, 2.796). In FT12, there was a similar 

pattern for mild and severe AUD, but not moderate AUD. However, given the small number of cases in 
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the extreme end for severe AUD, these estimates should be interpreted cautiously. Finally, we assessed 

the sensitivity/specificity of these PRS by calculating the AUC. AUC from the full model (including both 

continuous PRS and covariates) for each level of AUD severity ranged from 0.67 to 0.74 in COGA and 

from 0.65 to 0.75 in FT12. Comparing the AUC for the models with and without PRSs, including the PRS 

only increased the AUC slightly (see supplemental information).  

Examining the Substance Use Phenome of the Extreme End of the Polygenic Risk Continuum 

 We compared the likelihood of substance-related outcomes in individuals in the top 5% of each 

of the PRS in COGA and FT12 (adjusted for covariates). Figure 3 presents the mean lifetime symptoms 

endorsed for a variety of substance use disorders (alcohol, cannabis, cocaine, nicotine, and opioid) for 

individuals in the top 5% for each PRS relative to the bottom 95% of each PRS. In COGA, individuals in 

the top 5% of the PROB ALC, RISK PC, and/or GSCAN DPW PRS had significantly higher levels of 

alcohol (0.25 – 0.33 SD) and nicotine symptoms (0.13 – 0.18 SD) than those in the bottom 95% of the 

PRS distribution. Those in the top 5% of the RISK PC PRS also endorsed a higher number of cannabis 

use disorder symptoms (0.14 SD). In FT12, those in the top 5% did not differ significantly for AUD or 

FTND symptoms.  

 Overall, individuals in the top 5% of any PRS report greater levels of any substance, though being 

in the top 5% of the RISK PC PRS is associated with the most other substances. These PRS are modestly 

correlated with one another in both COGA (rRISK PC* PROB ALC = .30; rGSCAN DPW*RISK PC = .37; rGSCAN DPW* PROB 

ALC = .32) and FT12 (rRISK PC*PROB ALC = .20; rGSCAN DPW*RISK PC = .45; rGSCAN DPW* PROB ALC = .27). These PRS 

each seem to capture unique information related to the genetics of substance use problems (and other 

risky behaviors). 

Discussion 

 Researchers have begun to evaluate the clinical utility of PRS for a variety of medical phenotypes 

11, 12. In this analysis, we examined the current utility of several PRSs for identifying those at risk for a 
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variety of SUDs, with a focus on AUD in both a clinically ascertained and population based sample. We 

were interested in 1) which scores based on available GWASs provide the best prediction for alcohol use 

disorder and whether these scores predicted unique variance in AUD in a joint model; 2) what the risk of 

AUD was for those at the upper end of the risk continuum compared to the bottom; and 3) the levels of 

substance use disorder symptoms for individuals at the top 5% of the polygenic score continuum 

compared to remaining 95%. 

 In terms of which polygenic scores were the most predictive, we considered three scores: one 

based on problematic alcohol use (PROB ALC), one based on alcohol consumption (GSCAN DPW), and 

one based on general risky behaviors (RISK PC), as twin and family studies have shown alcohol and 

other risk behaviors to be genetically correlated traits 6, 14-18. In the population sample (FT12), the RISK 

PC PRS was the most predictive. These results support the idea that focusing on the shared genetic 

etiology towards risk taking, sometimes referred to as externalizing 16-18, may prove useful for identifying 

those at risk for SUD 30. In our more clinically based (COGA) sample, the PRS for alcohol consumption 

(GSCAN DPW) explained the largest portion of the variance. When we included all of the PRS in one 

model, all three PRS were associated with AUD symptoms in COGA while only the RISK PC PRS was 

associated with AUD symptoms in FT12. We ran a series of sensitivity analyses to test whether 

differences across the samples reflected age differences rather than differences in ascertainment. 

Restricting COGA to participants under 30 did not fundamentally change the results. 

 When we divided the PRS at different thresholds, the odds of having an AUD steadily increased 

from the 80% threshold to the 95% threshold in both COGA and FT12. However, even though the point 

estimates steadily increased, the confidence intervals around these estimates were relatively large and 

they did not differ significantly. Additionally, there were only a small number of individuals in the severe 

category in FT12 and we urge caution in interpreting these estimates. Supplemental analyses evaluating 

the AUC for each continuous PRS in a joint model revealed the combined effect of all three PRSs only 

marginally improved the AUC over models with just covariates. Finally, the top 5% of the continuum for 
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each PRS reported elevated rates of other SUD symptoms (cannabis, cocaine, and nicotine use disorders) 

compared to the bottom 95%. The RISK PC PRS was the most predictive of these higher mean levels of 

SUD symptoms, suggesting that risk for externalizing may be particularly useful in identifying 

individuals at risk for SUDs.  

 These initial findings suggest the use of genetic data may eventually have utility in a clinical 

setting for SUDs, but not in their current form. Being able to identify those at heightened risk for SUDs 

may allow for more targeted early intervention and prevention. Before clinical utility is possible, larger 

discovery GWAS across substance use phenotypes with PRS that explain greater portions of the variance 

will be necessary. As GWAS sample sizes for SUDs increase, we will likely see improved prediction 31. 

Additionally, using multivariate techniques to model the shared genetic architecture across existing SUD 

GWAS to include both aspects of externalizing and internalizing (e.g. depression, anxiety) may also 

improve prediction 32, 33. Inclusion of genetic data in a clinical setting will also require that psychiatrists 

and clinicians receive greater training in genetics and/or that they partner with genetic counselors, so they 

are both better able to understand what increased genetic risk means and be able convey that information 

accurately to their patients 34, 35. In addition to clinical utility, we must ensure that regulations and 

protections surrounding the use of genetic information in clinical settings can adequately protect the rights 

of individuals who are identified to be “at risk.” 

 This research has several important limitations. First, all analyses were limited to individuals of 

European ancestry because the discovery GWASs available were conducted in individuals of primarily 

European ancestry. It will be important to ascertain sizable samples of subjects with non-European 

ancestries to properly estimate the predictive utility of PRS in non-European samples. This is especially 

important for racial-ethnic minorities so that health disparities are not further perpetuated 36. Second, our 

use of lifetime diagnoses may obscure the impact of changing genetic influences on the development of 

AUD across the life course 37, 38. Future work should draw on longitudinal data to examine the ways in 

which the predictive utility of PRS changes with the age of the target sample. Finally, these analyses 
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examined the marginal influence of PRS, independent of environment. Processes of gene-environment 

interaction (GxE) are well documented in alcohol misuse using twin and family data 39-42. Incorporating 

environmental information along with PRS in a methodologically rigorous manner will be an important 

next step in developing clinically predictive algorithms. 

 Genome-wide polygenic scores are beginning to have utility in identifying individuals at risk of 

certain diseases, especially those related to well defined physical health conditions, such as cardiovascular 

disease 11, 12. We examined the current state of PRS for predicting substance use, with a focus on AUD. 

Each of the PRS analyzed here predicted AUD. However, the overall maximum variance explained was 

still small (~2%). Individuals at the top of the PRS continuum had elevated rates of multiple substance 

use problems, but these differences across the PRS continuum are unlikely to be of broad clinical use in 

their current state. As GWAS discovery samples become larger and we are better able to model the 

complex relationship between genotype and phenotype, polygenic scores may eventually be useful in a 

clinical setting.  
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Table 1: Descriptive Statistics for FT12 and COGA samples.  

Sample  N Mean/% Median % 0 SD Min Max 

COGA 

Female 7,599 52.84% - - - - - 

Age 7,599 36.94 - - 14.77 12 91 

DSM-5 AUD symptoms 7,300 3.44 2 28.79% 3.63 0 11 

DSM-5 CUD symptoms 5,051 2.37 1 48.19% 3.13 0 11 

DSM-5 CoUD symptoms 2,404 3.18 0 50.17% 4.13 0 11 

DSM-5 OUD symptoms 1,663 2.05 0 62.96% 3.51 0 11 

FTND count 3,701 4.12 4 14.02% 2.74 0 10 

FT12 

Female 1,251 54.40% - - - - - 

Age 1,247 21.94 - - 0.77 21 26 

DSM-5 AUD symptoms 1,215 1.63 1 34.57% 1.84 0 11 

FTND count 631 2.57 2 21.55% 2.13 0 10 

AUD = Alcohol Use Disorder; CUD = Cannabis Use Disorder; CoUD = Cocaine Use Disorder; OUD = Opioid Use Disorder;  
FTND = Fagerstrom Test for Nicotine Dependence (limited to those who report ever smoking 100 cigarettes) 
The N reflects those who report lifetime ever use of that substance. All symptoms counts limited to individuals who had initiated use of that 
substance. The % 0 represents the percentage of participants who have initiated use and have no reported symptoms. 
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Table 2: Odds Ratios for Those at Extreme End of the PRS Continuum 

Sample Phenotype Prevalence Split  N Cases OR 95 % CI Low 95 % CI High 

 Mild AUD 57.06% 80% 999 1.94 1.68 2.24 
COGA Mild AUD 57.06% 90% 522 1.97 1.62 2.39 

 Mild AUD 57.06% 95% 276 2.23 1.69 2.95 
        

 Moderate AUD 37.44% 80% 743 1.97 1.71 2.27 
COGA Moderate AUD 37.44% 90% 401 2.04 1.69 2.46 

 Moderate AUD 37.44% 95% 218 2.25 1.73 2.92 
        

 Severe AUD 25.89% 80% 547 1.95 1.67 2.28 
COGA Severe AUD 25.89% 90% 300 2.03 1.66 2.48 

 Severe AUD 25.89% 95% 165 2.13 1.62 2.80 
        

 Mild AUD 41.98% 80% 122 1.77 1.22 2.56 
FT12 Mild AUD 41.98% 90% 68 2.27 1.39 3.72 

 Mild AUD 41.98% 95% 36 2.39 1.21 4.72 
        

 Moderate AUD 13.91% 80% 45 1.80 1.09 2.98 
FT12 Moderate AUD 13.91% 90% 22 1.52 0.79 2.92 

 Moderate AUD 13.91% 95% 12 1.59 0.66 3.80 
        

 Severe AUD 3.79% 80% 15 2.16 1.06 4.40 
FT12 Severe AUD 3.79% 90% 9 2.45 1.05 5.71 

 Severe AUD 3.79% 95% 6 3.24 1.11 9.53 
All models control for sex, age at last interview, and first 10 principal components. Models for COGA also included data collection site and 
genotyping array. N Cases = number of individuals who meet criteria for a given level of AUD and are in the top portion of the split. 
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Figure Captions: 

Figure 1: Predictive Power of PRS across Samples 

Predictive power of PRS measured using pseudo-R2 for linear mixed effects models 28. Bars represent 

change in variance explained over models with age, sex, and first 10 ancestral principal components, 

genotyping array, and data collection site (only COGA for the latter two). Most predictive score outlined 

in blue. * p < .05, corrected for FDR of 5% 

 

Figure 2: Parameter Estimates for PRS in Independent and Joint Models 

Parameter estimates from linear mixed models for AUD symptoms regressed on GSCAN DPW, PROB 

ALC, and RISK PC PRS in COGA and FT12. Independent = model with only corresponding PRS. 

Conditional = model with all PRS included. Adjusted for age, sex, first 10 ancestral principal 

components, genotyping array, and data collection site (only COGA for the latter two). 

 

Figure 3: Top 5% of PRS Continuum 

Mean levels of SUD symptoms for alcohol, cannabis, cocaine, nicotine, and opioid use disorders for top 

5% of each PRS compared to the bottom 50%. Black bar represents mean of bottom 50%. 95% 

confidence intervals estimated using 1000 bootstrap resampling. 
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