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ABSTRACT 21 

We assessed the utility of genome sequencing for early-onset dementia. Participants were selected 22 

from a memory disorders clinic. Genome sequencing was performed along with C9orf72 repeat 23 

expansion testing. All returned sequencing results were Sanger validated clinically. Prior clinical 24 

diagnoses included Alzheimer’s disease, frontotemporal dementia, and unspecified dementia. The 25 

mean age-of-onset was 54 (41–76). 50% of patients had a strong family history, 37.5% had some, and 26 

12.5% had no known family history.  Nine of 32 patients (28%) had a variant defined as pathogenic or 27 

likely pathogenic (P/LP) by American College of Medical Genetics standards, including variants in APP, 28 

C9orf72, CSF1R, and MAPT. Nine patients (including three with P/LP variants) harbored established 29 

risk alleles with moderate penetrance (odds ratios of about 2–5) in ABCA7, AKAP9, GBA, PLD3, 30 

SORL1, and TREM2. All six patients harboring these moderate penetrance variants but not P/LP 31 

variants also had one or two APOE ε4 alleles. One patient had two APOE ε4 alleles with no other 32 

established contributors. In total, 16 patients (50%) harbored one or more genetic variants likely to 33 

explain symptoms. We identified variants of uncertain significance (VUSs) in ABI3, ADAM10, ARSA, 34 

GRID2IP, MME, NOTCH3, PLCD1, PSEN1, TM2D3, TNK1, TTC3, and VPS13C, also often along with 35 

other variants. In summary, genome sequencing for early-onset dementia demonstrated high utility, 36 

with particular advantages where targeted testing may fail such as atypical variant-disease associations 37 

or presence of multiple moderate impact alleles. One or more established contributory alleles is often 38 

present in early-onset dementia, supporting an oligogenic model.  39 
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INTRODUCTION 40 

Genomic technologies are increasingly being used in clinical settings, but clinical large-scale 41 

sequencing for adult-onset neurological conditions has not been heavily applied. Possible reasons 42 

include the use of disease-specific gene panels and uncertain genetic yield, despite promising signals 43 

for yield using comprehensive approaches (Blauwendraat et al. 2018). We sought to assess the 44 

diagnostic yield with genome sequencing and C9orf72 expansion testing in cases of early-onset 45 

dementia. 46 

Patients were selected from the Memory Disorders Clinic at the University of Alabama at 47 

Birmingham (UAB). Inclusion criteria were clinician-diagnosed early-onset dementia. When possible, 48 

unaffected parents were included as participants to allow filtering for de novo variants in patients 49 

without a family history (a fruitful approach in pediatric genetic disorders (Vissers et al. 2010; Bowling et 50 

al. 2017) and amyotrophic lateral sclerosis (ALS) (Chesi et al. 2013; Steinberg et al. 2015a)). In 51 

addition, unaffected siblings past the age of onset of the patient were enrolled as participants when 52 

possible for variant filtering and segregation. 53 

Before starting analysis, we set criteria for return of results to patients. First, we used the 54 

American College of Medical Genetics (ACMG) criteria for pathogenicity (Richards et al. 2015) to 55 

identify highly penetrant causal variation. For moderately penetrant variants, we set criteria to return: (i) 56 

APOE ε4 status for early-onset Alzheimer’s disease (EOAD), (ii) any variant with a disease-associated 57 

odds ratio greater than two in multiple reports as an “established risk variant,” or (iii) one strong report 58 

with a disease-associated odds ratio greater than two with replication included in the study design as a 59 

“likely risk variant.” 60 

 61 

RESULTS 62 

Clinical presentation and family history 63 

Prior clinical diagnoses for patients included EOAD, frontotemporal dementia (FTD), and other 64 

unspecified dementias. 21 patients were female and 11 were male. 28 self-reported Caucasian and 65 

four self-reported African American, all reported non-Hispanic ethnicity. The mean age of onset was 54 66 
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(range 41–76). 10 patients had ages of onset in their 40’s, 17 in their 50’s, 4 in their 60’s, and 1 in their 67 

70’s.  68 

In addition to enrolling patients, we also enrolled reportedly unaffected family members for 69 

variant filtering and segregation analyses. 31 unaffected relatives were enrolled, 29 of which had 70 

genome sequencing (2 were only checked for variants by Sanger). Only two families had complete trios 71 

(mother, father, and proband) to allow for searching for de novo variants, of which none of interest were 72 

identified. In total, 20 unaffected siblings, 9 unaffected parents, and 2 unaffected cousins were enrolled. 73 

A strong family history of dementia was reported for 50% of patients (16/32), while 37.5% 74 

(12/32) had some family history, and 12.5% (4/32) had no reported family history. Our definition of 75 

family history is based on a modification of a four point scoring system first put forward by Jill Goldman 76 

(Goldman et al. 2005) where we modified the score as follows: (1) At least three people in two 77 

generations affected with EOAD, FTLD, ALS, CBD, or PSP with one person being a first-degree 78 

relative of the other two, (1.5) Same as (1) but with LOAD instead of EOAD, (2) At least three relatives 79 

with dementia or ALS but where criteria for autosomal dominant inheritance were not met, (3) A single 80 

affected first or second degree family member with early-onset dementia or ALS, (3.5) A single affected 81 

first or second degree family member with late-onset dementia or ALS, (4) No contributory family 82 

history or unknown family history. We considered a score of 1 or 1.5 as strong family history, a score of 83 

2, 3, or 3.5 as some family history, and a score of 4 as no reported family history. All family history 84 

information is listed alongside phenotype and variant information in Supplemental Table 1.  85 

To protect patient information, more detailed diagnoses and phenotype information beyond that 86 

provided here and listed in Supplemental Table 1 are only provided in the controlled access dataset, 87 

NIAGADS project NG00082, to qualified researchers approved for access. 88 

 89 

Genomic analyses 90 

 Nine of 32 (28%) patients had a highly penetrant variant relevant to their clinical diagnosis 91 

(ACMG P/LP (Richards et al. 2015)), while seven (22%) had multiple moderately penetrant risk alleles 92 

(Figure 1). Individual cases are discussed next, with variants identified summarized by Table 1 and 93 

listed alongside phenotype information in Supplemental Table 1. 94 
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 95 

Pathogenic or Likely Pathogenic Diagnoses 96 

Variants were first evaluated using ACMG criteria for pathogenicity, and all P/LP variants were 97 

returned to patients (Richards et al. 2015). We provide a summary below, with detail on the ACMG 98 

evidence codes for variants provided in the Supplemental ACMG Pathogenicity Evidence Details.  99 

 100 

APP Pathogenic Variant (V717F) in Two Siblings 101 

Two siblings with ages of onset in the mid-to-late 40s and a family history of EOAD suggestive 102 

of dominant inheritance harbored a pathogenic variant in APP (NM_000484.3, c.2149G>T, V717F), a 103 

well-established pathogenic variant (see Supplemental ACMG Pathogenicity Evidence Details). This 104 

variant is an example of one that would have been identified on commonly-used panels for genetic 105 

testing for EOAD. 106 

 107 

C9orf72 Expansion Carriers 108 

Testing for a pathogenic G4C2 hexanucleotide expansion at the C9orf72 locus associated with 109 

ALS and FTD was ordered for 30 of 32 patients (with two excluded for technical reasons, see 110 

Methods). GeneDx conducted a repeat-primed PCR test with 95% sensitivity and 98% specificity 111 

(Akimoto et al. 2014) to detect C9orf72 expansions. As a technical aside, C9orf72 expansions were not 112 

detectable using ExpansionHunter (Dolzhenko et al. 2017) or STRetch (Dashnow et al. 2018) in 113 

genome sequencing libraries prepared with PCR amplification assessed here. ExpansionHunter 114 

detects C9orf72 expansions in PCR-free genome preparations (Dolzhenko et al. 2017), so PCR-free 115 

genome preparations or secondary testing (such as testing conducted by GeneDx for here) is 116 

necessary for detection of C9orf72 expansions (and would also be necessary for other repeat 117 

expansions). Three patients with FTD (one patient also had ALS signs) with ages-of-onset in the 40s 118 

and 50s harbored a pathogenic expansion in C9orf72 (see Supplemental ACMG Pathogenicity 119 

Evidence Details).  120 

Some studies have suggested that additional contributing alleles could lower age of onset 121 

and/or alter clinical presentation for C9orf72 expansion carriers (van Blitterswijk et al. 2012; van 122 
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Blitterswijk et al. 2014; Pottier et al. 2015; Giannoccaro et al. 2017; Farhan et al. 2018). Consistent with 123 

this, all three C9orf72 expansion carriers harbored other possibly contributory variants. 124 

One carrier had three additional variants that may be contributory: an “established risk” stop 125 

gained variant in ABCA7 (NM_019112.3, c.5035G>T, p.E1679*), one APOE ε4 allele, and a VUS in 126 

PSEN1 (NM_000021.3, c.103C>T, p.R35W) (see Supplemental ACMG Pathogenicity Evidence 127 

Details). These variants may have contributed to the patient’s family history of multiple 128 

neurodegenerative diseases including ALS and EOAD. 129 

Another carrier had a different “established risk” variant in ABCA7 (NM_019112.3, 130 

c.2126_2132delAGCAGGG, p.E709Afs*86) (see Supplemental ACMG Pathogenicity Evidence Details), 131 

along with memory symptoms and a family history of AD, consistent with a possible contributory role of 132 

ABCA7.  133 

The third carrier had two VUS in ARSA, associated with recessive metachromatic 134 

leukodystrophy (discussed further in Supplemental ACMG Pathogenicity Evidence Details). 135 

 136 

MAPT R406W Pathogenic Variant in Three Alzheimer’s Disease Patients 137 

 Three patients with EOAD (one patient also exhibited FTD signs) with ages-of-onset in the mid 138 

50s to early 60s harbored a pathogenic variant in MAPT (NM_005910.5, c.1216C>T, p.R406W). 139 

Although MAPT pathogenic variants are typically associated with FTD (Cruts et al. 2012), this variant 140 

has been reported in patients with clinically diagnosed Alzheimer’s disease (AD) in multiple studies 141 

(see Supplemental ACMG Pathogenicity Evidence Details). This variant would not have been detected 142 

on many AD-specific panels, which often test for only APP, PSEN1, and PSEN2. 143 

All three of these patients exhibited a possible contribution from another allele, just as in 144 

C9orf72 expansion carriers. One patient had a loss-of-function “established risk” variant in ABCA7 145 

(NM_019112.3, c.2126_2132delAGCAGGG, p.E709Afs*86). Another patient had a VUS in APP 146 

(NM_000484.3, c.1090C>T, p.L364F). The third patient had a loss-of-function splice variant in GRID2IP 147 

(NM_001145118.1, c.429+2T>G), which, while not yet firmly associated with EOAD and thus not yet 148 

returnable, was implicated in a recent large sequencing study (Raghavan et al. 2018). 149 
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The presence of this rare variant in three individuals enrolled at the same clinic suggests they 150 

may share a common ancestor. However, none of these individuals are aware of any extended family 151 

members participating in the study. Furthermore, the patients are not detectably related by software 152 

used for routine checks of close familial relationships (KING). 153 

 154 

CSF1R R900K in an FTD Patient 155 

 A patient presenting with behavioral variant FTD (bvFTD) harbored a likely pathogenic variant in 156 

CSF1R (NM_005211.3, c.2699G>A, p.R900K) (see Supplemental ACMG Pathogenicity Evidence 157 

Details). Patients with variants in CSF1R can present with bvFTD, but the underlying pathology of 158 

pathogenic CSF1R variants is leukoencephalopathy (Rademakers et al. 2011; Stabile et al. 2016). 159 

Consistent with this, this patient had white matter abnormalities on MRI with frontal-predominant 160 

confluent white matter hyperintensity (Figure 2A) and global atrophy (Figure 2B–D). This variant would 161 

not have been detected on typical panels testing for FTD. 162 

 163 

High Impact Risk Alleles 164 

One unique aspect of this study is that we returned to patients moderately penetrant risk 165 

variants that meet criteria we have described. Intriguingly, rare variants meeting these criteria were 166 

observed only along with one or two APOE ε4 alleles, the most common moderately penetrant risk 167 

allele for AD (see Supplemental ACMG Pathogenicity Evidence Details). In all cases, APOE ε4 alleles 168 

were returned as “established risk variants.” The presence of one APOE ε4 allele was returned as likely 169 

only a small contributor to symptoms, while presence of two APOE ε4 alleles or one or two APOE ε4 170 

alleles in combination with a rare moderately penetrant risk variant was returned with language 171 

indicating that such a combination of variants is likely to explain a large portion of the genetic 172 

contribution to symptoms (but with the caveat that family members should not be presymptomatically 173 

tested given incomplete penetrance). We continue with detail on some cases falling into this category. 174 

 175 
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A case with APOE ε4 Homozygosity, PLD3 V232M, APP D248N, and ABI3 V97E 176 

 In a patient with EOAD whose symptoms began in the late 40s with enrolled unaffected parents, 177 

we observed an example of how EOAD may occur from a combination of inherited alleles from each 178 

parent, consistent with previous observations that EOAD can appear recessive in nature (Wingo et al. 179 

2012). The patient had two APOE ε4 alleles (returned as “established risk,”) a PLD3 variant 180 

(NM_012268.3, c.694G>A, p.V232M) (returned as “likely risk,”) an APP variant (NM_000484.3, 181 

c.742G>A, p.D248N) (returned as a VUS), and a private variant in ABI3 (NM_016428.2, c.290T>A, 182 

p.V97E) (not returned but predicted damaging by PolyPhen-2 (Adzhubei et al. 2010) and SIFT (Ng and 183 

Henikoff 2003), with a CADD score (Kircher et al. 2014) of 33) (see Supplemental ACMG Pathogenicity 184 

Evidence Details). The ABI3 variant was not returned to the patient because of insufficient evidence to 185 

consider the variant as a returnable VUS or risk variant, but is highlighted because a different coding 186 

variant in ABI3 (NM_012268.3, c.1124T>C, p.S209F) (Sims et al. 2017) was associated with AD in a 187 

rigorous case-control study with an odds ratio of 1.4, yet is not predicted to be as damaging 188 

(CADD=13.5) and is relatively common in population databases (allele frequency of 0.6%). Therefore, 189 

we speculate that perhaps the variant we observed could have an effect of similar or greater magnitude 190 

given its higher predicted deleteriousness and absence from population databases. One of the APOE 191 

ε4 alleles and the variants in PLD3 and APP was inherited from a parent with neurologic symptoms but 192 

not EOAD. The other parent harbored an APOE ε4 allele and the ABI3 variant and did not have 193 

neurologic symptoms. This case serves as an example of how EOAD may arise with either no family 194 

history or limited family history of late-onset disease. 195 

 196 

A case with APOE ε4 Heterozygosity and SORL1 M105T  197 

 An individual with EOAD with onset in the mid 50s and a strong family history of AD had one 198 

APOE ε4 allele and a variant in SORL1 (NM_003105.5, c.314T>C, p.M105T). While SORL1 variants 199 

are not completely penetrant, loss-of-function variants in SORL1 confer one of the highest levels of risk 200 

for AD outside of dominant pathogenic variants and APOE. Loss-of-function SORL1 variant carriers in 201 

cases from a recent study (Raghavan et al. 2018) are present at an odds ratio of about four compared 202 

to population databases, a likely underestimate given that some individuals in population databases 203 
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may develop AD. Indeed, a recent meta-analysis suggests the odds ratio for loss-of-function SORL1 204 

variants could be as high as 12.3 for all AD and 27.5 for EOAD (Campion et al. 2019). 205 

For the SORL1 variant identified here, we checked independent datasets for replication, and 206 

observed one M105T carrier in one study (Sassi et al. 2016), three M105T carriers in Alzheimer’s 207 

Disease Sequencing Project (ADSP) exomes (Bis et al. 2018), and two M105T carriers in ADSP 208 

genomes (one in an AD case and in one a mild cognitive impairment case) with no controls harboring 209 

the variant in any of these datasets. No other carriers were identified in cases or controls in four other 210 

studies (see Supplemental ACMG Pathogenicity Evidence Details). In addition to these four studies, 211 

there is one record in ClinVar from GeneDx (RCV000489328.1), but it lacked a denominator of the 212 

number of cases tested and thus was not considered in calculating the replication statistic. Taken 213 

together, SORL1 M105T is observed six times out of 13,390 AD cases compared to 11 of 189,196 214 

individuals at a population level for a replication-only odds ratio of 7.7 (p = 0.0005 by Fisher’s exact 215 

test). This variant did not completely segregate with disease in four family members of our patient. 216 

However, the age-of-onset range for similar variants in SORL1 can be up to 24 years (Louwersheimer 217 

et al. 2017), which is wider than the age differences between the family members we genotyped, 218 

suggesting that this segregation analysis may not be completely informative. Considering all of the 219 

evidence, we returned this variant to the patient as a VUS (it could also be considered a “likely risk 220 

variant”). Modelling suggests M105T is a highly conserved residue (Figure 3A) where change to a 221 

threonine may create a PLK1 kinase site that may disrupt function (Figure 3B) (discussed further in 222 

Supplemental ACMG Pathogenicity Evidence Details). 223 

 224 

APOE ε4 with TREM2, AKAP9, and GBA Risk Variants 225 

In two cases with EOAD beginning in the late 40s, we observed a risk allele in TREM2 and one 226 

or two APOE ε4 alleles. The first was TREM2 (NM_018965.3, c.140G>A, p.R47H) (Guerreiro et al. 227 

2013; Jonsson et al. 2013) with one APOE ε4 allele. This TREM2 variant was returned as an 228 

“established risk variant.” Second, we observed TREM2 (NM_018965.3, c.259G>A, p.D87N) (Guerreiro 229 

et al. 2013) (see Supplemental ACMG Pathogenicity Evidence Details) with two APOE ε4 alleles. This 230 

TREM2 variant was returned as a “likely risk variant.” 231 
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In an African American patient with features of both EOAD and FTD, we observed a variant in 232 

AKAP9 previously reported to increase risk in African Americans (NM_005751.4, c.7638A>G, 233 

p.I2546M) (Logue et al. 2014). In this case, despite only being observed in one study with replication, 234 

the specificity of this variant disease association to African American ethnicity and additional functional 235 

data (Ikezu et al. 2018) provided enough evidence to return this as an “established risk variant.” 236 

A patient with EOAD with onset in the mid 50s harbored GBA (NM_000157.3, c.1448T>C, 237 

p.L483P [previous nomenclature, p.L444P]) and two APOE ε4 alleles, originally associated with Lewy 238 

body disorders (Mata et al. 2008), but later also with mixed Dementia with Lewy Bodies and AD 239 

(Tsuang et al. 2012; Nalls et al. 2013). Because of this and a recent association with accelerated 240 

cognitive decline (Liu et al. 2016), we returned this as a “likely risk variant.” 241 

 242 

VPS13C loss-of-function with APOE ε4 243 

 A patient with mixed symptoms of AD and FTD with onset in the late 60s harbored VPS13C 244 

(NM_020821.2, c.10954C>T, p.R3652*) and two APOE ε4 alleles. A patient with EOAD with onset in 245 

the late 40s had VPS13C (NM_020821.2, c.1988delC, p.T663Nfs*2), a variant in PLCD1 246 

(NM_006225.3, c.631C>T, p.R211W), and one APOE ε4 allele. Only APOE ε4 was reported back to 247 

these patients because of uncertain contribution of the other variants to the phenotype. Homozygous 248 

loss of VPS13C is associated with early-onset Parkinson’s (Schormair et al. 2018). We do not know the 249 

significance of the observation of one loss-of-function allele here, although unpublished studies have 250 

reported an association between heterozygous loss-of-function in VPS13C and FTD (see Supplemental 251 

ACMG Pathogenicity Evidence Details). PLCD1 was proposed as a candidate gene for AD in one study 252 

(Shimohama et al. 1998). Observing two loss-of-function variants in VPS13C in this small cohort leads 253 

us to speculate that heterozygous loss-of-function variants in VPS13C may contribute to early-onset 254 

dementia. 255 

 256 

Variants of Uncertain Significance or Research Interest 257 

Five other patients harbored interesting – but speculative – VUSs or combinations of variants of 258 

interest for future research. These include (1) a patient with possible CADASIL and a haplotype of 259 
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uncertain significance with two variants in NOTCH3 (NM_000435.2, c.133G>C, p.D45H and 260 

NM_000435.2, c.154G>A, p.G52R), (2) a patient with a VUS in MAPT (NM_005910.5, c.1174A>G, 261 

p.I392V), (3) a patient with an APOE ε4 allele and a variant in both ADAM10 (NM_001110.3, c.359T>C, 262 

p.I120T) and TTC3 (NM_001001894.2, c.5557G>A, p.V1853M), (4) a patient with an APOE ε4 allele, 263 

and a variant in both SORL1 (NM_003105.5, c.1247G>A, p.R416Q) and MME (NM_007289.2, 264 

c.1241A>G, p.Y414C), and (5) a patient with variants in TM2D3 (NM_078474.2, c.206C>T, p.P69L) 265 

and TNK1 (NM_001251902.1, c.393C>G, p.H131Q). Furthermore, one patient harbored a secondary 266 

pathogenic variant in KCNQ1 (NM_000218.2, c.1552C>T, R518*). We expand on these cases in the 267 

Supplemental ACMG Pathogenicity Evidence Details. 268 

 269 

Quantitative Enrichment of Multiple Alleles 270 

 Because we observed so many cases harboring multiple established alleles, we asked if this 271 

effect was statistically enriched over a control population recruited from the same geographical area, 272 

with controls reporting a family history of dementia excluded. We set criteria for qualifying variants as 273 

follows: (1) TREM2 or GBA missense or loss-of-function variants with CADD>20 and population 274 

frequency <0.5% in both gnomAD (Lek et al. 2016) and TOPMed Bravo (NHLBI 2018), (2) ABCA7, 275 

SORL1, TBK1, or GRN loss-of-function variants with CADD>20 and population frequency <0.5%, (3) 276 

the specific PLD3 and AKAP9 variants observed here (since their associations are for single alleles), 277 

(4) missense only variants with CADD>20 and population frequency <0.01% for SORL1, CSF1R, APP, 278 

PSEN1, PSEN2, and MAPT, (5) expansion carriers in C9orf72, and (6) APOE ε4 alleles. We recognize 279 

that this may contain bias since these filtering criteria were selected after analysis of cases. However, 280 

we attempted to mitigate this by selecting reasonable thresholds that would catch variants not identified 281 

in this study but that would still have been considered if they had been identified. For example, we did 282 

not observe any variants meeting these criteria in TBK1 or GRN but included them here because of 283 

their important role in disease. We also included C9orf72 carriers without information on if any are 284 

present in the control population, but this is a reasonable assumption (see Supplemental ACMG 285 

Pathogenicity Evidence Details). 286 
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 Variants meeting the criteria described are highly enriched in cases (Figure 4A). Intriguingly, 287 

there is no enrichment of APOE ε4 alleles in the absence of other qualifying alleles (Figure 4B). In 288 

contrast, the presence of APOE ε4 alleles in combination with another qualifying variant is highly 289 

enriched in cases, regardless of whether Mendelian variants are included in the calculation (Figure 4C) 290 

or excluded (Figure 4D). The odds ratios for APOE ε4 alleles in combination with another qualifying 291 

variant in cases without a Mendelian cause suggests that the presence of rare variants increases odds 292 

ratios approximately multiplicatively over those typically reported for APOE ε4 alone (typically reported: 293 

~2.5 for one APOE ε4 allele, with a rare variant, 5.5; 10–15 for two APOE ε4 alleles, with a rare variant, 294 

39.1), see Supplemental ACMG Pathogenicity Evidence Details on APOE) (Figure 4D). 295 

 296 

DISCUSSION 297 

 One key theme in this study was the frequent observation of multiple possible contributory 298 

alleles. We even observed this in multiple cases with clear, highly penetrant, pathogenic variants 299 

despite a small cohort size. The degree to which additional alleles contribute in dominant cases cannot 300 

be assessed without larger cohorts to evaluate effects on age-of-onset or other variables. However, 301 

given that other studies have made similar observations in ALS/FTD (van Blitterswijk et al. 2012; van 302 

Blitterswijk et al. 2014; Pottier et al. 2015; Giannoccaro et al. 2017; Farhan et al. 2018), this 303 

phenomenon clearly warrants further investigation. 304 

 In cases where a dominant pathogenic variant was not present, there was enrichment for 305 

multiple established alleles contributing to disease risk. Every case with a moderately penetrant risk 306 

variant established by case-control studies identified in this cohort also harbored one or two APOE ε4 307 

alleles, emphasizing the importance of APOE ε4. Future efforts in analysis of large cohorts should 308 

include analysis of level of risk when rare risk variants are present, for example by incorporation of 309 

signal from rare variation in established risk genes into polygenic risk scores. Several groups have 310 

begun developing polygenic risk scores for AD (Escott-Price et al. 2015; Desikan et al. 2017), but these 311 

scores are based solely on common variation. This is, of course, a reasonable approach because it 312 

maximizes reproducibility, as considering rare variants could lead to an over-trained model. However, 313 

while rare variants are rare individually, aggregation approaches may provide replicable and meaningful 314 
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signals if incorporated for key genes where rare variants are now established to confer risk for AD, such 315 

as ABCA7, SORL1, and TREM2. Similarly, while large FTD genetic studies are not as progressed as 316 

those for AD, we can begin to consider genes where variation in a polygenic risk score may be 317 

informative for FTD, such as TBK1 (Cirulli et al. 2015), MFSD8 (Geier et al. 2019), DPP6, UNC13A, 318 

and HLA-DQA2 (Pottier et al. 2019). 319 

In Conclusion, this study demonstrates the high diagnostic and research utility of genome 320 

sequencing in cases of early-onset dementia. Mendelian diagnostic yield in this population was 28%, 321 

with an additional 22% of patients harboring risk-increasing variants that, in combination with APOE ε4, 322 

likely account for most of the genetic contribution to their symptoms. Genome sequencing is able to 323 

identify relevant variation in conditions with high genetic heterogeneity, nonspecific phenotypes, or 324 

established risk factors that do not follow a clear Mendelian pattern, and allowed for identification of 325 

cryptic genotype-phenotype relationships that likely would have been missed by panel testing. In 326 

addition to the research value of this study, it had value for patient care as well, for example by allowing 327 

for referral of families to the Dominantly Inherited Alzheimer’s Network and the Advancing Research & 328 

Treatment for Frontotemporal Lobar Degeneration study. We conclude that application of more 329 

comprehensive genetic testing (including genome sequencing, where appropriate) could aid in 330 

evaluation of early-onset dementia cases currently and will continue to grow in utility for future use. 331 

 332 

METHODS 333 

Genome sequencing 334 

Genome sequencing was performed at the HudsonAlpha Institute for Biotechnology on Illumina 335 

HiSeq X or NovaSeq platforms using paired end 150 base pair reads. Mean depth was 34X with an 336 

average of 91.5% of bases covered at 20X. Sequencing libraries were prepared by Covaris shearing, 337 

end repair, adapter ligation, and PCR using standard protocols. Library concentrations were normalized 338 

using KAPA qPCR prior to sequencing. All sequencing variants returned to patients were validated by 339 

CAP/CLIA Sanger. 340 

 341 
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Data processing and quality control 342 

Demuxed FASTQs were aligned with bwa-0.7.12 (Li and Durbin 2009) to hg19. BAMs were 343 

sorted and duplicates were marked with Sambamba 0.5.4 (Tarasov et al. 2015). Indels were realigned, 344 

bases were recalibrated, and gVCFs were generated with GATK 3.3 (McKenna et al. 2010). gVCFs 345 

were batch called with GATK 3.8. KING 2.1.2 (Manichaikul et al. 2010) was used for sex checks on 346 

VCFs, for validation of known familial relationships, and to check for unknown familial relationships 347 

(none of which were identified). 348 

 349 

C9orf72 expansion testing 350 

Samples from 30 of 32 patients were tested for pathogenic C9orf72 repeat expansion alleles by 351 

GeneDx (Gaithersburg, MD). Two patients did not have sufficient material for testing, but both lacked 352 

symptoms consistent with a C9orf72 repeat expansion and also had another likely explanation of 353 

symptoms: one had a pathogenic APP variant and another harbored both one APOE ε4 allele and a 354 

TREM2 established risk allele). 355 

 356 

Genomic data analysis 357 

The HudsonAlpha-developed Codicem application (http://envisiongenomics.com/codicem-358 

analysis-platform/) was used to analyze and support interpretation of the variant data (described 359 

elsewhere (Holt et al. 2019)). Although this software package was used for analysis, it would not be 360 

necessary to use this package to reproduce this work. Simple filtering for population allele frequencies 361 

(ie gnomAD (Lek et al. 2016) and TOPMed Bravo (NHLBI 2018)), in silico deleteriousness scores (ie 362 

CADD (Kircher et al. 2014), PolyPhen-2 (Adzhubei et al. 2010), and SIFT (Ng and Henikoff 2003)), and 363 

gene lists relevant to the phenotype of interest would recapitulate our findings using any suitable 364 

software package, or even by a command line interface. 365 

In addition to searching for single nucleotide variants and small indels, we also searched for 366 

large copy number variations using four callers (DELLY (Rausch et al. 2012), ERDS (Zhu et al. 2012), 367 

CNVnator (Abyzov et al. 2011), and BIC-seq2 (Xi et al. 2016)), but did not identify any relevant to 368 

patient phenotypes (including absence of APP duplications). 369 
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 370 

SORL1 structural modeling 371 

SORL1 structural modeling and evolutionary conservation analysis was assessed using a 372 

previously published sequence-to-structure-to-function workflow (Prokop et al. 2017). 373 

 374 

Statistics 375 

 The exact conditional Cochran-Armitage trend test was calculated using the CATTexact 0.1.0 376 

package and Fisher’s exact test using fisher.test in R 3.4.1. 377 

 378 

Return of results 379 

Results meeting criteria for return were delivered to patients by clinicians in the UAB Memory 380 

Disorders Clinic through letters written by a genetic counselor. Letters included information on the 381 

variant, associated disease, recurrence risk, and management recommendations. Patients were given 382 

the option to have a genetic counselor present for return of results via phone or videoconference or to 383 

follow up with a genetic counselor after delivery of results. Primary results were provided only to 384 

probands. Although a secondary result was identified in only one participant who was a patient, we did 385 

also offer non-patient participants (family members) receipt of actionable secondary findings (ACMG 386 

59™) if such a result had been identified. Family members of patients that received diagnostic results 387 

were provided with information to seek out clinical genetic counseling and targeted testing for familial 388 

variants if they desired. 389 

 390 

ADDITIONAL INFORMATION 391 

Data Deposition and Access 392 

All data from participants enrolled as a part of this study, including more detailed phenotype 393 

data for the cases described here, are available on the National Institute on Aging Genetics of 394 

Alzheimer's Disease Data Storage (NIAGADS) site under project NG00082. Data from control subjects 395 

not enrolled as a part of this study are available under dbGaP accession phs001089.v3.p1, which 396 

contains data generated by the Clinical Sequencing Exploratory Research (CSER) Consortium 397 
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established by the NHGRI. Funding support for CSER was provided through cooperative agreements 398 

with the NHGRI and NCI through grant numbers U01 HG007301 (Genomic Diagnosis in Children with 399 

Developmental Delay). Information about CSER and the investigators and institutions who comprise the 400 

CSER consortium can be found at https://cser-consortium.org. 401 

ADNI (Alzheimer’s Disease Neuroimaging Initiative, part of the ADSP genomes batch call) and ADSP 402 

data are available at NIAGADS under projects NG00066 and NG00067 and on dbGap under accession 403 

phs000572.v7.p4 (see Supplemental Extended Acknowledgements for full list of ADNI and ADSP 404 

contributors and funding sources).  405 

 406 

Ethics Statement 407 

This study was approved by UAB IRB protocol X161202004, “Evaluation of Genomic Variants in 408 

Patients with Neurologic Diseases.” All participants described provided explicit written consent for 409 

publication. 410 

 411 

Acknowledgements 412 

We thank Alissa Mackiewicz from the HudsonAlpha Foundation for assistance in securing 413 

funding, Jennifer Mahaffey at UAB for assistance with the IRB application, Mackenzie Fowler at UAB 414 

for assistance with participant recruitment, the Clinical Services Lab and the Genomic Services Lab at 415 

HudsonAlpha for DNA isolations, library generation, quality control and sequencing, the Codicem 416 

software development team at HudsonAlpha for genome analysis software, David Bick at HudsonAlpha 417 

for helpful discussions about ACMG guidelines, and Dominique Campion at University of Rouen for 418 

correspondence indicating the absence from both cases and controls of the M105T variant in SORL1 in 419 

the dataset published in (Bellenguez et al. 2017). 420 

 421 

Authors’ contributions 422 

JNC, GMC, RMM, and EDR designed the study. JNC and RMM secured funding. JNC and EDR 423 

wrote the IRB protocol. ECM coordinated all aspects of patient interaction. JNC, MDA, BAM, and BNL 424 

analyzed genomes with input from MEC, ECM, and EDR. MDA coordinated C9orf72 testing. JNC, 425 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748046doi: bioRxiv preprint 

https://doi.org/10.1101/748046
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

DEG, JMJL, JWP, EGG, JMH, and JSN conducted other analyses. MEC wrote clinical letters and 426 

provided genetic counseling. MLT provided phenotype information for controls. JSY accessed ADSP 427 

and supervised EGG. EAW supervised JMH, JSN, and the software development team. EDR, DSG and 428 

MNL recruited participants and returned results. GMC supervised DEG, JMJL, and MLT. JNC wrote the 429 

manuscript, with edits by ECM, MEC, MDA, BAM, BNL, JWP, EGG, JMH, EAW, GMC, and EDR. All 430 

authors approved the final manuscript. 431 

 432 

Funding 433 

Funding for genomes sequenced at HudsonAlpha was generously provided by the Daniel 434 

Foundation of Alabama and donors to the HudsonAlpha Foundation Memory and Mobility Fund. 435 

436 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748046doi: bioRxiv preprint 

https://doi.org/10.1101/748046
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

SUPPLEMENTAL MATERIAL 437 

ACMG Pathogenicity Evidence Details: 438 

APP (NM_000484.3, c.2149G>T, V717F).  439 

Two strong criteria, three moderate criteria, and one supporting criterion result in the ACMG-440 

recommended assertion of “pathogenic.”  441 

• Strong segregation data (Murrell et al. 1991; Finckh et al. 2005) (ACMG criterion PP1S) 442 

• Biochemical studies (Tamaoka et al. 1994; Nilsberth et al. 2001; Sato et al. 2003) (ACMG 443 

criterion PS3) 444 

• The same amino acid is mutated to other amino acids by other segregating EOAD pathogenic 445 

variants (Chartier-Harlin et al. 1991; Goate et al. 1991; Murrell et al. 2000), and others reviewed 446 

in the AD&FTD Mutation Database (Cruts et al. 2012) (ACMG criterion PM5) 447 

• The variant is located in a well-established functional domain at the epsilon cleavage site for 448 

gamma secretase (Dimitrov et al. 2013) (and reviewed in (Holtzman et al. 2011)) (ACMG 449 

criterion PM1) 450 

• Absent from the gnomAD (Lek et al. 2016) and TOPMed Bravo population databases (NHLBI 451 

2018) (ACMG criterion PM2) 452 

• Predicted damaging by multiple computational methods (CADD (Kircher et al. 2014), PolyPhen-453 

2 (Adzhubei et al. 2010), and SIFT (Ng and Henikoff 2003)) (ACMG criterion PP3).  454 

 455 

C9orf72 Expansion Carriers 456 

• Strong segregation with ALS and FTD (DeJesus-Hernandez et al. 2011; Renton et al. 2011) 457 

(ACMG criterion PP1S).  458 

• Extensive functional studies support the pathogenicity of this allele (key examples in (Chew et 459 

al. 2015; Zhang et al. 2015), and recently reviewed in (Babic Leko et al. 2019; Vatsavayai et al. 460 

2019)) (ACMG criterion PS3). 461 

• Note on the assumption that C9orf72 expansions will be absent from controls: two studies have 462 

assessed the frequency of C9orf72 expansions in healthy controls, both arriving at a frequency 463 

of approximately 0.2% of individuals (Beck et al. 2013; Kaivola et al. 2019) (this would be 464 
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equivalent to approximately 1 carrier in our control set of 542 individuals). However, in one of 465 

these studies, they also assessed for other neurologic diseases, and found that 4 of 6 466 

individuals with C9orf72 expansions (out of 3142) had another neurologic disease (Kaivola et al. 467 

2019), leaving only 2 expansion carriers out of 3142 individuals in that study. Therefore, the 468 

assumption that no repeat expansion carriers are present in the control set we selected where 469 

individuals with a family history of any neurologic disease have been excluded is not 470 

unreasonable. 471 

 472 

ARSA alleles 473 

In one C9orf72 expansion carrier, we identified a possibly contributory combination of variants in 474 

ARSA, associated with recessive metachromatic leukodystrophy (which can include dementia as a 475 

symptom): one reported pathogenic variant that may maintain some residual activity (an “R” allele) 476 

(NM_000487.5, c.256C>T, p.R86W), and one variant of uncertain significance (VUS) (NM_000487.5, 477 

c.585G>T, p.W195C) that may be a pseudo-deficiency allele. Because we did not have phasing data 478 

for these two variants and could not follow up with a biochemical test of enzyme activity (the patient 479 

died between study enrollment and the observation of the variants in ARSA), the specific contribution of 480 

these variants is unknown. 481 

• Reported pathogenic variant that may maintain some residual activity (an “R” allele) 482 

(NM_000487.5, c.256C>T, p.R86W) (Biffi et al. 2008; Cesani et al. 2016) 483 

• Reported Variant of uncertain significance (VUS) (NM_000487.5, c.585G>T, p.W195C) that 484 

may be a pseudo-deficiency allele (Xiong et al. 2015; Cesani et al. 2016; Dehghan Manshadi et 485 

al. 2017) 486 

• These alleles were reported together as a VUS, with special emphasis that this combination of 487 

alleles may have no or little influence on disease given the presence of a C9orf72 expansion 488 

• https://rarediseases.org/rare-diseases/metachromatic-leukodystrophy/ 489 

 490 
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ABCA7 Loss-of-Function Alleles 491 

• We identified two loss-of-function variants in ABCA7: (NM_019112.3, 492 

c.2126_2132delAGCAGGG, p.E709Afs*86) and ABCA7 (NM_019112.3, c.5035G>T, p.E1679*). 493 

Loss-of-function variants in ABCA7 have been solidly associated with AD by several 494 

independent case-control studies (Cuyvers et al. 2015; Del-Aguila et al. 2015; Steinberg et al. 495 

2015b; Allen et al. 2017; De Roeck et al. 2017; N'Songo et al. 2017). 496 

 497 

APOE ε4 allele 498 

• The APOE ε4 allele is definitively established by a plethora of studies to be associated with AD, 499 

with a few key references noted here (Corder et al. 1993; Saunders et al. 1993; Farrer et al. 500 

1997; Lambert et al. 2013; Yu et al. 2014; Qian et al. 2017). 501 

 502 

PSEN1 (NM_000021.3, c.103C>T, p.R35W)  503 

• Another VUS in PSEN1 has been described at Arg35 that does not completely segregate with 504 

disease (Rogaeva et al. 2001; Raux et al. 2005; Benitez et al. 2013).  505 

 506 

MAPT (NM_005910.5, c.1216C>T, p.R406W) 507 

• Strong segregation with EOAD in multiple studies (Reed et al. 1997; Rademakers et al. 2003; 508 

Cruts et al. 2012) (ACMG criterion PP1S). 509 

• Functional studies (Hasegawa et al. 1998; Hong et al. 1998; Krishnamurthy and Johnson 2004; 510 

Zhang et al. 2004) (ACMG criterion PS3).  511 

• Predicted damaging by multiple computational methods (CADD (Kircher et al. 2014), PolyPhen-512 

2 (Adzhubei et al. 2010), and SIFT (Ng and Henikoff 2003)) (ACMG criterion PP3).  513 

• Altogether, the presence of two strong criteria and one supporting criterion result in the ACMG-514 

recommended assertion of “pathogenic.” 515 

 516 
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CSF1R (NM_005211.3, c.2699G>A, p.R900K) 517 

• Critical domain of CSF1R where other pathogenic variants also cluster (Rademakers et al. 518 

2011; Stabile et al. 2016) (ACMG criterion PM1) 519 

• Absent from the gnomAD (Lek et al. 2016) and TOPMed Bravo population databases (ACMG 520 

criterion PM2) 521 

• This particular variant has been reported before along with segregation data (Kortvelyessy et al. 522 

2015) (ACMG criterion PP1). 523 

• Predicted damaging by multiple computational predictions (CADD, PolyPhen-2, and SIFT) 524 

(ACMG criterion PP3).  525 

• Taken together, the presence of two moderate criteria and two supporting criteria result in the 526 

ACMG-recommended assertion of “likely pathogenic.” 527 

 528 

PLD3 variant (NM_012268.3, c.694G>A, p.V232M) 529 

While the PLD3 variant described here has been controversial because of replication in some 530 

but not all cohorts tested, we considered it a “likely risk variant” based on available evidence (Cruchaga 531 

et al. 2014; Cacace et al. 2015; Cruchaga and Goate 2015b; Cruchaga and Goate 2015a; Heilmann et 532 

al. 2015; Hooli et al. 2015; Lambert et al. 2015; van der Lee et al. 2015; Engelman et al. 2018). Rare 533 

variants are not expected to replicate in all cohorts because of population effects and stochastic 534 

sampling. 535 

 536 

VUS in APP (NM_000484.3, c.742G>A, p.D248N)  537 

This variant (APP (NM_000484.3, c.742G>A, p.D248N)) was returned to the patient as a VUS, 538 

but with language indicating that, especially in the presence of the additional variants observed (APOE 539 

ε4 homozygosity and the PLD3 V232M variant), it may not contribute much, if at all, to symptoms. 540 

 541 

SORL1 M105T 542 

Because this variant lies in a critical functional domain for SORL1, the VPS10 domain (Pottier et 543 

al. 2012; Caglayan et al. 2014; Louwersheimer et al. 2017), we computational modeled the effect of the 544 
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variant. Modelling suggests this is a highly conserved residue (Fig. 3A) where change to a Threonine 545 

may create a PLK1 kinase site (Fig. 3B). PLK1 has known roles in the cell cycle, and is aberrantly 546 

present in neurons of AD patients but not age-matched controls (Song et al. 2011), leading us to 547 

speculate that presence of this variant in SORL1 may lead to faster progression of disease if this kinase 548 

phosphorylates this residue, which could disrupt the amyloid-β clearance mechanism of the VPS10 549 

domain (Kitago et al. 2015). 550 

• Studies where SORL1 M105T would have been observed, but no other carriers of SORL1 551 

M105T were identified in either cases or controls (Vardarajan et al. 2015; Fernandez et al. 2016; 552 

Verheijen et al. 2016; Bellenguez et al. 2017). 553 

 554 

TREM2 555 

 TREM2 is a well-established risk factor for AD and FTD. References for the specific variants 556 

described are as follows: 557 

• TREM2 (NM_018965.3, c.140G>A, p.R47H) (Guerreiro et al. 2013; Jonsson et al. 2013)  558 

• TREM2 (NM_018965.3, c.259G>A, p.D87N) (Guerreiro et al. 2013; Cuyvers et al. 2014; Ghani 559 

et al. 2015; Jin et al. 2015; Ghani et al. 2016; Piccio et al. 2016) 560 

 561 

VPS13C Loss-of-Function Support 562 

• unpublished studies have reported an association between heterozygous loss-of-function 563 

variant in VPS13C and FTD (Philtjens 2014; Picillo 2018) 564 

 565 

Variants of Uncertain Significance and Variants of Research Interest 566 

Variants denoted as “Variants of Uncertain Significance” described in the following section were 567 

returned to patients because it would be possible, with limited additional information, for them to 568 

become established as associated with the patients phenotype. Variants denoted as of “research 569 

interest" in contrast were not returned to patients because it would take a great deal of evidence to 570 

establish a definitive link to the patient’s phenotype, but there is limited literature evidence indicating 571 

that it is important that we point them out to the field. 572 
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 573 

A possible CADASIL case with two non-Cysteine variants in NOTCH3 (D45H and G52R) 574 

spanning C49 575 

 A patient with a differential diagnosis of cerebral amyloid angiopathy, leukodystrophy, or 576 

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 577 

Leukoencephalopathy) (Joutel et al. 1996) harbored two variants on the same allele in NOTCH3 578 

(NM_000435.2, c.133G>C, p.D45H and NM_000435.2, c.154G>A, p.G52R). While these variants do 579 

not induce a typically pathogenic alteration of a Cysteine, they do flank pathogenic variants at residue 580 

Cys49 that have been reported with three different amino acid changes (Clinvar RCV000518559.1, 581 

RCV000710993.1, RCV000518038.1, and (Joutel et al. 1996; Oki et al. 2007; Wang et al. 2011; Meng 582 

et al. 2012)). Both of the variants we observe are in ClinVar as variants of uncertain significance 583 

(RCV000518589.1 and RCV000516491.1). Furthermore, both variants are predicted damaging by 584 

CADD (27.6 and 29.5) and SIFT, and one (D45H) is predicted damaging by PolyPhen-2. We speculate 585 

that, given that these variants fall on the same haplotype, the presence of one or both of these variants 586 

may affect the function of residue Cys49 or other nearby disease-associated Cys residues such as 587 

Cys43 (Clinvar RCV000517549.1) or Cys55 (Clinvar RCV000710994.1 and RCV000516615.1). 588 

Biochemical testing for CADASIL would be informative in this case, and this haplotype was returned as 589 

a variant of uncertain significance with clear language in the report that biochemical testing should be 590 

pursued. 591 

 592 

A case with a MAPT VUS 593 

 A patient with unspecified dementia with an age-of-onset in the late 40s had a VUS returned in 594 

MAPT (NM_005910.5, c.1174A>G, p.I392V). Family history information was incomplete for this patient, 595 

precluding knowledge of if a dominant family history was present. The variant had a CADD score of 596 

24.6, was absent from gnomAD (out of 135,743 non-TOPMed individuals), and was present only one 597 

time in TOPMed Bravo (out of 62,784 individuals). The closest pathogenic variants are R406W (already 598 

described) and G389R (Murrell et al. 1999; Ghetti et al. 2000; Pickering-Brown et al. 2000; 599 

Bermingham et al. 2008; Rossi et al. 2008). Of note, these established pathogenic variants are present 600 
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four and three times in gnomAD, respectively, indicating that the rarity of the VUS observed here 601 

justifies return to the patient as a VUS. The uncertainty around this variant was emphasized in the letter 602 

to the patient. 603 

 604 

A case with APOE ε4 Heterozygosity, ADAM10 I120T, and TTC3 V1893M 605 

 A patient with corticobasal syndrome with onset in the early 50s and positive amyloid PET was 606 

found to harbor two variants of research interest, but that did not reach the level of evidence needed for 607 

return of the variants as a VUS. The variants were in ADAM10 (NM_001110.3, c.359T>C, p.I120T) and 608 

TTC3 (NM_001001894.2, c.5557G>A, p.V1853M). The ADAM10 variant had a borderline CADD score 609 

of 14.3 and was not predicted damaging by PolyPhen-2 or SIFT. Furthermore, the variant was 610 

observed in gnomAD 12 times. ADAM10 has been proposed as a candidate gene for AD in prior 611 

studies (Kim et al. 2009) including two variants in the same domain as the variant identified here, the 612 

prodomain (Suh et al. 2013). Furthermore, variation in ADAM10 recently reached genome-wide 613 

significance for association with AD by GWAS (Marioni et al. 2018; Kunkle et al. 2019). However, we 614 

have chosen to not return this variant in the absence of more information about effect size or 615 

segregation. The TTC3 variant also had a borderline CADD score (14.6) and was not predicted 616 

damaging by PolyPhen-2 or SIFT. However, this variant was not observed in gnomAD or TOPMed 617 

Bravo. A different TTC3 variant (NM_001001894.2, c.3113C>G, p.S1038C) has been reported to 618 

segregate with late-onset AD in one family (Kohli et al. 2016). However, since we lacked segregation 619 

data for the variant we observed, we did not have enough evidence to consider the TTC3 variant as 620 

more than a variant of research interest, and thus did not return the variant to the patient. 621 

 622 

A case with APOE ε4 Heterozygosity, SORL1 R416Q, and MME Y414C 623 

 A case with mild dementia of uncertain etiology and symptoms consistent with neuropathy with 624 

onset in the mid 50s had one APOE ε4 allele along with variants in SORL1 (NM_003105.5, c.1247G>A, 625 

p.R416Q) and MME (NM_007289.2, c.1241A>G, p.Y414C). This SORL1 variant has a CADD score of 626 

34 and is also predicted damaging by PolyPhen-2 and SIFT. A link between MME and 627 

neurodegeneration, including AD and neuropathy, has previously been proposed (Rey-Salgueiro et al. 628 
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2009; Auer-Grumbach et al. 2016; Depondt et al. 2016), but there was insufficient evidence for this 629 

particular variant in MME or for the SORL1 variant to justify return to the patient.  630 

 631 

A case with TM2D3 P69L and TNK1 H131Q 632 

 A patient with mild dementia due to either AD or bvFTD with onset in the mid 50s had variants in 633 

TM2D3 (NM_078474.2, c.206C>T, p.P69L) and TNK1 (NM_001251902.1, c.393C>G, p.H131Q). A 634 

different variant in TM2D3 has been nominated as AD-associated from an Icelandic cohort 635 

(Jakobsdottir et al. 2016). Other variants in TNK1 have been nominated as AD-associated from 636 

analysis of Alzheimer’s Disease Sequencing Project data (He et al. 2017). While neither of these 637 

variants had sufficient evidence for return as risk variants, our observation of these variants in this 638 

cohort adds evidence for the possible contribution of variants in these genes to disease.  639 

 640 

Secondary Finding 641 

One patient harbored a secondary pathogenic variant in KCNQ1 (NM_000218.2, c.1552C>T, 642 

R518*), associated with cardiac arrhythmias. This is a known founder effect variant from the Swedish 643 

population that responds well to beta blockers (Winbo et al. 2014). The variant is a null variant in a 644 

gene where loss-of-function is a known mechanism of disease (ACMG criterion PVS1) and is enriched 645 

in cases vs. controls with an odds ratio >5 (ACMG criterion PS4) (Kapplinger et al. 2009). Furthermore, 646 

the variant’s effect is supported by well-established functional studies (Harmer et al. 2014) (ACMG 647 

criterion PS3). Taken together, the presence of one very strong criterion and two strong criteria result in 648 

the ACMG-recommended assertion of “pathogenic.” Consistent with the study consent and protocol, 649 

presence of this variant was reported to the patient. 650 

 651 
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FIGURE LEGENDS 1342 

 1343 

Figure 1. Summary of genomic analysis results for 32 patients with early-onset or familial 1344 

dementia. Pathogenic variants were observed in APP (x2), C9orf72 (x3), and MAPT (x3). A likely 1345 

pathogenic variant was observed in CSF1R. Four patients were APOE ε4 homozygous, with three of 1346 

these patients also harboring additional risk variants in GBA, PLD3, and TREM2. Three patients were 1347 

APOE ε4 heterozygous and had additional risk variants in AKAP9, SORL1, and TREM2. Two patients 1348 

had variants of uncertain significance (VUS) in MAPT and NOTCH3. For six patients, the only 1349 

returnable finding was APOE ε4 heterozygosity. Eight patients had no returnable findings. 1350 

 1351 

Figure 2. Neuroimaging findings in a CSF1R variant carrier. (A,B) Frontal-predominant, mildly 1352 

asymmetric (R>L) white matter hyperintensities on axial FLAIR images. (C,D) Global cerebral atrophy 1353 

on coronal and axial MPRAGE images. Radiological orientation with patient’s R side displayed on L.  1354 

 1355 

Figure 3. Molecular modeling of the effect of the M105T variant on SORL1. (A) Conservation 1356 

analysis of the SORL1 gene sequence was performed across open reading frame sequences of 135 1357 

species. Scores at each codon were assessed with 100% conservation receiving a score of 1, with 1358 

addition of a score for codon selection (score of 0 if dN-dS of site is below mean, 0.25 for sites with 1359 

values above the mean to one standard deviation above the mean, 0.5 for sites greater than one 1360 

standard deviation but below two standard deviations, one for sites greater than two standard 1361 

deviations). A score of two is maximal, suggesting an amino acid that is 100% conserved with codon 1362 

wobble indicative of a high selection rate at the position. The values were then placed on a 21-codon 1363 

sliding window (combining values for 10 codons before and after each position) to identify conserved 1364 

motifs within the gene. (B) Model of SORL1 protein (assessed with YASARA2). Colors are based on 1365 

135 species alignments fed into ConSurf such that colors indicate: gray=not conserved, 1366 

yellow=conserved hydrophobic, red=conserved polar acidic, blue=conserved polar basic, 1367 

green=conserved hydrophilic. Note that the M105T variant leads to a predicted gain of a PLK1 kinase 1368 

target site in SORL1. 1369 
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 1370 

Figure 4. Multiple variants in neurodegeneration-associated genes are often observed in early-1371 

onset dementia, with a critical role for rare variants acting in combination with APOE ε4. Note: 1372 

for all panels, ε4/ε* indicates either ε4/ε3 or ε4/ε2 (mostly ε4/ε3). Also for all panels, cases N=31 (32 1373 

probands excluding 1 sibling from an affected sibling pair) and controls N=542. (A) Qualifying candidate 1374 

alleles associated with neurodegeneration (see text for criteria) are highly enriched in cases (p=9.2x10-1375 

12 by exact conditional Cochran-Armitage trend test). (B) Presence of APOE ε4 alone, in the absence of 1376 

any other qualifying variants, is not enriched in cases (p=0.57 by exact conditional Cochran-Armitage 1377 

trend test). (C) Presence of APOE ε4 along with at least one qualifying rare variant (including 1378 

Mendelian variants) is highly enriched in cases (p=1.0x10-9 by exact conditional Cochran-Armitage 1379 

trend test). (D) Presence of APOE ε4 along with at least one qualifying rare variant (excluding 1380 

Mendelian variants) is highly enriched in cases (p=1.4x10-6 by exact conditional Cochran-Armitage 1381 

trend test). The odds ratio for Presence of one APOE ε4 allele along with one qualifying rare variant vs. 1382 

controls is 5.5 (p=0.01 by Fisher’s exact test, 95% CI 1.2–19.3). The odds ratio for Presence of two 1383 

APOE ε4 alleles along with one qualifying rare variant vs. controls is 39.1 (p=9.8x10-5 by Fisher’s exact 1384 

test, 95% CI 5.3–447.5). 1385 

 1386 

Table 1: Variant Table. Note that many individuals had multiple candidate contributory variants, which 1387 

is not captured when considering variants individually. For an expanded table that indicates multiple 1388 

candidate variants, see Supplemental Table 1. 1389 

 1390 

Supplemental Table 1: Phenotype and variant table. Prior clinical diagnosis category, age of onset 1391 

range, family history score, Figure 1 category, and variant information listed in Table 1 for each 1392 

proband are listed along with information on which variants were returned to patients and which did not 1393 

have sufficient evidence for return but are of research interest. Note that some detailed information 1394 

such as sex, age of onset to the year, self-reported ethnicity, and detailed phenotype and family history 1395 

information has been excluded to protect the identity of participants but is available along with raw data 1396 

via controlled access to qualified researchers.  1397 
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Figure 1: 1398 
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Figure 3: 1404 
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Figure 4: 1407 
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 1409 

 1410 

Table 1: 
Gene Chrom. HGVS DNA HGVS 

Protein 
Variant 
Type 

Predicted 
Effect dbSNP ID Genotype 

APP 21 NM_000484.3:c.2149G>T V717F SNV Missense rs63750264 Heterozygous 

C9orf72 9 NM_001256054.1:c.-45+163_-
45+168GGGGCC[(24_?)] NA Insertion Repeat 

Expansion rs143561967 Heterozygous 

ABCA7 19 NM_019112.3:c.5035G>T E1679* SNV Stop Gained rs770510230 Heterozygous 
APOE 19 NM_000041.3:c.388T>C C130R SNV Missense rs429358 Het & Hom 

APOE 19 NM_000041.3:c.526C>T R176C SNV Missense rs7412 Ref. (w/ Above 
Alt = ε4) 

PSEN1 14 NM_000021.3:c.103C>T R35W SNV Missense rs746691776 Heterozygous 

ABCA7 19 NM_019112.3:c.2126_2132del
AGCAGGG E709Afs*86 Deletion Frameshift rs547447016 Heterozygous 

ARSA 22 NM_000487.5:c.256C>T R86W SNV Missense rs199476352 Compound Het 
ARSA 22 NM_000487.5:c.585G>T W195C SNV Missense rs6151415 Compound Het 
MAPT 17 NM_005910.5:c.1216C>T R406W SNV Missense rs63750424 Heterozygous 
APP 21 NM_000484.3:c.1090C>T L364F SNV Missense rs749453173 Heterozygous 

GRID2IP 7 NM_001145118.1:c.429+2T>G NA SNV Splice rs1413118387 Heterozygous 
CSF1R 5 NM_005211.3:c.2699G>A R900K SNV Missense NA (private) Heterozygous 
PLD3 19 NM_012268.3:c.694G>A V232M SNV Missense rs145999145 Heterozygous 
APP 21 NM_000484.3:c.742G>A D248N SNV Missense rs200103591 Heterozygous 
ABI3 17 NM_016428.2:c.290T>A V97E SNV Missense NA (private) Heterozygous 

SORL1 11 NM_003105.5:c.314T>C M105T SNV Missense rs982581946 Heterozygous 
TREM2 6 NM_018965.3:c.140G>A R47H SNV Missense rs75932628 Heterozygous 
TREM2 6 NM_018965.3:c.259G>A D87N SNV Missense rs142232675 Heterozygous 
AKAP9 7 NM_005751.4:c.7638A>G I2546M SNV Missense rs144662445 Heterozygous 

GBA 1 NM_000157.3:c.1448T>C L483P SNV Missense rs421016 Heterozygous 
VPS13C 15 NM_020821.2:c.10954C>T R3652* SNV Stop Gained rs138846118 Heterozygous 
VPS13C 15 NM_020821.2:c.1988delC T663Nfs*2 Deletion Frameshift rs1019238429 Heterozygous 
PLCD1 3 NM_006225.3:c.631C>T R211W SNV Missense rs752156828 Heterozygous 

NOTCH3 19 NM_000435.2:c.133G>C D45H SNV Missense rs142031490 Compound Het 
NOTCH3 19 NM_000435.2:c.154G>A G52R SNV Missense rs148166997 Compound Het 

MAPT 17 NM_005910.5:c.1174A>G I392V SNV Missense rs991713081 Heterozygous 
ADAM10 15 NM_001110.3:c.359T>C I120T SNV Missense rs144890810 Heterozygous 

TTC3 21 NM_001320703.1:c.5677G>A V1893M SNV Missense NA (private) Heterozygous 
SORL1 11 NM_003105.5:c.1247G>A R416Q SNV Missense rs377550239 Heterozygous 
MME 3 NM_007289.2:c.1241A>G Y414C SNV Missense rs202095767 Heterozygous 

TM2D3 15 NM_078474.2:c.206C>T P69L SNV Missense rs140152371 Heterozygous 
TNK1 17 NM_001251902.1:c.393C>G H131Q SNV Missense rs767381816 Heterozygous 

KCNQ1 11 NM_000218.2:c.1552C>T R518* SNV Stop Gained rs17215500 Heterozygous 
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