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Abstract 23 

Microbiomes are complex ecological systems that play crucial roles in understanding natural phenomena from 24 

human disease to climate change. Especially in human gut microbiome studies, where collecting clinical 25 

samples can be arduous, the number of taxa considered in any one study often exceeds the number of 26 

samples ten to one hundred-fold. This discrepancy decreases the power of studies to identify meaningful 27 

differences between samples, increases the likelihood of false positive results, and subsequently limits 28 

reproducibility. Currently, most microbiome survey studies focus on differential abundance testing per taxa in 29 

pursuit of specific biomarkers for a given phenotype. This methodology assumes differences in individual 30 

species, genera, or families can be used to distinguish between microbial communities and ignores 31 

community-level action. In this paper, we propose to shift the analysis paradigm from a focus on taxonomic 32 

counts to a focus on comprehensive properties that more completely characterize microbial community 33 

members’ function and environmental relationships. We learn these properties by applying an embedding 34 

algorithm to quantify taxa co-occurrence patterns in over 18,000 samples from the American Gut Project (AGP) 35 

microbiome crowdsourcing effort. The resulting set of embeddings transforms human gut microbiome data 36 

from thousands of taxa counts to a latent variable landscape of only one hundred “properties”, or contextual 37 

relationships. We then compare the predictive power of models trained using properties, normalized taxonomic 38 

count data, and another commonly used dimensionality reduction method, Principal Component Analysis in 39 

categorizing samples from individuals with inflammatory bowel disease (IBD) and healthy controls. We show 40 

that predictive models trained using property data are the most accurate, robust, and generalizable, and that 41 

property-based models can be trained on one dataset and deployed on another with positive results. 42 

Furthermore, we find that these properties can be interpreted in the context of current knowledge; properties 43 

correlate significantly with known metabolic pathways, and distances between taxa in “property space” roughly 44 

correlate with their phylogenetic distances. Using these properties, we are able to extract known and new 45 

bacterial metabolic pathways associated with inflammatory bowel disease across two completely independent 46 

studies. 47 

More broadly, this paper explores a reframing of the microbiome analysis mindset, from taxonomic 48 

counts to comprehensive community-level properties. By providing a set of pre-trained embeddings, we allow 49 
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any V4 16S amplicon study to leverage and apply the publicly informed properties presented to increase the 50 

statistical power, reproducibility, and generalizability of analysis. 51 

 52 

1.Introduction 53 

1.1 Microbial survey studies 54 

Microorganisms are biochemically potent entities that influence the biochemistry of surrounding organisms at 55 

all ecological scales. Recent findings suggest that resident microbiomes of the human anatomy influence our 56 

bodies and minds in ways we have only just begun to understand. Microbiomes have been implicated in the 57 

development of diseases of nearly all types, both acute and chronic, infectious and systemic. The vaginal 58 

microbiome has been implicated in preterm birth (1), the skin microbiome in acne (2) and eczema (3), and the 59 

gut microbiome in a spectrum of diseases including inflammatory bowel disease (IBD) (4–6,6–9), anxiety (10–60 

12), major depressive disorder (13–15), autism (16–20), and Parkinson’s Disease (21–23). 61 

 To analyze microbiome compositions, current technology sequences various hypervariable regions of 62 

the 16S rRNA gene, which acts as an accessible taxonomic tag to measure the abundances of taxa in a 63 

community. Studies using this 16S survey technique have reported incredibly diverse collections of microbes in 64 

several systems. Multiple individuals studies, along with the American Gut Project (AGP) (24)  and the Human 65 

Microbiome Project (25),  have invested colossal effort to document that diversity by creating publicly available 66 

reference repositories. Amongst these are repositories of stool-associated microbiota that have furthered our 67 

understanding of the role of the microbiome in several diseases, especially inflammatory bowel disease (IBD) 68 

(4) 69 

Though these and other studies have presented highly relevant findings, 16S microbiome survey 70 

studies in general tend to suffer from lack of reproducibility (26,27). Difficulties in reproducibility can be 71 

attributed to several technological and analysis-based issues (26,28,29) , including two major problems 72 

addressed here. First, due to logistical restrictions, especially in human gut microbiome studies where 73 

collecting clinical samples can be arduous, the number of taxa considered in any one study often exceeds the 74 

number of samples ten to one hundred-fold. Even the largest microbiome studies only include roughly as many 75 

samples as taxa analyzed (24,25) . As the number of samples necessary to present a statistically sound and 76 
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reproducible result increases with the number of variables being considered, individual studies with low 77 

sample-to-variable ratios risk being underpowered and reporting false positives, especially when effect sizes 78 

are estimated to be small (27,30,31).  79 

Second, the most commonly employed analysis techniques assume independence of bacterial species 80 

(32–34). In biological contexts, the presence and function of each microbe is deeply dependent on the 81 

characteristics of its surrounding neighbors. Differences in microbial function also occur as genes are turned 82 

on or off as appropriate for that microbe’s environment at any given time. For instance, Belenguer et al. show 83 

that Roseburia strain A2-183 is unable to use lactate as a carbon source except in the presence of Bacteroides 84 

adolecentis (35). Because of functional dependence, findings of differential abundance or function of a single 85 

species must be considered within its wider context of associated species and environmental factors (36). 86 

More specifically, predictive models that differentiate between disease and healthy guts based on microbiome 87 

composition in one dataset can rarely be successfully applied to samples from the same patient population 88 

collected independently (27).  89 

Navigating the highly related and very large microbiome space can be done with the help of 90 

dimensionality reduction methods. The goal of this project is to create an unbiased method to project 91 

taxonomic data into a lower dimensional space that represents taxa properties based on their relationships 92 

with each other and their environment. In this context, a property is a pattern that underlies co-occurrences 93 

between taxa. The lower dimensional space is learned from public datasets using an embedding algorithm, 94 

and allows the integration of patterns from massive datasets into specialized studies to increase reproducibility 95 

and statistical power.  96 

 97 

1.2 Current Methods for Dimensionality Reduction 98 

Currently, most microbiome survey studies focus on differential abundance testing per taxa in pursuit of 99 

specific biomarkers for a given phenotype. Often, some form of dimensionality reduction is performed to 100 

reduce the data to a manageable size. For example, taxa may be filtered to consider only the common or very 101 

rare, however this approach may filter potentially valuable data. In another approach, taxa can be categorized, 102 

or binned, by their phylogenetic relationships (e.g. all taxa that share a family are analyzed as one unit) 103 

(37,38). Such binning methods may obscure meaningful biological signal, and are also heavily database 104 
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dependent not all microbes are clearly classified by taxonomy. Alternatively, taxa can be clustered based on 105 

the similarity of their 16S rRNA gene, which has been used as a proxy for evolutionary relatedness (39). 106 

However, in this approach, clustering may hinder comparisons across studies, and may result in biologically 107 

unfounded taxonomic units (28). Such taxonomic count-based methodologies, while they have led to 108 

interesting and crucial discoveries in stool-associated microbiome surveys, assume that differences in 109 

individual species, genera, or families can be used to distinguish between microbial communities and ignore 110 

community-level action between and among species.  111 

 Rather than searching for individual biomarkers, ordination may instead be used to reduce data 112 

dimensionality and identify broad patterns in microbiome compositions between samples. Samples, each 113 

represented by a vector of taxa, can be projected into a lower dimensional space using a wide array of 114 

ordination techniques including principal component analysis (PCA) (40) and multidimensional scaling (41). 115 

Broadly used, ordination has played a critical role in associating microbial structure with specific features or 116 

phenotypes of interest, but has also proven to be overly sensitive to normalization and study bias (e.g. 117 

technological noise, DNA preparation protocol, sequencing error) (42).  118 

To adapt ordination to a microbiome-specific technique, Fukuyama et. al integrated phylogenetic 119 

information via a Bayesian prior to a standard principal coordinate analysis. In a similar attempt to integrate the 120 

concept of distance between 16S gene variants, several authors have proposed to represent each 16S 121 

sequence by the set of k-length nucleotide sequences (k-mers) it includes. Woloszynek et. al embed those k-122 

mers to create a vector representation of each sequence, and show that representing taxa as the average of 123 

their embedded k-mers results in a meaningful representation of taxa that can be beneficial to exploratory 124 

analysis or supervised machine learning (43)   125 

 Finally, Sankaran et. al model taxa as units drawn from an underlying distribution of latent variables 126 

(36). Each sample is modeled as originating from a multinomial across some underlying biological “topics”, and 127 

taxa counts are modeled as Dirichlet multinomial mixtures across all topics. Under this model, a sample is 128 

ultimately represented by its k latent topic distribution instead of by its taxa counts. This method aptly describes 129 

samples by assigning topic distributions to them, but does not directly relate taxa to each other.  130 

  131 

 132 
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1.3 Current study proposal 133 

While compelling, the dimensionality reduction methods described above do not consider taxonomic 134 

relationships within a biological context, or make use of information already available from previous datasets.  135 

By integrating previous studies and subsequently putting 16S rRNA gene into context, our study proposes to 136 

describe inherent properties of a microbial communities in a manner consistent with their functional utility in 137 

their environmental context. 138 

To deduce the above-mentioned properties, we turn to embedding techniques from natural language 139 

processing. The use of natural language methods in microbiome analysis is not new. As noted by Sankaran et. 140 

al (36), there exist some easily drawn parallels between natural language data and microbiome data, namely 141 

that documents are equivalent to biological samples, words to taxa, and topics to microbial neighborhoods. 142 

Just as a book may be defined by the aggregate topics it discusses, a microbial environment may be defined 143 

the neighborhoods or communities it contains. 144 

There is another connection between words and microbes not currently discussed in the literature, and 145 

that is the capacity of both entities to be described by a finite set of discrete, characteristic properties. For 146 

instance, the word ‘apple’ in English can be defined as an edible, red, non-gendered, crunchy, object. Similarly, 147 

the species Clostridium difficile can be defined as a spore-forming, infectious, spindle-shaped bacteria. While it 148 

would be difficult to distinguish between a recipe book and a magazine of food reviews by enumerating 149 

differences in the occurrence of individual words, differentiating the two becomes simple if we select 150 

appropriate properties. While both media use words that have high scores in the property “edibility”, the recipe 151 

book also uses words that have a high declarative score, like ‘cut’, ‘wash’, and ‘prepare’, while the food review 152 

uses words that have high descriptive scores, like ‘fantastic’, ‘delectable’, or ‘abysmal’. Just as the properties of 153 

“declarative” and “descriptive” allow us to differentiate texts more effectively, property-based analysis of 154 

microbiomes allow us to distinguish between two microbial scenarios more easily than individual taxa counts. 155 

Analysis on the level of properties thus provides a more accurate and generalizable representation of the 156 

data’s structure.  157 

In this study, the properties mentioned above were learned from patterns in a large microbial dataset 158 

provided by the American Gut Project (AGP). An unsupervised embedding algorithm developed for natural 159 

language processing called GloVe (44) was applied to over 15,000 AGP samples to learn an embedding space 160 
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by quantifying co-occurrence patterns between taxa. The resulting set of embeddings transforms human gut 161 

microbiome data from thousands of taxa counts to a property space of only one hundred to seven hundred 162 

variables. We quantify the quality of the properties by predicting the Inflammatory Bowel Disease (IBD) status 163 

of samples using properties, normalized taxonomic count data, and principal component analysis. We show 164 

that predictive random forest models trained using property data are the most accurate, robust, and 165 

generalizable, and that property-based models can be trained on one dataset and deployed on an independent 166 

one with positive results. Strong correlation between learned properties and annotated metabolic pathways 167 

allow us to implicate both known and new metabolic pathways in IBD such as steroid degradation, 168 

lipopolysaccharide biosynthesis, and various types of glycan biosynthesis. Lastly, by projecting taxonomic data 169 

into property space, the scientific community can integrate patterns from massive public datasets into specific, 170 

targeted studies. Analysis in property space means models requires fewer samples to produce robust results, 171 

and exploratory studies simultaneously gain increased power and decreased risk of spurious associations. 172 

 We not only advocate the use of this method, but also propose to shift the analysis paradigm from a 173 

focus on taxonomic counts to a focus on comprehensive properties that more completely characterize 174 

microbial community members’ function and environmental relationships.  The human gut microbiome has the 175 

potential to be used as a low-cost environmental barometer for the diagnosis and monitoring of disease, but 176 

first we must prioritize model reproducibility and move beyond the concept of the taxonomic unit. 177 

 178 

Figure 1: Workflow of data transformation to prediction of host phenotype. First, taxa-taxa co-occurrence 179 

(binary) data from the American Gut Project (A) are input into the GloVe embedding algorithm (B) to produce a 180 

taxa (Amplicon Sequence Variant or ASV) by property transformation matrix (C). Then, we take the dot product 181 

between a sample by taxa table of interest (D) and the transformation matrix (C) to project that table into 182 

embedding space (E). This table is used to train a random forest model (F) along with sample associated 183 

lifestyle and dietary information (G) to predict the IBD status of the host (H). As points of comparison, random 184 

forest models are also built without embedding, after transforming the same sample by taxa table (D) using 185 

PCA (I) and normalizing (J).  186 

 187 
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2. Results 188 

2.1 Model performance 189 

In order to determine the value of the set of embedding produced by GloVe, we tested the performance of 190 

classifiers built using GloVe embedded, PCA transformed, and non-embedded normalized count data. We 191 

evaluated two main performance metrics in predicting the IBD status of the host: area under the receiver 192 

operating curve (AUROC) and area under the precision-recall curve (AUPR). The receiver operating curve 193 

plots true positive calls against false positive calls. The higher the AUROC, the more confident you can be that 194 

a positive prediction by the classifier is correct. The precision-recall curve plots the precision, how confident 195 

you are that a positive call is correct, against recall, what percentage of the positive samples in the dataset 196 

were identified. A high AUPR means the classifier is able to identify most of the positive samples without 197 

making too many false positive calls. Both curves plot these values over a range of decision thresholds. For 198 

both metrics, a value of 1 is a perfect classifier. 199 

 200 

2.2 Pick optimal number of properties to define a community  201 

We found random forest classifiers trained using GloVe embedded data produce a significantly higher average 202 

area under the Receiver Operating Curve (AUROC) across all choices of hyperparameters and number of 203 

dimensions (Fig 2) than non-embedded data and PCA-embedded data (p << 0.05, rank sum test). Notably, 204 

embedded data consistently produces better results with far fewer features than taxonomic counts. The use of 205 

fewer features makes the model less likely to overfit the data and more likely to be reproducible.  We run all 206 

future tests using 100 properties, as models trained with 100 properties show the most consistently high 207 

performance and small variance across all hyperparameter choices. 208 

 209 

Figure 2: Transforming ASV tables into GloVe embedding space before training a model produces more accurate host 210 

phenotype predictions (IBD vs. healthy control) and makes models more robust to hyperparameter choice. Each point 211 

represents a triplet of choices for number of trees, depth of each tree, and weight on a positive prediction of IBD in a 212 

random forest model. Each model was trained on the data input type indicated by color (Normalized, non-embedded 213 
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counts is purple, pca embedded data is pink, and GloVe embedded data is blue). Models trained on GloVe embedded 214 

data produce higher ROC AUCs with less variance across hyperparameter choice.  215 

 216 

 217 

2.3 Models built with embedded data perform better on a held out test set 218 

We then train three separate models on the training portion of the AGP dataset, and test each model on a held 219 

out portion of the same dataset that has been used neither for model nor embedding training (Fig 3 panel A). 220 

Each model uses a different data input type, GloVe embedded, PCA-transformed, or non-embedded 221 

normalized taxa counts, and has hyperparameters optimized using cross-validation over the training set. We 222 

see comparable performance between the classifier using GloVe embedded data and the other two methods 223 

(Fig 3 panel B). The model with non-embedded data, which uses 26,739 features, has an area under the 224 

Receiver Operating Curve (AUROC) of 0.79 and an area under the Precision-Recall curve (AUPR) of 0.46 (Fig 225 

3, panel B.1). In contrast, the model using GloVe embedded data, which uses only 113 features, has a higher 226 

AUROC of 0.81 but slightly lower AUPR of 0.44 (Fig 3 panel B.2).  A 200-fold decrease in number of features 227 

used results in little change in relevant performance metrics. In comparison, the model using PCA-transformed 228 

data with 113 features performs only slightly worse, with an AUROC of 0.77 and an AUPR of 0.42 (Fig 3 panel 229 

B.3) 230 

 231 

Fig. 3: Embeddings trained on American Gut training set, model trained on American Gut training set, model tested on 232 

American Gut held out test set (A). Models trained on GloVe embedded data have higher ROC AUC but slightly lower 233 

Precision-Recall AUC on a held out test set (B) 234 

 235 

2.4 Properties are generalizable to independent stool-associated datasets 236 

We find that GloVe embedded data generalizes to a completely independent datasets, and significantly 237 

improves performance when fewer than 400 training samples are available. Using data from Halfvarson et. al 238 

(8), we train random forest classifiers on gut microbiome data to differentiate between IBD vs. healthy control 239 

(Fig. 4A).  Again, we train classifiers using normalized count data, PCA-embedded data, and GloVe embedded 240 

data, and optimize over hyperparameters using cross-validation for each model independently. To test the 241 

effect of training set size on performance outcomes, we train models using from 50 to 450 samples in the 242 
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training set, and the rest in the test set.  In this dataset, we have 564 samples from 118 patients and 17, 775 243 

Amplicon Sequence Variances (ASVs).  We do not include any associated metadata; predictions are made 244 

solely based off of the microbiome compositions. 245 

 It is important to note that the transformation matrix that puts the query dataset into embedding space 246 

is trained exclusively on American Gut Project data, and is therefore completely independent of the query 247 

dataset. Despite the fact that properties were learned using the American Gut data dataset exclusively, we see 248 

better embedding model performance on the independent set from Halfvarson et. al (8) (Fig. 4B). In particular, 249 

we see that as the number of training samples becomes smaller, embedding-based models are able to 250 

maintain high AUROC (Fig. 4B.1) and AUPR (Fig. 4B.2)  while models based on PCA-transformed data (100 251 

features) and  non-dimensionality reduced models (17,775 features) cannot. When large numbers of training 252 

samples are available, all methods perform comparably, but only embedding-based models perform well at 253 

middling to low (< 400) sample sizes.  254 

The patterns learned by the GloVe algorithm from the American Gut data generalize to improve 255 

classification performance on an independent dataset. Theoretically, classification accuracy of any host 256 

phenotype relating to the gut microbiome could be bolstered by first embedding the input data before model 257 

training. 258 

 259 

Figure. 4: Embeddings trained on American Gut data, model trained and tested on Halfvarson dataset (A). Transforming 260 

microbiome data into GloVe embedding space prior to model training produces more accurate models despite smaller 261 

training sample sizes (B).  262 

 263 

2.5 Models that use properties are generalizable to independent datasets 264 

In the above experiments, all models were trained on the same datasets they were tested on, using cross-265 

validation and a held-out test set. Now, we trained a model on the American Gut data and tested it on the 266 

Halfvarson data (Fig 5A). More so than a hold-out test set, this allows us to test the feasibility of deploying a 267 

model for diagnosis and monitoring of IBD. Two models were trained, one using normalized taxa counts and 268 

the other taxa counts embedded in property space. In this case, only microbiome data and no sample-269 

associated data was included. Hyperparameters that gave the highest F1 score on American Gut data were 270 
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selected, and the trained model was directly applied to the independent dataset without re-tuning 271 

hyperparameters or decision thresholds. Both models trained on American Gut taxa count and American Gut 272 

embedded data had a precision of 1, meaning that a positive IBD prediction was correct 100% of the time. 273 

However, the model trained on taxa counts had a recall of 0.02, meaning that only 2% of the samples from 274 

patients with IBD were positively identified. In contrast, the model trained on embedded data recovered 26% of 275 

samples from patients with IBD. While the model trained on taxa counts was in no way generalizable to 276 

another dataset, the model trained on data in property space was able to make accurate predictions on a 277 

completely independent dataset (Fig 5B). This finding demonstrates that in this case, models built from 278 

embedded data can generalize to outside data while models built from taxa abundance information cannot. 279 

 280 

Figure 5: Models and embeddings trained on American Gut data and tested on Halfvarson data (A). Model trained on 281 

properties far outperforms models trained on taxa counts (B).  282 

 283 

2.6 Distances in embedding space roughly correlate with phylogenetic distance 284 

Taxa close together in embedding space have similar co-occurrence patterns. We expect that phylogenetically 285 

close taxa are more likely to fill the same ecological niches than are unrelated taxa. We therefore expect a 286 

slight but not extreme correlation between phylogenetic distance and distance in embedding space. Using a 287 

Mantel test (45), we do observe a low (coef = 0.12)  but significant (p = 0.001) correlation between the two 288 

distance metrics, with more granularity available when comparing taxa in embedding space. This finding 289 

demonstrates that co-occurrence patterns as captured by embeddings are a more sensitive distance metric 290 

than phylogeny (Fig 6).  291 

 292 

Figure 6: The contour plot shows that distances between pairs of taxa in GloVe embedding space roughly correlate with 293 

distances between those taxa in phylogenetic space (A). A lighter color signifies a higher density of taxa pairs. There is 294 

more granularity along the embedding space axis, implying that related taxa are more easily distinguished from each 295 

other in embedding space than they are phylogenetically. A Mantel test shows a low slope but very statistically significant 296 

correlation between the two distance metrics (p = 0.001) 297 

 298 
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2.7 Relationship with Metabolic Capacity: 299 

We chose to preserve taxa co-occurrence patterns in embedding space because we hypothesize that those 300 

patterns are driven by taxa functionality in an environment. As such, we evaluate the possibility of a connection 301 

between annotated genetic capacity to express metabolic pathways and the properties that make up 302 

embedding space. First, we find each Amplicon Sequence Variant’s (ASV) nearest neighbor in the KEGG 303 

database (46) using Piphillian (47), and use the KEGGREST API (48) to determine which pathways are 304 

present in that ASV’s genome.  This results in an ASV by pathway table where there are 11,893 ASVs with 305 

near neighbors in the database, and 148 possible metabolic pathways. Then, we identify the significantly 306 

correlated metabolic pathways for each property in embedding space. A permutation test is used to simulate a 307 

null distribution of maximum correlations per embedding property and determine significance. We find that 308 

every property significantly correlates with at least 1 annotated metabolic pathway. Suppl. Table 1 shows each 309 

dimension and its significantly correlated metabolic pathways; each dimension has significant correlation with 3 310 

to 57 pathways. We see that the magnitude of correlations between embedding dimensions and metabolic 311 

pathways are far greater in the GloVe embedding case than in the PCA-transformed case (Fig 7).  Additionally, 312 

none of the correlations between PCA dimensions and metabolic pathways are significant under a permutation 313 

test after multiple hypothesis correction (Suppl. Fig 1). This suggests that the properties learned by the GloVe 314 

algorithm based on co-occurrence patterns between taxa may actually reflect the metabolic capacity of those 315 

taxa.  316 

 317 

Figure 7: Dimensions in GloVe embedding space correlate with some metabolic pathway annotations (A), but dimensions 318 

in PCA embedding space do not (B). Each column in each heat map represents a metabolic pathway from KEGG (e.g. 319 

ko00983). Each row is a dimension in either GloVe or PCA embedding space.  320 

 321 

2.8 Interpreting the predictive model for IBD with metabolic pathways 322 

In order to explore the implications of properties and metabolic pathways for IBD, we calculated an association 323 

score (see method section 4.8) between each property and a positive IBD prediction. The full tables of the 324 

most predictive dimensions, their associated metabolic pathways, and their direction of influence on the 325 

prediction can be found in Suppl. Table 2 (AG) and Suppl. Table 3 (Halfvarson). First, we identified those 326 
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properties strongly associated with a positive IBD prediction (association score above 8 in both Halfvarson and 327 

AGP datasets). We then selected all metabolic pathways significantly correlated with more than one of those 328 

highly relevant properties. In this way, we identified 45 metabolic pathways of interest for IBD (Suppl. Table 4). 329 

The pathways fall broadly into 9 main categories according to the KEGG Brite database: steroid metabolism, 330 

lipid metabolism, glycan biosynthesis, amino acid metabolism, antibiotic synthesis and resistance, bacterial 331 

pathogenic markers, metabolism of terpernoids and polyketides, cell motility and cellular community formation, 332 

and xenobiotics biodegradation/other metabolic function.  333 

 334 

2.9 Explaining the variance in properties 335 

Lastly, we sought to determine how much of the information contained in properties can be recapitulated by 336 

looking at the above described annotated metabolic pathways, and how much was unique to each property. 337 

For each property, we use a linear regression to predict the property values per taxa from the pathway 338 

presence/absence per taxa. We report the r^2 statistic per property, and find that metabolic pathways can 339 

explain a maximum of 36% of the variance in one property, and a minimum of 11% of another. This means 340 

that, while there is a strong correlation between properties and annotated metabolic pathways, most of the 341 

information contained in properties are not represented by annotated information (Suppl. Fig 2) 342 

 343 

3. Discussion 344 

In a data-driven field dominated by small sample sizes and large variable spaces, it is necessary to employ 345 

some form of dimensionality reduction. Currently, this is done by filtering by taxa prevalence, clustering based 346 

on phylogenetic proximity, or is not done at all. We present here a method to leverage massive public datasets 347 

to learn an embedding space that represents the latent properties driving taxonomic abundances. By shifting 348 

the paradigm of analysis from taxonomic counts to community-level microbiome properties, we enable more 349 

holistic, comprehensive analysis that accounts for taxonomic relationships while simultaneously simplifying the 350 

data.  351 

We demonstrate that we can learn a fecal microbiome property space that is more apt at predicting the 352 

IBD status of the host than non-reduced and PCA-reduced spaces, and remains accurate even at low training 353 
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sample sizes. We also present a classification model trained on property data that generalizes well between 354 

datasets, where models based on taxonomic counts do not.  We lastly define the relationships between 355 

embedding space and known metrics used to explore microbiomes like phylogenetic distance and metabolic 356 

pathway genetic capacity.  357 

 358 

3.1 Properties 359 

Embedding is a technique used ubiquitously in machine learning, especially in natural language processing 360 

(49–51). Embedding algorithms take discrete units of data (e.g. words or taxa) and embed them into a vector 361 

space, preserving proximity between the units based on any metric that can compare two units. In the case of 362 

embedding taxa, possible metrics include phylogenetic distance, genome similarity, or morphology: in this 363 

paper the chosen metric to determine proximity between units is patterns of co-occurrence. The embedding 364 

algorithm used in this paper is GloVe, an algorithm designed for word processing (44). Using this algorithm, 365 

two taxa that occur with similar sets of other taxa at similar frequencies should be close in embedding space, 366 

and two taxa that are found in the presence of different neighbor sets should be far from each other. To 367 

visualize this, we return to the analogy of word analysis. Two words, “apple” and “banana”, are close to each 368 

other in embedding space because they tend to occur with similar sets of words like “eat”, “fruit”, “tasty”, and 369 

“smoothie”. Likewise, the words “king” and “marshmallow” tend to occur in different contexts; “king” is most 370 

often found in the company of words like “politics”, “throne”, and “empire” while “marshmallow” is found with 371 

words like “toddler”, “fluffy”, and “scrumptious”. Note that there are two ways words may be close in embedding 372 

space. First, words may directly co-occur frequently, like the words “apple” and “banana”. Instead, words may 373 

be synonyms, which do not often co-occur directly with each other, but instead co-occur with similar patterns, 374 

like “large” and “huge” both being used to describe giants, mountains, and appetites. Returning to the concept 375 

of embedding taxa, we may use embeddings to discover relationships both between taxa that work together 376 

directly, and between taxa that are synonymous and likely fill the same niche. 377 

 Once proximity in embedding space has been established, the data can immediately be used to 378 

improve modeling efforts. Subsequently, conceptual properties can be assigned to the learned dimensions by 379 

observing which entities have similar values in any given dimension. If “strawberry”, “cookies”, “cake”, and “ice-380 
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cream” all have high values in one dimension, and “mud”, “medicine”, and “brussel sprouts” all have low values 381 

in that same dimension, we may call that dimension the “delicious” property. 382 

We have shown that embedding an ASV table into property space using GloVe integrates patterns from 383 

public data into modeling efforts, producing more accurate diagnostics while decreasing data dimensionality. 384 

Classifiers built after transforming data in this way are more robust, and the same embeddings generalize to 385 

improve the accuracy of classifiers built from completely independent datasets. Properties also allow models 386 

trained on one dataset to be applied to another independent dataset with positive results. 387 

In addition to improving classification accuracy for IBD, the embeddings quantify and simplify the 388 

microbial landscape of gut microbiomes. Rather than considering a microbiome as a collection of bacterial 389 

counts, all of which are mostly independent, we propose to describe a microbiome as a vector of values for the 390 

relevant properties. Consider the example of distinguishing the recipe book from the food magazine; reducing 391 

each into property space allows us to clearly see the differences in declarative and descriptive word usage 392 

rather than counting the number of times the words “spinach”, “tomato”, and “bowl” were each used. Because 393 

these properties are learned from the data directly, they are much less biased than manually engineered 394 

features. Analysis performed on this latent property space is likely to be much more robust to variations in 395 

datasets, addressing the problem of irreproducibility currently plaguing 16S microbiome studies (26,27).  396 

 397 

3.2 Biologically driven dimensional reduction 398 

We use unsupervised learning to define an embedding space where taxa proximity represents similarity in co-399 

occurrence patterns. Unsupervised learning limits the human decision-making bias in property definition, but 400 

also produces unlabeled properties whose interpretation is not immediately obvious. We hypothesize that co-401 

occurrence patterns are driven by taxa function like metabolism, synthesis of secondary metabolites, and 402 

secretion of antimicrobial products. We show in our pathway analysis that property distributions in fact do 403 

correlate significantly with metabolic pathways. Therefore, the learned property space is likely informed by taxa 404 

function from within a biological context. Some elements of property space may also be informed by other 405 

factors, such as geography or diet commonalities between groups of people, and this should be explored 406 

further. 407 

 408 
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3.3 Annotation Independent 409 

While we have explored the associations between embedding properties and the annotated quantities of 410 

genetic potential, the power of this embedding technique is that it does not rely on annotations of known 411 

taxonomic groupings or full genomes in order to improve prediction accuracy of host phenotype. Because any 412 

ASV that has been observed during embedding training can be embedded, it is possible to describe the 413 

properties of uncultured and unannotated ASVs, and include this information in a classifier. The transformation 414 

into embedding space requires only an ASV table, and uses no sample associated data like lifestyle variables 415 

or diagnoses.  416 

 417 

3.4 Implications for IBD 418 

We were able to identify 9 main categories of KEGG BRITE pathways that were significantly correlated with 419 

properties associated with IBD (Suppl. Table 4). Among these pathways, both steroid metabolism and 420 

biosynthesis were found to be associated with IBD. Steroids are a well-known and commonly utilized treatment 421 

for patients with active Crohn’s disease (52). Enrichment in steroid metabolism in the gut microbiome could be 422 

reflective of an increase in steroid availability due to treatment. 423 

Several pathways belonging to the rather broad BRITE category of “other metabolic function” have 424 

already been well explored and characterized in the literature as related to IBD. Toluene degradation (KEGG 425 

pathway 00623) was found to be increased in both Crohn’s disease (CD) and Ulcerative Colitis (UC) samples 426 

in a microbiome survey meta-analysis (53). Components of the benzoate metabolic pathway, including 427 

fluorobenzoate degradation (KEGG pathway 00364), were associated with IBD severity in a treatment-naive 428 

cohort with CD (54). Analysis of inflamed gut lining mucosa in patients with IBD also found decreased ascorbic 429 

acid content (KEGG pathway 00053)(55) All of these pathways, along with dioxin degradation, inositol 430 

phosphate metabolism, and lipoic acid metabolism, were associated with an IBD prediction in our model. 431 

We also found multiple glycan biosynthesis pathways correlated with predictive IBD properties (KEGG 432 

pathways 00511, 00514, 00515, 00601). In particular, bacterial glycosphingolipid biosynthesis, a pathway 433 

which has anti-inflammatory effects when produced by the host epithelial cells (56), was found to be 434 

associated with IBD in our model. We speculate that this may indicate a shortage of glycosphingolipids in the 435 

gut environment, exacting positive selection pressure on microbes that can produce their own. 436 
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Lipopolysaccharide biosynthesis and multiple types of O-glycan biosynthesis were also implicated in our 437 

model, all of whose association with IBD has been explored, briefly, in the literature (57–59). Given its 438 

importance and consistency in our predictive model, this group of pathways may warrant further exploration. 439 

 440 

3.5 Limitations and future expansion of the work 441 

While embedding Amplicon Sequence Variants (ASVs) affords the benefits to classification and interpretation 442 

previously discussed, it relies heavily on the definition of a “biologically meaningful unit” which will then be 443 

embedded. For the sake of between-study replicability, we choose to measure the co-occurrence patterns of 444 

ASVs (28) as a base unit. It may, however, prove more informative to define a biologically meaningful unit in 445 

another way. For example, perhaps ASVs clustered at a 99% threshold more accurately capture meaningful 446 

patterns in co-occurrence. We may also consider a variable threshold that is more representative of common 447 

ancestry on a phylogenetic tree and aggregate based on clade architecture before embedding. 448 

Additionally, the presented set of embeddings was constructed using only the forward reads from the 449 

American Gut dataset, as reverse reads were not provided in the EBI database. Future embeddings 450 

constructed from full length V4 or other 16S hypervariable regions will likely provide more accuracy and 451 

specificity. New embedding transformation matrices would need to be trained for each new biome or segment 452 

of 16S gene being explored. 453 

In its current form, the algorithm does not make specific considerations for differences in sequencing 454 

depth, which affects how many taxa can be observed in a given sample. Future iterations of this method could 455 

include weights such that the observed absence of taxa in a sample with a large number of reads is weighted 456 

more heavily than the absence of taxa in a sample with fewer reads. 457 

While the construction of embeddings is not affected by the inconsistency of self-report data, the 458 

accuracy of the classifier may be. In this study, we considered only a self-reported medical professional 459 

diagnosis to be accurate, and rejected any self-diagnosis reports. While it is possible that classifier 460 

performance would change with the inclusion of more liberal diagnostic criteria, the strict diagnosis definition 461 

successfully generalized to an independent dataset, which was not self-reported (8). 462 

  Properties in embedding space have strong associations with metabolic pathway potentials, but it 463 

remains unclear whether they truly represent the expression of those pathways. Future development could 464 
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also consist of integrating multi-omics datasets available in other studies, including the Human Microbiome 465 

Project. Wet lab validation of these hypothesized property-metabolic expression associations would verify the 466 

ability of GloVe embeddings to predict metabolic expression from 16S data. This would allow for the integration 467 

of metabolic data from all observed taxa, not just those few whose full genomes are available in databases. 468 

It might be possible to use the embedding space to identify taxa that form stable communities together - 469 

taxa that are close in embedding space may stabilize each other in culture and in vivo. Through mechanisms 470 

like cross-feeding, joint nutrient acquisition, and other cooperative behaviors, microbes may form groups that 471 

are more versatile and secure than the individual species on their own. Taxa near each other in embedding 472 

space, if they are not directly interacting, may have synonymous functions in their respective communities. By 473 

clustering and categorizing microbes by their respective roles, we may gain insight into which bacterial 474 

populations secure one another’s stability. Particularly, the relationship between phylogenetic distance and 475 

distance in embedding space may be of interest. Microbes that are very closely related through evolution but 476 

have very dissimilar co-occurrence patterns may be particularly predictive of their environment, as they have 477 

specialized quickly and efficiently. It may be that different variable regions better capture the co-occurrence 478 

patterns of taxa, and so are more representative of taxonomic relationship to the environment.  479 

Lastly, the embedding framework can be applied to any system or base unit of interest. It may be 480 

particularly illustrative to embed genes from metagenomic datasets instead of taxa. This would allow us to 481 

determine mathematical representations of the context of each gene, as well as to glean the robustness and 482 

reproducibility benefits from dimensionality reduction for metagenomic data. As always, appropriate 483 

benchmarking and exploratory analyses will be necessary to determine the appropriate use cases for this 484 

technology. 485 

 486 

3.6 Conclusion 487 

By integrating patterns from public datasets into individual survey studies, we bring the increased statistical 488 

power and generalizability of results of meta-analyses into each independent study. While this work shows the 489 

value of an embedding framework for predicting IBD from the gut microbiome, this same framework can be 490 

leveraged in any environment with enough data and for any predictive problem of interest. Furthermore, we 491 
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assert that analyses that define microbiomes by their latent properties instead of by their taxa member list are 492 

more informative, reproducible, and relevant to the macroscopic world. 493 

 494 

4. Materials and Methods 495 

Code available at: https://github.com/MaudeDavidLab/embeddings 496 

 497 

4.1 Embeddings: GloVe algorithm 498 

We used the GloVe algorithm (44) on ASVs to generate embeddings. Briefly, the embedding algorithm (Figure 499 

1B) learns taxa representations that maintain patterns in co-occurrence between pairs of taxa, and was used to 500 

learn properties of microbial context. In this algorithm, the metric to be preserved is a function of P_ik / P_jk, 501 

the probabilities of co-occurrence of taxa i and j with k. Variables i and j are the taxa being related, and k is a 502 

third context taxa. The result from this algorithm is a representation of each taxa in x-dimensional space, where 503 

x is chosen by the user. The x-dimensional space is shared across all taxa, and thus each dimension can be 504 

interpreted as a property for which each taxa has a value. The number of dimensions, x, is a hyperparameter 505 

to be tuned, and results are reported for a range of dimensions: 50, 100, 250, 500, and 750. Embeddings were 506 

learned on 85% of the data, which 15% of samples set aside for testing. 507 

 508 

4.2 Transformation into embedding space 509 

In 16S survey studies, each sample is represented by a vector of its taxa abundances. Thus, we transform 510 

samples into embedding space simply by taking the dot product between each sample’s taxa vector and a 511 

taxa’s property vector. This gives an average of property values weighted by taxa abundance. We consider two 512 

ASVs the same taxa if they are at least 97% similar and align with an e value less than 10^-29. 513 

 514 

4.3 PCA transformation 515 

Predictive model performance using embedded data was compared against models trained on data 516 

transformed with Principal Coordinate Analysis (PCA). PCA is an ordination technique that projects samples 517 

into lower dimensional space while maximizing the variance of the projected data (60).  518 
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 519 

4.4 Random Forest Predictions: 520 

The value of the embeddings was evaluated by success at predicting host IBD status using a random forest 521 

model (60). The model was built using Python sci-kit-learn, and hyperparameters for the depth of tree, number 522 

of trees, and weight on a positive prediction were selected using 10-fold cross validation on the training set. A 523 

different model with different hyperparameters was built for each data type, normalized taxonomic 524 

abundances, PCA embedded abundances, and GloVe embedded abundances. Counts were normalized by 525 

applying an inverse hyperbolic sin function. Models also included self-reported sample metadata such as 526 

exercise, sex, daily water consumption, probiotic consumption, and dietary habits. Models were evaluated by 527 

their performance, namely area under the receiver operating curve, on the held out test set of 15% of samples. 528 

 529 

4.5 Correlations with KEGG Pathways 530 

For each ASV, we find its closest match, thresholded at 97% similarity, in the KEGG database using the 531 

software Piphillan (47). Each possible metabolic pathway then gets assigned a 0 if it is absent or a 1 if it is 532 

present in that nearest neighbor’s genome. 533 

 Limiting the following analysis to include only those taxa that had near neighbors in the database, for 534 

each of the properties in embedding space, we find its maximally correlated (absolute value) metabolic 535 

pathway. Then, to ascertain whether those correlations were significant, we applied a permutation test (61). 536 

We constructed 10,000 null pathway tables by permuting the rows of the original pathway table. We repeated 537 

the above procedure, finding the maximally correlated pathway for each of the embedding dimensions in each 538 

of the null pathway tables. This results in 10,000 maximum correlation values per embedding dimension, which 539 

form a null distribution for each embedding dimension. The significance of the statistic in a permutation test is 540 

calculated as the number of times a maximum correlation in a null pathway table was more extreme or equal to 541 

the maximum correlation actually observed. Dimensions (columns) in both GloVe transformation matrix and 542 

PCA rotation matrix space are normalized to mean 0 and variance 1 to account for differences in scales 543 

between the two spaces. We report both the maximally correlated pathway for each property, all of which are 544 

significant, and also all significantly correlated pathways per property. 545 

 546 
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4.6 Calculating Phylogenetic Distances 547 

We produced a Multiple Sequence Alignment and subsequently a phylogenetic tree of all ASVs, using Clustal 548 

W2 (62) multiple alignment and phylogeny creation software. The tip-to-tip phylogenetic distances were then 549 

calculated between every pair of taxa using the dendropy python package (63).  550 

 551 

4.7 Explaining variance of properties with metabolic pathways 552 

For each property, we set up a linear regression where the property values per taxa are the response variable, 553 

and the pathway presence/absence for each taxa are the independent variables. The r^2 statistic is reported to 554 

assess the variance in property values explainable by the presence of annotated metabolic pathways.  555 

 556 

4.8 Importance of properties and pathways in predictive model 557 

In order to calculate the direction of association of a property with disease, we limit each tree in the random 558 

forest to split on 3 variables. We then backtrace; if a higher value of the property led to an IBD prediction, we 559 

add one to the association score between IBD and that variable. Likewise, if a lower value of the property led 560 

to IBD, we subtract one from the association score.  561 

In calculating metabolic pathway importance to the predictive model, we first find all properties that are 562 

consistently associated with health or with IBD. Then, we count the number of times each pathway is 563 

significantly correlated with one of those properties. If a pathway is significantly correlated with more than two 564 

consistently predictive properties, it is considered important in that phenotype.   565 

 566 

4.9 Dataset  567 

Embeddings were trained using data from the American Gut Project (24). This crowdsourced project provides 568 

16S samples from the United States, United Kingdom, and Australia, along with associated dietary, lifestyle, 569 

and disease diagnosis information. Amplicon Sequences Variants (ASVs) were called using the DADA2 570 

algorithm (64), resulting in 18,750 samples and 335,457 ASVs. Samples with fewer than 5,000 reads and 571 

ASV’s not occurring in at least .07% of samples (13 samples) were then discarded, resulting in 18,480 samples 572 

and 26,726 ASVs. Embeddings were trained on a randomly selected 85% of the filtered samples, and the other 573 

15% were set aside for classifier testing. 574 
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Training embeddings does not require labeled data, and so samples could be used irrespective of their 575 

available metadata. The machine learning classifier was trained and tested only on samples that had a positive 576 

or negative IBD diagnosis, 5018 and 856 samples respectively.  IBD diagnosis was provided in various self-577 

reported options from the American Gut study: “I do not have this condition”, “Self-diagnosed”, “Diagnosed by a 578 

medical professional (doctor, physician assistant)”, or “diagnosed by an alternative medicine practitioner”. For 579 

this study, we considered only samples claiming a medical professional diagnosis to be true.  580 

Lastly, in order to test the generalizability of embeddings, we used 16S data on patients with Crohn's 581 

Disease (CD) and Ulcerative Colitis (UC) and healthy controls from Halfvarson et. al (8). DADA2 (64)  was 582 

again used to call ASVs, samples were discarded if they had fewer than 10,000 reads, and ASVs were not 583 

filtered for prevalence. After quality control, 26,251 ASVs remain, 17,775 of which have near neighbor 584 

representations in embedding space. The dataset included samples with multiple diagnoses, but for the sake 585 

of consistency, we focused on the most common diagnoses of Crohn’s disease, Ulcerative Colitis, and healthy 586 

control. In total, this left 564 samples from 118 patients, as the dataset contains multiple timepoints for each 587 

patient. When models were trained and tested on Halfvarson datasets, timepoints from the same patients were 588 

included entirely in the train or test set, so as not to train then test on the samples from the same patient. 589 

 590 

4.10 Machine Learning Performance Metrics 591 

We used two main performance metrics: area under the Receiver Operating Curve (AUROC) and area under 592 

the Precision-Recall Curve (AUPR). The Receiver Operating Curve plots true positive calls against false 593 

positive calls. The higher the AUROC, the more confident you can be that a positive prediction by the classifier 594 

is correct. The Precision-Recall Curve plots the precision, how confident you are that a positive call is correct, 595 

against recall, how many of the positive samples in the dataset were identified. A high AUPR means the 596 

classifier is able to identify most of the positive samples without making too many false positive calls. For both 597 

metrics, a value of 1 is a perfect classifier. 598 

 599 

4.11 Workflow 600 

The workflow is as described in Figure 1:  601 
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First, we learn the embedding space using taxa-taxa co-occurrence data from the American Gut Project 602 

(A). The data contains 18,480 samples and 26,726 ASVs. Two taxa are considered co-occurring if they are 603 

detected in the same fecal sample. From the patterns of co-occurrence across all samples, the GloVe 604 

algorithm produces a transformation matrix, where each Amplicon Sequence Variant (taxa) is represented by a 605 

vector in embedding space (B). We call each dimension in embedding space a “property” (P_1...P_k) as each 606 

is a set of numbers used to differentiate taxas’ co-occurrence patterns. No metadata is used to create the 607 

embeddings; the process is completely unsupervised.  608 

To transform the dataset of interest into embedding space (E), we take the dot product between the 609 

dataset (D) and the transformation matrix (C). The dot product operation outputs a matrix of samples by 610 

properties, where property vectors are calculated as the average of property vectors over all the taxa present 611 

in that sample.  612 

Lastly, we input the transformed data into a random forest classifier (F), along with 13 sample-613 

associated features like exercise frequency, probiotic consumption, frequency of vegetable intake (G), to train 614 

a model that predicts IBD vs. Healthy host status. Samples and their associated features can be found in 615 

Supp. Table 5. 616 

In total, three random forest classifiers are trained, with the three types of input data: GloVe embedded, 617 

PCA transformed, and non-embedded normalized count data. Each classifier was cross-trained on 85% of 618 

samples to optimize hyperparameter choices for the number of decision trees, the depth of each tree, and the 619 

weight put on a positive classification. 620 

 621 

4.12 Software and packages 622 

Python Packages: Pandas 0.23.4, Numpy 1.16.3, Sklearn 0.20.2, Scipy 1.2.0, Matplotlib 3.0.0, Re 2.2.1, 623 

Skbio 0.5.5 R packages:  pheatmap_1.0.12, cowplot_0.9.4 , ggplot2_3.2.0 , RColorBrewer_1.1-2, 624 

Gtools_3.8.1, Dada2_1.10.1, Rcpp_1.0.1, plyr_1.8.4, stylo_0.6.9, KEGGREST_1.22.0    625 

 626 

 627 

 628 
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 632 

Supplementary Materials Captions 633 

Supp Table 1: Properties matched to all significantly correlated metabolic pathways. Includes KEGG pathway 634 

identifier and annotated pathway name. 635 

 636 

Supp Table 2: Properties listed by importance in differentiating between IBD and healthy control samples in 637 

American Gut data using a random forest with a depth of 2. Each property is labeled by its maximally 638 

correlated metabolic pathway, and the direction of association it has with disease. The last column reports the 639 

cumulative number of trees in a cross-validated random forest that support that association. 640 

 641 

Supp Table 3: Properties listed by importance in differentiating between IBD and healthy control samples in 642 

Halfvarson data using a random forest with a depth of 2. Each property is labeled by its maximally correlated 643 

metabolic pathway, and the direction of association it has with disease. The last column reports the cumulative 644 

number of trees in a cross-validated random forest that support that association. 645 

 646 

Supp Table 4: List of pathways significantly correlated with properties strongly associated with IBD.   647 

 648 

Supp Table 5: Samples and sample associated information converted into numeric quantities for machine 649 

learning.  650 

 651 

Supp Figure 1: Heatmaps showing correlations between dimensions in transformed space and one null 652 

annotated metabolic pathway table. We see far fewer and less dramatic correlations between transformed data 653 

and metabolic pathways when pathway table has been shuffled.  654 

 655 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/748152doi: bioRxiv preprint 

https://doi.org/10.1101/748152
http://creativecommons.org/licenses/by-nc/4.0/


25 

Supp Figure 2: Histogram depicting the percent variance of properties explainable by annotated metabolic 656 

pathways. Most properties are less than 25% explained by pathways, and no property is more than 36% 657 

explained. 658 
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