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Abstract

Microbiomes are complex ecological systems that play crucial roles in under-
standing natural phenomena from human disease to climate change. Especially
in human gut microbiome studies, where collecting clinical samples can be ardu-
ous, the number of taxa considered in any one study often exceeds the number of
samples ten to one hundred-fold. This discrepancy decreases the power of stud-
ies to identify meaningful differences between samples, increases the likelihood
of false positive results, and subsequently limits reproducibility. Despite the
vast collections of microbiome data already available, biome-specific patterns of
microbial structure are not currently leveraged to inform studies. Instead, most
microbiome survey studies focus on differential abundance testing per taxa in
pursuit of specific biomarkers for a given phenotype. This methodology assumes
differences in individual species, genera, or families can be used to distinguish
between microbial communities and ignores community-level response. In this
paper, we propose to leverage public microbiome databases to shift the anal-
ysis paradigm from a focus on taxonomic counts to a focus on comprehensive
properties that more completely characterize microbial community members’
function and environmental relationships. We learn these properties by apply-
ing an embedding algorithm to quantify taxa co-occurrence patterns in over
18,000 samples from the American Gut Project (AGP) microbiome crowdsourc-
ing effort. The resulting set of embeddings transforms human gut microbiome
data from thousands of taxa counts to a latent variable landscape of only one
hundred “properties”, or contextual relationships. We then compare the pre-
dictive power of models trained using properties, normalized taxonomic count

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/748152doi: bioRxiv preprint 

https://doi.org/10.1101/748152
http://creativecommons.org/licenses/by-nc/4.0/


data, and another commonly used dimensionality reduction method, Principal
Component Analysis in categorizing samples from individuals with inflamma-
tory bowel disease (IBD) and healthy controls. We show that predictive models
trained using property data are the most accurate, robust, and generalizable,
and that property-based models can be trained on one dataset and deployed on
another with positive results. Furthermore, we find that these properties can
be interpreted in the context of current knowledge; properties correlate signif-
icantly with known metabolic pathways, and distances between taxa in “prop-
erty space” roughly correlate with their phylogenetic distances. Using these
properties, we are able to extract known and new bacterial metabolic pathways
associated with inflammatory bowel disease across two completely independent
studies.

More broadly, this paper explores a reframing of the microbiome analysis
mindset, from taxonomic counts to comprehensive community-level properties.
By providing a set of pre-trained embeddings, we allow any V4 16S amplicon
study to leverage and apply the publicly informed properties presented to in-
crease the statistical power, reproducibility, and generalizability of analysis.

1 Introduction

1.1 Microbial survey studies

Microorganisms are biochemically potent entities that influence the biochem-
istry of surrounding organisms at all ecological scales. Recent findings suggest
that resident microbiomes of the human anatomy influence our bodies and minds
in ways we have only just begun to understand. Microbiomes have been impli-
cated in the development of diseases of nearly all types, both acute and chronic,
infectious and systemic. The vaginal microbiome has been implicated in preterm
birth (1), the skin microbiome in acne (2) and eczema (3), and the gut micro-
biome in a spectrum of diseases including inflammatory bowel disease (IBD)
(4–6,6–9), anxiety (10–12), major depressive disorder (13–15), autism (16–20),
and Parkinson’s Disease (21–23).

To analyze microbiome compositions, current technology sequences various
hypervariable regions of the 16S rRNA gene, which acts as an accessible taxo-
nomic tag to measure the abundances of taxa in a community. Studies using this
16S survey technique have reported incredibly diverse collections of microbes in
several systems. Multiple individuals studies, along with the American Gut
Project (AGP) (24) and the Human Microbiome Project (25), have invested
colossal effort to document that diversity by creating publicly available refer-
ence repositories. Amongst these are repositories of stool-associated microbiota
that have furthered our understanding of the role of the microbiome in several
diseases, especially inflammatory bowel disease (IBD) (4).

Though these and other studies have presented highly relevant findings, 16S
microbiome survey studies in general tend to suffer from lack of reproducibil-
ity (26,27). Difficulties in reproducibility can be attributed to several tech-
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nological and analysis-based issues (26,28,29), including three major problems
addressed here. First, due to logistical restrictions, especially in human gut mi-
crobiome studies where collecting clinical samples can be arduous, the number
of taxa considered in any one study often exceeds the number of samples ten to
one hundred-fold. Even the largest microbiome studies only include roughly as
many samples as taxa analyzed (24,25). As the number of samples necessary to
present a statistically sound and reproducible result increases with the number
of variables being considered, individual studies with low sample-to-variable ra-
tios risk being underpowered and reporting false positives, especially when effect
sizes are estimated to be small (27,30,31).

Second, the most commonly employed analysis techniques assume indepen-
dence of bacterial species (32–34). In biological contexts, the presence and
function of each microbe is deeply dependent on the characteristics of its sur-
rounding neighbors. Differences in microbial function also occur as genes are
turned on or off as appropriate for that microbe’s environment at any given time.
For instance, Belenguer et al. show that Roseburia strain A2-183 is unable to
use lactate as a carbon source except in the presence of Bacteroides adolecen-
tis (35). Because of functional dependence, findings of differential abundance
or function of a single species must be considered within its wider context of
associated species and environmental factors (36). More specifically, predictive
models that differentiate between disease and healthy guts based on microbiome
composition in one dataset can rarely be successfully applied to samples from
the same patient population collected independently (27).

Third, despite the vast amount of publicly available 16S microbiome survey
data, current studies design their data collection and perform their analysis inde-
pendently, without leveraging the information available via massive sequencing
projects such as the Human Microbiome Project (25) or American Gut Project
(24).

Navigating the highly related and very large microbiome space can be done
by using the information encompassed in publicly available datasets to inform
novel dimensionality reduction methods. The goal of this project is to create
an unbiased method to project taxonomic data into a lower dimensional space
that represents taxa properties. Properties are based on taxa relationships with
each other and their environment, are learned from public datasets, and are
re-usable for past and future studies. In this context, a property is a pattern
that underlies co-occurrences between taxa. The lower dimensional space is
learned from public datasets using an embedding algorithm, and allows the in-
tegration of patterns from massive datasets into specialized studies to increase
reproducibility and statistical power.

1.2 Current Methods for Dimensionality Reduction

Currently, most microbiome survey studies focus on differential abundance test-
ing per taxa in pursuit of specific biomarkers for a given phenotype. Often,
dimensionality reduction may be performed to reduce the data to a manageable
size. For example, taxa may be filtered to consider only the common or very
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rare, however this approach may filter potentially valuable data. In another
approach, taxa can be categorized, or binned, by their phylogenetic relation-
ships (e.g. all taxa that share a family are analyzed as one unit) (37,38). Such
binning methods may obscure meaningful biological signal, and are also heavily
database dependent not all microbes are clearly classified by taxonomy. Alter-
natively, taxa can be clustered based on the similarity of their 16S rRNA gene,
which has been used as a proxy for evolutionary relatedness (39). However,
in this approach, clustering may hinder comparisons across studies, and may
result in biologically unfounded taxonomic units (28). Such taxonomic count-
based methodologies, while they have led to interesting and crucial discoveries
in stool-associated microbiome surveys, assume that differences in individual
species, genera, or families can be used to distinguish between microbial com-
munities and ignore community-level action between and among species.

Rather than searching for individual biomarkers, ordination may instead be
used to reduce data dimensionality and identify broad patterns in microbiome
compositions between samples. Samples, each represented by a vector of taxa,
can be projected into a lower dimensional space using a wide array of ordina-
tion techniques including principal component analysis (PCA) (40) and multi-
dimensional scaling (41). Broadly used, ordination has played a critical role in
associating microbial structure with specific features or phenotypes of interest,
but has also proven to be overly sensitive to normalization and study bias (e.g.
technological noise, DNA preparation protocol, sequencing error) (42).

Several studies have attempted to integrate phylogenetic or edit distances
between 16S gene variants. Woloszynek et. al represent each 16S sequence by
the set of k-length nucleotide sequences (k-mers) it includes, and embed those
k-mers to create a vector representation of each sequence (43).

Finally, we may use taxa counts to try to estimate parameters for an under-
lying distribution from which taxa are drawn. Sankaran et. al model taxa as
units drawn from a latent Dirichlet multinomial mixture distribution 36). This
method aptly describes samples by assigning topic distributions to them, but
does not directly relate taxa to each other, and does leverage available public
data.

1.3 Current Study Proposal

While compelling, the dimensionality reduction methods described above do
not consider taxonomic relationships within a biological context, or make use of
information already available from previous datasets. By integrating previous
studies and subsequently putting 16S rRNA gene into context, our study pro-
poses to describe inherent properties of a microbial communities in a manner
consistent with their functional utility in their environmental context.

To deduce the above-mentioned properties, we turn to embedding techniques
from natural language processing. The use of natural language methods in mi-
crobiome analysis is not new. As noted by Sankaran et. al (36), there exist
some easily drawn parallels between natural language data and microbiome
data, namely that documents are equivalent to biological samples, words to
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taxa, and topics to microbial neighborhoods. Just as a book may be defined by
the aggregate topics it discusses, a microbial environment may be defined the
neighborhoods or communities it contains.

There is another connection between words and microbes not currently dis-
cussed in the literature, and that is the capacity of both entities to be described
by a finite set of discrete, characteristic properties. For instance, the word ‘ap-
ple’ in English can be defined as an edible, red, non-gendered, crunchy, object.
Similarly, the species Clostridium difficile can be defined as a spore-forming,
infectious, spindle-shaped bacteria. While it would be difficult to distinguish
between a recipe book and a magazine of food reviews by enumerating differ-
ences in the occurrence of individual words, differentiating the two becomes sim-
ple if we select appropriate properties. While both media use words that have
high scores in the property “edibility”, the recipe book also uses words that
have a high declarative score, like ‘cut’, ‘wash’, and ‘prepare’, while the food
review uses words that have high descriptive scores, like ‘fantastic’, ‘delectable’,
or ‘abysmal’. Just as the properties of “declarative” and “descriptive” allow us
to differentiate texts more effectively, property-based analysis of microbiomes
allow us to distinguish between two microbial scenarios more easily than indi-
vidual taxa counts. Analysis on the level of properties thus provides a more
accurate and generalizable representation of the data’s structure.

In this study, the properties mentioned above were learned from patterns
in a large microbial dataset provided by the American Gut Project (AGP). An
unsupervised embedding algorithm developed for natural language processing
called GloVe (44) was applied to over 15,000 AGP samples to learn an embed-
ding space by quantifying co-occurrence patterns between taxa. The resulting
set of embeddings transforms human gut microbiome data from thousands of
taxa counts to a property space of only one hundred to seven hundred vari-
ables. We quantify the quality of the properties by predicting the Inflammatory
Bowel Disease (IBD) status of samples using properties, normalized taxonomic
count data, and principal component analysis. We show that predictive random
forest models trained using property data are the most accurate, robust, and
generalizable, and that property-based models can be trained on one dataset
and deployed on an independent one with positive results. Strong correlation
between learned properties and annotated metabolic pathways allow us to impli-
cate both known and new metabolic pathways in IBD such as steroid degrada-
tion, lipopolysaccharide biosynthesis, and various types of glycan biosynthesis.
Lastly, by projecting taxonomic data into property space, the scientific commu-
nity can integrate patterns from massive public datasets into specific, targeted
studies. Analysis in property space means models requires fewer samples to
produce robust results, and exploratory studies simultaneously gain increased
power and decreased risk of spurious associations.

We not only advocate the use of this method, but also propose to shift the
analysis paradigm from a focus on taxonomic counts to a focus on comprehen-
sive properties that more completely characterize microbial community mem-
bers’ function and environmental relationships. The human gut microbiome has
the potential to be used as a low-cost environmental barometer for the diagnosis
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and monitoring of disease, but first we must prioritize model reproducibility and
move beyond the concept of the taxonomic unit.

Figure 1: Figure 1: Workflow of data transformation to prediction of host
phenotype. First, taxa-taxa co-occurrence (binary) data from the American Gut
Project (A) are input into the GloVe embedding algorithm (B) to produce a taxa
(Amplicon Sequence Variant or ASV) by property transformation matrix (C).
Then, we take the dot product between a sample by taxa table of interest (D)
and the transformation matrix (C) to project that table into embedding space
(E). This table is used to train a random forest model (F) along with sample
associated lifestyle and dietary information (G) to predict the IBD status of the
host (H). As points of comparison, random forest models are also built without
embedding, after transforming the same sample by taxa table (D) using PCA
(I) and normalizing (J).

2 Results

2.1 Model performance

In order to determine the value of the set of embedding produced by GloVe, we
tested the performance of classifiers built using GloVe embedded, PCA trans-
formed, and non-embedded normalized count data. We evaluated two main
performance metrics in predicting the IBD status of the host: area under the
receiver operating curve (AUROC) and area under the precision-recall curve
(AUPR). The receiver operating curve plots true positive calls against false
positive calls. The higher the AUROC, the more confident you can be that a
positive prediction by the classifier is correct. The precision-recall curve plots
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the precision, how confident you are that a positive call is correct, against re-
call, what percentage of the positive samples in the dataset were identified. A
high AUPR means the classifier is able to identify most of the positive samples
without making too many false positive calls. Both curves plot these values
over a range of decision thresholds. For both metrics, a value of 1 is a perfect
classifier.

2.2 Pick optimal number of properties to define a com-
munity

We found random forest classifiers trained using GloVe embedded data produce
a significantly higher average area under the Receiver Operating Curve (AU-
ROC) across all choices of hyperparameters and number of dimensions (Fig 2)
than non-embedded data and PCA-embedded data (p << 0.05, rank sum test).
Notably, embedded data consistently produces better results with far fewer fea-
tures than taxonomic counts. The use of fewer features makes the model less
likely to overfit the data and more likely to be reproducible. We run all fu-
ture tests using 100 properties, as models trained with 100 properties show the
most consistently high performance and small variance across all hyperparam-
eter choices.

Figure 2: Figure 2: Transforming ASV tables into GloVe embedding space be-
fore training a model produces more accurate host phenotype predictions (IBD
vs. healthy control) and makes models more robust to hyperparameter choice.
Each point represents a triplet of choices for number of trees, depth of each
tree, and weight on a positive prediction of IBD in a random forest model.
Each model was trained on the data input type indicated by color (Normalized,
non-embedded counts is purple, PCA embedded data is pink, and GloVe em-
bedded data is blue). Models trained on GloVe embedded data produce higher
ROC AUCs with less variance across hyperparameter choice.
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2.3 Models built with embedded data perform better on
a held out test set

We then train three separate models on the training portion of the AGP dataset,
and test each model on a held out portion of the same dataset that has been
used neither for model nor embedding training (Fig 3 panel A). Each model
uses a different data input type, GloVe embedded, PCA-transformed, or non-
embedded normalized taxa counts, and has hyperparameters optimized using
cross-validation over the training set. We see comparable performance between
the classifier using GloVe embedded data and the other two methods (Fig 3
panel B). The model with non-embedded data, which uses 26,739 features, has
an area under the Receiver Operating Curve (AUROC) of 0.79 and an area
under the Precision-Recall curve (AUPR) of 0.46 (Fig 3, panel B.1). In con-
trast, the model using GloVe embedded data, which uses only 113 features, has
a higher AUROC of 0.81 but slightly lower AUPR of 0.44 (Fig 3 panel B.2). A
200-fold decrease in number of features used results in little change in relevant
performance metrics. In comparison, the model using PCA-transformed data
with 113 features performs only slightly worse, with an AUROC of 0.77 and an
AUPR of 0.42 (Fig 3 panel B.3)

Figure 3: Embeddings trained on American Gut training set, model trained on
American Gut training set, model tested on American Gut held out test set (A).
Models trained on GloVe embedded data have higher ROC AUC but slightly
lower Precision-Recall AUC on a held out test set (B)
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2.4 Properties are generalizable to independent stool-associated
datasets

We find that GloVe embedded data generalizes to a completely independent
datasets, and significantly improves performance when fewer than 400 training
samples are available. Using data from Halfvarson et. al (8), we train ran-
dom forest classifiers on gut microbiome data to differentiate between IBD vs.
healthy control (Fig. 4A). Again, we train classifiers using normalized count
data, PCA-embedded data, and GloVe embedded data, and optimize over hy-
perparameters using cross-validation for each model independently. To test the
effect of training set size on performance outcomes, we train models using from
50 to 450 samples in the training set, and the rest in the test set. In this
dataset, we have 564 samples from 118 patients and 17, 775 Amplicon Sequence
Variances (ASVs). We do not include any associated metadata; predictions are
made solely based off of the microbiome compositions.

It is important to note that the transformation matrix that puts the query
dataset into embedding space is trained exclusively on American Gut Project
data, and is therefore completely independent of the query dataset. Despite
the fact that properties were learned using the American Gut data dataset
exclusively, we see better embedding model performance on the independent
set from Halfvarson et. al (8) (Fig. 4B). In particular, we see that as the
number of training samples becomes smaller, embedding-based models are able
to maintain high AUROC (Fig. 4B.1) and AUPR (Fig. 4B.2) while models
based on PCA-transformed data (100 features) and non-dimensionality reduced
models (17,775 features) cannot. When large numbers of training samples are
available, all methods perform comparably, but only embedding-based models
perform well at middling to low (< 400) sample sizes.

The patterns learned by the GloVe algorithm from the American Gut data
generalize to improve classification performance on an independent dataset.
Theoretically, classification accuracy of any host phenotype relating to the gut
microbiome could be bolstered by first embedding the input data before model
training.

2.5 Models that use properties are generalizable to inde-
pendent datasets

In the above experiments, all models were trained on the same datasets they
were tested on, using cross-validation and a held-out test set. Now, we trained a
model on the American Gut data and tested it on the Halfvarson data (Fig 5A).
More so than a hold-out test set, this allows us to test the feasibility of deploy-
ing a model for diagnosis and monitoring of IBD. Two models were trained, one
using normalized taxa counts and the other taxa counts embedded in property
space. In this case, only microbiome data and no sample-associated data was
included. Hyperparameters that gave the highest F1 score on American Gut
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Figure 4: Embeddings trained on American Gut data, model trained and tested
on Halfvarson dataset (A). Transforming microbiome data into GloVe embed-
ding space prior to model training produces more accurate models despite
smaller training sample sizes (B).

data were selected, and the trained model was directly applied to the indepen-
dent dataset without re-tuning hyperparameters or decision thresholds. Both
models trained on American Gut taxa count and American Gut embedded data
had a precision of 1, meaning that a positive IBD prediction was correct 100
percent of the time. However, the model trained on taxa counts had a recall of
0.02, meaning that only 2 percent of the samples from patients with IBD were
positively identified. In contrast, the model trained on embedded data recovered
26 percent of samples from patients with IBD. While the model trained on taxa
counts was in no way generalizable to another dataset, the model trained on
data in property space was able to make accurate predictions on a completely
independent dataset (Fig 5B). This finding demonstrates that in this case, mod-
els built from embedded data can generalize to outside data while models built
from taxa abundance information cannot.
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Figure 5: Models and embeddings trained on American Gut data and tested
on Halfvarson data (A). Model trained on properties far outperforms models
trained on taxa counts (B).

2.6 Distances in embedding space roughly correlate with
phylogenetic distance

Taxa close together in embedding space have similar co-occurrence patterns.
We expect that phylogenetically close taxa are more likely to fill the same eco-
logical niches than are unrelated taxa. We therefore expect a slight but not
extreme correlation between phylogenetic distance and distance in embedding
space. Using a Mantel test (45), we do observe a low (coef = 0.12) but significant
(p = 0.001) correlation between the two distance metrics, with more granularity
available when comparing taxa in embedding space. This finding demonstrates
that co-occurrence patterns as captured by embeddings are a more sensitive
distance metric than phylogeny (Fig 6).

2.7 Relationship with Metabolic Capacity

We chose to preserve taxa co-occurrence patterns in embedding space because
we hypothesize that those patterns are driven by taxa functionality in an en-
vironment. As such, we evaluate the possibility of a connection between anno-
tated genetic capacity to express metabolic pathways and the properties that
make up embedding space. First, we find each Amplicon Sequence Variant’s
(ASV) nearest neighbor in the KEGG database (46) using Piphillian (47), and
use the KEGGREST API (48) to determine which pathways are present in
that ASV’s genome. This results in an ASV by pathway table where there are
11,893 ASVs with near neighbors in the database, and 148 possible metabolic
pathways. Then, we identify the significantly correlated metabolic pathways for
each property in embedding space. A permutation test is used to simulate a
null distribution of maximum correlations per embedding property and deter-
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Figure 6: The contour plot shows that distances between pairs of taxa in GloVe
embedding space roughly correlate with distances between those taxa in phylo-
genetic space (A). A lighter color signifies a higher density of taxa pairs. There
is more granularity along the embedding space axis, implying that related taxa
are more easily distinguished from each other in embedding space than they
are phylogenetically. A Mantel test shows a low slope but very statistically
significant correlation between the two distance metrics (p = 0.001)

mine significance. We find that every property significantly correlates with at
least 1 annotated metabolic pathway. Suppl. Table 1 shows each dimension and
its significantly correlated metabolic pathways; each dimension has significant
correlation with 3 to 57 pathways. We see that the magnitude of correlations
between embedding dimensions and metabolic pathways are far greater in the
GloVe embedding case than in the PCA-transformed case (Fig 7). Addition-
ally, none of the correlations between PCA dimensions and metabolic pathways
are significant under a permutation test after multiple hypothesis correction
(Suppl. Fig. 1). This suggests that the properties learned by the GloVe algo-
rithm based on co-occurrence patterns between taxa may actually reflect the
metabolic capacity of those taxa.

2.8 Interpreting the predictive model for IBD with metabolic
pathways

In order to explore the implications of properties and metabolic pathways for
IBD, we calculated an association score (see method section 4.8) between each
property and a positive IBD prediction. The full tables of the most predictive
dimensions, their associated metabolic pathways, and their direction of influ-
ence on the prediction can be found in Suppl. Table 2 (AG) and Suppl. Table
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Figure 7: Dimensions in GloVe embedding space correlate with some metabolic
pathway annotations (A), but dimensions in PCA embedding space do not (B).
Each column in each heat map represents a metabolic pathway from KEGG
(e.g. ko00983). Each row is a dimension in either GloVe or PCA embedding
space.

3 (Halfvarson). First, we identified those properties strongly associated with a
positive IBD prediction (association score above 8 in both Halfvarson and AGP
datasets). We then selected all metabolic pathways significantly correlated with
more than one of those highly relevant properties. In this way, we identified
45 metabolic pathways of interest for IBD (Suppl. Table 4). The pathways fall
broadly into 9 main categories according to the KEGG Brite database: steroid
metabolism, lipid metabolism, glycan biosynthesis, amino acid metabolism, an-
tibiotic synthesis and resistance, bacterial pathogenic markers, metabolism of
terpernoids and polyketides, cell motility and cellular community formation,
and xenobiotics biodegradation/other metabolic function.

2.9 Explaining the variance in properties

Lastly, we sought to determine how much of the information contained in proper-
ties can be recapitulated by looking at the above described annotated metabolic
pathways, and how much was unique to each property. For each property, we
use a linear regression to predict the property values per taxa from the pathway
presence/absence per taxa. We report the r2 statistic per property, and find
that metabolic pathways can explain a maximum of 36 percent of the variance
in one property, and a minimum of 11 percent of another. This means that,
while there is a strong correlation between properties and annotated metabolic
pathways, most of the information contained in properties are not represented
by annotated information (Suppl. Fig. 2)
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3 Discussion

In a data-driven field dominated by small sample sizes and large variable spaces,
it is necessary to employ some form of dimensionality reduction. Currently, this
is done by filtering by taxa prevalence, clustering based on phylogenetic prox-
imity, or is not done at all. We present here a method to leverage massive
public datasets to learn an embedding space that represents the latent proper-
ties driving taxonomic abundances. By shifting the paradigm of analysis from
taxonomic counts to community-level microbiome properties, we enable more
holistic, comprehensive analysis that accounts for taxonomic relationships while
simultaneously simplifying the data.

We demonstrate that we can learn a fecal microbiome property space that
is more apt at predicting the IBD status of the host than non-reduced and pca-
reduced spaces, and remains accurate even at low training sample sizes. We also
present a classification model trained on property data that generalizes well be-
tween datasets, where models based on taxonomic counts do not. We lastly
define the relationships between embedding space and known metrics used to
explore microbiomes like phylogenetic distance and metabolic pathway genetic
capacity.

3.1 Properties

Embedding is a technique used ubiquitously in machine learning, especially in
natural language processing (49–51). Embedding algorithms take discrete units
of data (e.g. words or taxa) and embed them into a vector space, preserving
proximity between the units based on any metric that can compare two units.
In the case of embedding taxa, possible metrics include phylogenetic distance,
genome similarity, or morphology: in this paper the chosen metric to determine
proximity between units is patterns of co-occurrence. The embedding algorithm
used in this paper is GloVe, an algorithm designed for word processing (44). Us-
ing this algorithm, two taxa that occur with similar sets of other taxa at similar
frequencies should be close in embedding space, and two taxa that are found in
the presence of different neighbor sets should be far from each other. To visu-
alize this, we return to the analogy of word analysis. Two words, “apple” and
“banana”, are close to each other in embedding space because they tend to occur
with similar sets of words like “eat”, “fruit”, “tasty”, and “smoothie”. Like-
wise, the words “king” and “marshmallow” tend to occur in different contexts;
“king” is most often found in the company of words like “politics”, “throne”,
and “empire” while “marshmallow” is found with words like “toddler”, “fluffy”,
and “scrumptious”. Note that there are two ways words may be close in em-
bedding space. First, words may directly co-occur frequently, like the words
“apple” and “banana”. Instead, words may be synonyms, which do not often
co-occur directly with each other, but instead co-occur with similar patterns,
like “large” and “huge” both being used to describe giants, mountains, and ap-
petites. Returning to the concept of embedding taxa, we may use embeddings
to discover relationships both between taxa that work together directly, and
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between taxa that are synonymous and likely fill the same niche.
Once proximity in embedding space has been established, the data can im-

mediately be used to improve modeling efforts. Subsequently, conceptual prop-
erties can be assigned to the learned dimensions by observing which entities
have similar values in any given dimension. If “strawberry”, “cookies”, “cake”,
and “ice-cream” all have high values in one dimension, and “mud”, “medicine”,
and “brussel sprouts” all have low values in that same dimension, we may call
that dimension the “delicious” property.

We have shown that embedding an ASV table into property space using
GloVe integrates patterns from public data into modeling efforts, producing
more accurate diagnostics while decreasing data dimensionality. Classifiers built
after transforming data in this way are more robust, and the same embeddings
generalize to improve the accuracy of classifiers built from completely indepen-
dent datasets. Properties also allow models trained on one dataset to be applied
to another independent dataset with positive results.

In addition to improving classification accuracy for IBD, the embeddings
quantify and simplify the microbial landscape of gut microbiomes. Rather than
considering a microbiome as a collection of bacterial counts, all of which are
mostly independent, we propose to describe a microbiome as a vector of values
for the relevant properties. Consider the example of distinguishing the recipe
book from the food magazine; reducing each into property space allows us to
clearly see the differences in declarative and descriptive word usage rather than
counting the number of times the words “spinach”, “tomato”, and “bowl” were
each used. Because these properties are learned from the data directly, they are
much less biased than manually engineered features. Analysis performed on this
latent property space is likely to be much more robust to variations in datasets,
addressing the problem of irreproducibility currently plaguing 16S microbiome
studies (26,27).

3.2 Biologically driven dimensional reduction

We use unsupervised learning to define an embedding space where taxa proxim-
ity represents similarity in co-occurrence patterns. Unsupervised learning limits
the human decision-making bias in property definition, but also produces unla-
beled properties whose interpretation is not immediately obvious. We hypoth-
esize that co-occurrence patterns are driven by taxa function like metabolism,
synthesis of secondary metabolites, and secretion of antimicrobial products. We
show in our pathway analysis that property distributions in fact do correlate
significantly with metabolic pathways. Therefore, the learned property space
is likely informed by taxa function from within a biological context. Some
elements of property space may also be informed by other factors, such as ge-
ography or diet commonalities between groups of people, and this should be
explored further.
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3.3 Annotation Independent

While we have explored the associations between embedding properties and the
annotated quantities of genetic potential, the power of this embedding technique
is that it does not rely on annotations of known taxonomic groupings or full
genomes in order to improve prediction accuracy of host phenotype. Because
any ASV that has been observed during embedding training can be embedded,
it is possible to describe the properties of uncultured and unannotated ASVs,
and include this information in a classifier. The transformation into embedding
space requires only an ASV table, and uses no sample associated data like
lifestyle variables or diagnoses.

3.4 Implications for IBD

We were able to identify 9 main categories of KEGG BRITE pathways that were
significantly correlated with properties associated with IBD (Suppl. Table 4) .
Among these pathways, both steroid metabolism and biosynthesis were found
to be associated with IBD. Steroids are a well-known and commonly utilized
treatment for patients with active Crohn’s disease (52). Enrichment in steroid
metabolism in the gut microbiome could be reflective of an increase in steroid
availability due to treatment.

Several pathways belonging to the rather broad BRITE category of “other
metabolic function” have already been well explored and characterized in the
literature as related to IBD. Toluene degradation (KEGG pathway 00623) was
found to be increased in both Crohn’s disease (CD) and Ulcerative Colitis (UC)
samples in a microbiome survey meta-analysis (53). Components of the ben-
zoate metabolic pathway, including fluorobenzoate degradation (KEGG path-
way 00364), were associated with IBD severity in a treatment-naive cohort with
CD (54). Analysis of inflamed gut lining mucosa in patients with IBD also
found decreased ascorbic acid content (KEGG pathway 00053)(55) All of these
pathways, along with dioxin degradation, inositol phosphate metabolism, and
lipoic acid metabolism, were associated with an IBD prediction in our model.

We also found multiple glycan biosynthesis pathways correlated with pre-
dictive IBD properties (KEGG pathways 00511, 00514, 00515, 00601). In
particular, bacterial glycosphingolipid biosynthesis, a pathway which has anti-
inflammatory effects when produced by the host epithelial cells (56), was found
to be associated with IBD in our model. We speculate that this may indicate
a shortage of glycosphingolipids in the gut environment, exacting positive se-
lection pressure on microbes that can produce their own. Lipopolysaccharide
biosynthesis and multiple types of O-glycan biosynthesis were also implicated
in our model, all of whose association with IBD has been explored, briefly, in
the literature (57–59). Given its importance and consistency in our predictive
model, this group of pathways may warrant further exploration.
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3.5 Limitations and future expansion of the work

While embedding Amplicon Sequence Variants (ASVs) affords the benefits to
classification and interpretation previously discussed, it relies heavily on the
definition of a “biologically meaningful unit” which will then be embedded. For
the sake of between-study replicability, we choose to measure the co-occurrence
patterns of ASVs (28) as a base unit. It may, however, prove more informative
to define a biologically meaningful unit in another way. For example, perhaps
ASVs clustered at a 99 percent threshold more accurately capture meaningful
patterns in co-occurrence. We may also consider a variable threshold that is
more representative of common ancestry on a phylogenetic tree and aggregate
based on clade architecture before embedding.

Additionally, the presented set of embeddings was constructed using only
the forward reads from the American Gut dataset, as reverse reads were not
provided in the EBI database. Future embeddings constructed from full length
V4 or other 16S hypervariable regions will likely provide more accuracy and
specificity. New embedding transformation matrices would need to be trained
for each new biome or segment of 16S gene being explored.

In its current form, the algorithm does not make specific considerations for
differences in sequencing depth, which affects how many taxa can be observed
in a given sample. Future iterations of this method could include weights such
that the observed absence of taxa in a sample with a large number of reads is
weighted more heavily than the absence of taxa in a sample with fewer reads.

While the construction of embeddings is not affected by the inconsistency
of self-report data, the accuracy of the classifier may be. In this study, we con-
sidered only a self-reported medical professional diagnosis to be accurate, and
rejected any self-diagnosis reports. While it is possible that classifier perfor-
mance would change with the inclusion of more liberal diagnostic criteria, the
strict diagnosis definition successfully generalized to an independent dataset,
which was not self-reported (8).

Properties in embedding space have strong associations with metabolic path-
way potentials, but it remains unclear whether they truly represent the expres-
sion of those pathways. Future development could also consist of integrating
multi-omics datasets available in other studies, including the Human Micro-
biome Project. Wet lab validation of these hypothesized property-metabolic
expression associations would verify the ability of GloVe embeddings to predict
metabolic expression from 16S data. This would allow for the integration of
metabolic data from all observed taxa, not just those few whose full genomes
are available in databases.

It might be possible to use the embedding space to identify taxa that form
stable communities together - taxa that are close in embedding space may sta-
bilize each other in culture and in vivo. Through mechanisms like cross-feeding,
joint nutrient acquisition, and other cooperative behaviors, microbes may form
groups that are more versatile and secure than the individual species on their
own. Taxa near each other in embedding space, if they are not directly inter-
acting, may have synonymous functions in their respective communities. By
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clustering and categorizing microbes by their respective roles, we may gain in-
sight into which bacterial populations secure one another’s stability. Particu-
larly, the relationship between phylogenetic distance and distance in embedding
space may be of interest. Microbes that are very closely related to one an-
other through evolution but have very dissimilar co-occurrence patterns may
be particularly predictive of their environment, as they have specialized quickly
and efficiently. It may be that different variable regions better capture the
co-occurrence patterns of taxa, and so are more representative of taxonomic
relationship to the environment.

Lastly, the embedding framework can be applied to any system or base unit
of interest. It may be particularly illustrative to embed genes from metagenomic
datasets instead of taxa. This would allow us to determine mathematical rep-
resentations of the context of each gene, as well as to glean the robustness and
reproducibility benefits from dimensionality reduction for metagenomic data.
As always, appropriate benchmarking and exploratory analyses will be neces-
sary to determine the appropriate use cases for this technology.

3.6 Conclusion

By integrating patterns from public datasets into individual survey studies, we
bring the increased statistical power and generalizability of results of meta-
analyses into each independent study. While this work shows the value of an
embedding framework for predicting IBD from the gut microbiome, this same
framework can be leveraged in any environment with enough data and for any
predictive problem of interest. Furthermore, we assert that analyses that define
microbiomes by their latent properties instead of by their taxa member list are
more informative, reproducible, and relevant to the macroscopic world.

4 Material and Methods

Code available at: https://github.com/MaudeDavidLab/embeddings

4.1 Embeddings: GloVe algorithm

We used the GloVe algorithm (44) on ASVs to generate embeddings. Briefly,
the embedding algorithm (Figure 1B) learns taxa representations that maintain
patterns in co-occurrence between pairs of taxa, and was used to learn properties
of microbial context. In this algorithm, the metric to be preserved is a function of
Pik/Pjk, theprobabilitiesofco−occurrenceoftaxaiandjwithk.V ariablesiandjarethetaxabeingrelated, andkisathirdcontexttaxa.Theresultfromthisalgorithmisarepresentationofeachtaxainx−
dimensionalspace, wherexischosenbytheuser.Thex−dimensionalspaceissharedacrossalltaxa, andthuseachdimensioncanbeinterpretedasapropertyforwhicheachtaxahasavalue.Thenumberofdimensions, x, isahyperparametertobetuned, andresultsarereportedforarangeofdimensions :
50, 100, 250, 500, and750.Embeddingswerelearnedon85percentofthedata, which15percentofsamplessetasidefortesting.

4.2 Transformation into embedding space

In 16S survey studies, each sample is represented by a vector of its taxa abun-
dances. Thus, we transform samples into embedding space simply by taking the
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dot product between each sample’s taxa vector and a taxa’s property vector.
This gives an average of property values weighted by taxa abundance. We con-
sider two ASVs the same taxa if they are at least 97 percent similar and align
with an e value less than 10−29.

4.3 PCA transformation

Predictive model performance using embedded data was compared against mod-
els trained on data transformed with Principal Coordinate Analysis (PCA).
PCA is an ordination technique that projects samples into lower dimensional
space while maximizing the variance of the projected data (60).

4.4 Random Forest Predictions

The value of the embeddings was evaluated by success at predicting host IBD
status using a random forest model (60). The model was built using Python
sci-kit-learn, and hyperparameters for the depth of tree, number of trees, and
weight on a positive prediction were selected using 10-fold cross validation on the
training set. A different model with different hyperparameters was built for each
data type, normalized taxonomic abundances, PCA embedded abundances, and
GloVe embedded abundances. Counts were normalized by applying an inverse
hyperbolic sin function. Models also included self-reported sample metadata
such as exercise, sex, daily water consumption, probiotic consumption, and
dietary habits. Models were evaluated by their performance, namely area under
the receiver operating curve, on the held out test set of 15 percent of samples.

4.5 Correlations with KEGG Pathways

For each ASV, we find its closest match, thresholded at 97 percent similarity, in
the KEGG database using the software Piphillan (47). Each possible metabolic
pathway then gets assigned a 0 if it is absent or a 1 if it is present in that nearest
neighbor’s genome.

Limiting the following analysis to include only those taxa that had near
neighbors in the database, for each of the properties in embedding space, we
find its maximally correlated (absolute value) metabolic pathway. Then, to
ascertain whether those correlations were significant, we applied a permutation
test (61). We constructed 10,000 null pathway tables by permuting the rows
of the original pathway table. We repeated the above procedure, finding the
maximally correlated pathway for each of the embedding dimensions in each
of the null pathway tables. This results in 10,000 maximum correlation values
per embedding dimension, which form a null distribution for each embedding
dimension. The significance of the statistic in a permutation test is calculated
as the number of times a maximum correlation in a null pathway table was more
extreme or equal to the maximum correlation actually observed. Dimensions
(columns) in both GloVe transformation matrix and PCA rotation matrix space
are normalized to mean 0 and variance 1 to account for differences in scales
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between the two spaces. We report both the maximally correlated pathway for
each property, all of which are significant, and also all significantly correlated
pathways per property.

4.6 Calculating Phylogenetic Distances

We produced a Multiple Sequence Alignment and subsequently a phylogenetic
tree of all ASVs, using Clustal W2 (62) multiple alignment and phylogeny cre-
ation software. The tip-to-tip phylogenetic distances were then calculated be-
tween every pair of taxa using the dendropy python package (63).

4.7 Explaining variance of properties with metabolic path-
ways

For each property, we set up a linear regression where the property values per
taxa are the response variable, and the pathway presence/absence for each taxa
are the independent variables. The r2 statistic is reported to assess the variance
in property values explainable by the presence of annotated metabolic pathways.

4.8 Importance of properties and pathways in predictive
model

In order to calculate the direction of association of a property with disease, we
limit each tree in the random forest to split on 3 variables. We then backtrace;
if a higher value of the property led to an IBD prediction, we add one to the
association score between IBD and that variable. Likewise, if a lower value of
the property led to IBD, we subtract one from the association score.

In calculating metabolic pathway importance to the predictive model, we
first find all properties that are consistently associated with health or with IBD.
Then, we count the number of times each pathway is significantly correlated
with one of those properties. If a pathway is significantly correlated with more
than two consistently predictive properties, it is considered important in that
phenotype.

4.9 Dataset

Embeddings were trained using data from the American Gut Project (24). This
crowdsourced project provides 16S samples from the United States, United
Kingdom, and Australia, along with associated dietary, lifestyle, and disease
diagnosis information. Amplicon Sequences Variants (ASVs) were called us-
ing the DADA2 algorithm (64), resulting in 18,750 samples and 335,457 ASVs.
Samples with fewer than 5,000 reads and ASV’s not occurring in at least .07
percent of samples (13 samples) were then discarded, resulting in 18,480 samples
and 26,726 ASVs. Embeddings were trained on a randomly selected 85 percent
of the filtered samples, and the other 15 percent were set aside for classifier
testing.
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Training embeddings does not require labeled data, and so samples could
be used irrespective of their available metadata. The machine learning clas-
sifier was trained and tested only on samples that had a positive or negative
IBD diagnosis, 5018 and 856 samples respectively. IBD diagnosis was provided
in various self-reported options from the American Gut study: “I do not have
this condition”, “Self-diagnosed”, “Diagnosed by a medical professional (doctor,
physician assistant)”, or “diagnosed by an alternative medicine practitioner”.
For this study, we considered only samples claiming a medical professional di-
agnosis to be true.

Lastly, in order to test the generalizability of embeddings, we used 16S data
on patients with Crohn’s Disease (CD) and Ulcerative Colitis (UC) and healthy
controls from Halfvarson et. al (8). DADA2 (64) was again used to call ASVs,
samples were discarded if they had fewer than 10,000 reads, and ASVs were
not filtered for prevalence. After quality control, 26,251 ASVs remain, 17,775
of which have near neighbor representations in embedding space. The dataset
included samples with multiple diagnoses, but for the sake of consistency, we fo-
cused on the most common diagnoses of Crohn’s disease, Ulcerative Colitis, and
healthy control. In total, this left 564 samples from 118 patients, as the dataset
contains multiple timepoints for each patient. When models were trained and
tested on Halfvarson datasets, timepoints from the same patients were included
entirely in the train or test set, so as not to train then test on the samples from
the same patient.

4.10 Machine Learning Performance Metrics

We used two main performance metrics: area under the Receiver Operating
Curve (AUROC) and area under the Precision-Recall Curve (AUPR). The Re-
ceiver Operating Curve plots true positive calls against false positive calls. The
higher the AUROC, the more confident you can be that a positive prediction
by the classifier is correct. The Precision-Recall Curve plots the precision, how
confident you are that a positive call is correct, against recall, how many of
the positive samples in the dataset were identified. A high AUPR means the
classifier is able to identify most of the positive samples without making too
many false positive calls. For both metrics, a value of 1 is a perfect classifier.

4.11 Workflow

The workflow is as described in Figure 1: First, we learn the embedding space
using taxa-taxa co-occurrence data from the American Gut Project (A). The
data contains 18,480 samples and 26,726 ASVs. Two taxa are considered co-
occurring if they are detected in the same fecal sample. From the patterns of
co-occurrence across all samples, the GloVe algorithm produces a transforma-
tion matrix, where each Amplicon Sequence Variant (taxa) is represented by
a vector in embedding space (B). We call each dimension in embedding space
a “property” (P1...Pk) as each is a set of numbers used to differentiate taxas’
co-occurrence patterns. No metadata is used to create the embeddings; the
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process is completely unsupervised. To transform the dataset of interest into
embedding space (E), we take the dot product between the dataset (D) and
the transformation matrix (C). The dot product operation outputs a matrix of
samples by properties, where property vectors are calculated as the average of
property vectors over all the taxa present in that sample.

Lastly, we input the transformed data into a random forest classifier (F),
along with 13 sample-associated features like exercise frequency, probiotic con-
sumption, frequency of vegetable intake (G), to train a model that predicts IBD
vs. Healthy host status. Samples and their associated features can be found in
Suppl. Table 5.

In total, three random forest classifiers are trained, with the three types of
input data: GloVe embedded, PCA transformed, and non-embedded normal-
ized count data. Each classifier was cross-trained on 85 percent of samples to
optimize hyperparameter choices for the number of decision trees, the depth of
each tree, and the weight put on a positive classification.

4.12 Software and packages

Python Packages: Pandas 0.23.4, Numpy 1.16.3, Sklearn 0.20.2, Scipy 1.2.0,
Matplotlib 3.0.0, Re 2.2.1, Skbio 0.5.5

R packages: pheatmap 1.0.12, cowplot 0.9.4, ggplot2 3.2.0 , RColorBrewer 1.1-
2, Gtools 3.8.1, Dada2 1.10.1, Rcpp 1.0.1, plyr 1.8.4, stylo 0.6.9, KEGGREST
1.22.0
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