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Abstract

At a transcriptional pause site, RNA polymerase (RNAP) takes significantly longer
than average to transcribe the nucleotide before moving on to the next position. At the
single-molecule level this process is stochastic, while at the ensemble level it plays a
variety of important roles in biological systems. The pause signal is complex and
invokes interplay between a range of mechanisms. Among these factors are:
non-canonical transcription events – such as backtracking and hypertranslocation; the
catalytically inactive intermediate state hypothesised to act as a precursor to
backtracking; the energetic configuration of basepairing within the DNA/RNA hybrid
and of those flanking the transcription bubble; and the structure of the nascent mRNA.
There are a variety of plausible models and hypotheses but it is unclear which
explanations are better.

We performed a systematic comparison of 128 kinetic models of transcription using
approximate Bayesian computation. Under this Bayesian framework, models and their
parameters were assessed by their ability to predict the locations of pause sites in the E.
coli genome.

These results suggest that the structural parameters governing the transcription
bubble, and the dynamics of the transcription bubble during translocation, play
significant roles in pausing. This is consistent with a model where the relative Gibbs
energies between the pre and posttranslocated positions, and the rate of translocation
between the two, is the primary factor behind invoking transcriptional pausing.
Whereas, hypertranslocation, backtracking, and the intermediate state are not required
to predict the locations of transcriptional pause sites. Finally, we compared the
predictive power of these kinetic models to that of a non-explanatory statistical model.
The latter approach has significantly greater predictive power (AUC = 0.89 cf. 0.73),
suggesting that, while current models of transcription contain a moderate degree of
predictive power, a much greater quantitative understanding of transcriptional pausing
is required to rival that of a sequence motif.

Author summary

Transcription involves the copying of a DNA template into messenger RNA (mRNA).
This reaction is implemented by RNA polymerase (RNAP) successively incorporating
nucleotides onto the mRNA. At a transcriptional pause site, RNAP takes significantly
longer than average to incorporate the nucleotide. A model which can not only predict
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the locations of pause sites in a DNA template, but also explain how or why they are
pause sites, is sought after.

Transcriptional pausing emerges from cooperation between several mechanisms.
These mechanisms include non-canonical RNAP reactions; and the thermodynamic
properties of DNA and mRNA. There are many hypotheses and kinetic models of
transcription but it is unclear which hypotheses and models are required to predict and
explain transcriptional pausing.

We have developed a rigorous statistical framework for inferring model parameters
and comparing hypotheses. By applying this framework to published pause-site data, we
compared 128 kinetic models of transcription with the aim of finding the best models for
predicting the locations of pause sites. This analysis offered insights into mechanisms of
transcriptional pausing. However, the predictive power of these models lacks compared
with non-explanatory statistical models - suggesting the data contains more information
than can be satisfied by current quantitative understandings of transcriptional pausing.

Introduction 1

The reaction pathways (Fig 1) of transcription elongation have been studied extensively. 2

RNA polymerase (RNAP) exists inside a transcription bubble that translocates along 3

the double stranded DNA. Within the polymerase, the messenger RNA (mRNA) and 4

template DNA form a DNA/RNA hybrid [1–7]. Throughout the main transcription 5

elongation pathway, RNAP successively alternates between the pretranslocated and 6

posttranslocated positions, employing a Brownian ratchet mechanism [8,9]. In order 7

to bind and incorporate the next nucleotide onto the 3′ end of the mRNA, the active 8

site must be accessible and RNAP must be in the posttranslocated position. 9

Fig 1. The kinetics of transcriptional pausing. A: State diagram of transcription
elongation (bold arrows) and its off-pathway events. RNA polymerase (grey rectangle)
translocates the template in the 3′ → 5′ direction. State notation described in main
text. Inhibitory effects that RNA secondary structures have on translocation are
displayed. B: Schematic depiction of pausing, including mechanisms and effectors of
pausing and pause recovery described in A. C: Pause sites are analogous to traffic lights.
If the light is green, the RNA polymerase may go. If the light is red it must wait an
indefinite amount of time for the light to turn green. The colour of the upcoming traffic
light and the time until it turns green are random variables.

However, RNAP does not always conform to this catalytically productive pathway. 10

As off-pathway events, RNAP can backtrack or hypertranslocate. When 11

backtracking (Fig 1A, LHS), RNAP translocates upstream (in the 3′ direction along the 12

template) [9–11]. This causes the 3′ end of the mRNA to exit the RNA polymerase 13

through the NTP entry channel thus rendering the polymerase active site inaccessible. 14

Recovery to the elongation pathway is stimulated by transcription elongation factors, 15

such as GreA in prokaryotes and S-II in eukaryotes, which cleave the 3′ mRNA [11–13]. 16

It can also occur through RNAP intrinsic cleavage activity [13]. When 17

hypertranslocating (Fig 1A, RHS), RNAP moves 5′-bound down the template such that 18

the active site is beyond the 3′ mRNA [14,15]. Each nucleotide by which RNAP 19

hypertranslocates causes the shortening of the DNA/RNA hybrid by one basepair. 20

Hypertranslocation is a key pathway to intrinsic termination [16], whereby an upstream 21

mRNA hairpin destabilises RNAP and induces termination [17]. 22

It has been hypothesised that a catalytically inactive intermediate state (IS) acts 23

as a precursor for backtracking [1, 18–22]. Under this hypothesis, this state, sometimes 24

also known as the inactive state [23] or the elemental paused elongation complex [22], 25
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has taken many forms in the literature and exists as an intermediate between the 26

pretranslocated and backtracked states (Fig 1). Entry into this state from a 27

pretranslocated complex is achieved by rearrangement of the RNAP trigger-loop and 28

fraying of the 3′ mRNA, in a manner that inhibits elongation but not translocation [24]. 29

For prokaryotes and eukaryotes, transcription elongation rates range from 20-120 30

bp/s [25–27]. However individual RNAP molecules proceed quite erratically along their 31

template. Approximately once every 100 bp [23,28] there exists a pause site which takes 32

significantly longer to transcribe, oftentimes on the timescale of seconds or 33

minutes [19,29,30]. Extended pauses can lead to RNA polymerase traffic jams [31,32]. 34

For the most part, pause sites are likely to be detrimental to the organism. 35

Nonetheless, transcriptional pausing plays a range of important biological roles in 36

certain systems [33]. 37

1. Gene expression. For example, the 5′ UTR of HIV-1 contains a pause site 38

immediately downstream from the TAR hairpin [19,34]. TAR is a regulatory element 39

that upregulates transcription upon binding to viral protein Tat [35]. It is therefore 40

beneficial for the virus if there exists a pause site downstream from TAR, as this gives 41

Tat a greater temporal opportunity to bind to TAR before RNAP has left the proximity. 42

2. Modulating RNA folding. For example, the ribDEAHT operon of Bacillus 43

subtilis encodes genes involved in riboflavin synthesis [36]. The ribD riboswitch, which 44

manifests in the nascent mRNA, can adopt either the terminator fold (eliciting 45

termination) or the antiterminator fold (enabling transcription). The former is favoured 46

in the presence of flavin mononucleotide. Transcriptional pause sites flank the 47

riboswitch, thus providing this ligand a greater opportunity to apply its effect [37]. 48

3. RNA splicing. RNA splicing involves the pairing of a donor and an acceptor 49

splice site. As this process occurs cotranscriptionally [38], the chance of the cellular 50

splicing machinery selecting any given donor-acceptor pair is dependent on transcription 51

elongation velocity and transcriptional pausing [39–41]. The positioning and strength of 52

pause sites therefore contributes to the proportions of splice variants in systems which 53

employ alternative splicing. 54

The dwell time at a pause site is approximately exponentially distributed [19, 23, 30] 55

and subsequently any given pause site can be quantified by how likely the RNAP is to 56

pause, and an escape time half-life for when it does pause [19,23]. While comparisons 57

can be made between pause sites and stop signs or speed bumps, due to their stochastic 58

nature pause sites are more akin to traffic lights (Fig 1C). 59

However the mechanisms that elicit pausing to occur in the first place are complex 60

and multipartite [19,22,24]. A range of sequence-dependent factors contribute to the 61

pause signal. Among the known effectors: 1) when the DNA/RNA hybrid of a 62

posttranslocated state is weak relative to that of the pretranslocated state, RNAP may 63

favour the pre state over the post state thus leading to a pause [21]. This delay can 64

facilitate backtracking, which further extends the pause [42]. 2) The DNA up to 24 bp 65

downstream from a pause site can have an effect on pausing [43]. This is unexpected 66

because the DNA in this region is too far from RNAP to be disrupted by translocation. 67

This phenomenon may be caused by the downstream DNA bending in a 68

sequence-dependent manner [19,43]. 3) It is expected that the secondary structure of 69

the mRNA inhibits translocation [1, 44]. Upstream structures could inhibit backwards 70

translocation and downstream structures could inhibit forward translocation. 4) Pauses 71

occur more frequently when there is a pyrimidine at the 3′ end of the mRNA [28,45]. 72

This could be due to nucleotide-specific interactions between the mRNA and the 73

protein [22,45]. 5) The four NTPs have different dissociation constants KD and 74

different rates of catalysis kcat [46], which can give the four nucleotides different pause 75

propensities. 6) Nucleotide misincorporations destabilise the enzyme and can elicit 76

pausing [47–49]. 77
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A consensus sequence of the pause site for the E. coli RNAP has recently been 78

identified [28,50]. This motif reveals that the nucleotides at the 3′ and 5′ ends of the 79

hybrid are important, as well as the incoming NTP which is usually a GTP. By 80

comparing a nucleotide sequence to a motif [50], one may be able to predict the 81

locations of pause sites. However it still leaves much unsaid about the physical processes 82

that govern pausing. Although sequence-dependent explanatory models have been 83

applied [1, 45,46,51], a systematic and large scale analysis of the accuracy of this 84

approach has not yet been done. 85

It would be greatly beneficial to have a model for both predicting the locations of 86

and explaining the mechanisms behind pause sites, for any arbitrary gene sequence. 87

There are still uncertainties pertaining to the mechanism behind transcriptional pausing 88

we would like to resolve. 1) To what extent does mRNA secondary structure inhibit the 89

translocation thereby modifying the pausing behaviour? Does using a prediction of the 90

mRNA structure enhance the model [1, 44]? 2) Does utilising knowledge of the gated 91

tyrosine residue that inhibits translocation between the backtrack-1 and backtrack-2 92

states improve the model [11]? It could be the case that the backtrack-1 state is readily 93

accessible and incorporating this feature into the model improves its accuracy. 3) 94

Some [1, 18–22], but not all [44, 51, 52], models have been built with the inclusion of the 95

IS that RNAP must enter before backtracking. Is this model feature essential to explain 96

the sequence-specific properties of pausing or is it a redundant feature that introduces 97

unnecessary complexity into the model? 98

By virtue of the availability of data from a high-throughput detection of pause sites 99

across the entire E. coli transcriptome by Larson et al. 2014 [28], we were able to 100

explore these model variants. In this study we used a Bayesian approach to interrogate 101

this dataset. The volume of this dataset allowed us to 1) evaluate how reliable this 102

modelling approach can be for the prediction of pause sites, and 2) select the best model, 103

and its parameters, to better understand the mechanics of transcriptional pausing. 104

Models 105

We explored two approaches for predicting pause sites: 1) the simulation of kinetic 106

models as continuous-time Markov processes (based on the kinetic scheme shown in Fig 107

1), and 2) by using a simple naive Bayes classifier. Both models were trained on the 108

aforementioned dataset [28]. 109

The first approach involves stochastic simulation of transcription at the 110

single-molecule level using the Gillespie algorithm [53,54]. This is done in a similar 111

fashion to our previous work [55], but here we have used the model to predict the dwell 112

time at each site instead of mean velocity under force. 113

Preliminaries 114

Let S(l, t) denote a state, where l is the current length of the mRNA and t ∈ Z is the 115

position of the polymerase active site with respect to the 3′ end of the mRNA (Fig 1A). 116

t = 0 when pretranslocated and t = 1 when posttranslocated. t < 0 denotes backtracked 117

states and t > 1 denotes hypertranslocated states. 118

Standard Gibbs free energies ∆rG
0(= ∆G) involved in duplex formation are used to 119

calculate forward and backward translocation rates. These terms are approximated 120

using nearest neighbour models. The total Gibbs energy of state S – arising from 121

nucleotide basepairing and dangling ends – is 122

∆G
(bp)
S = ∆(bp)

gene + ∆
(bp)
hybrid (1)
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where SantaLucia’s DNA/DNA basepairing parameters [56] are used to calculate 123

∆
(bp)
gene and Sugimoto’s DNA/RNA parameters [57] are used for ∆

(bp)
hybrid. For the latter, 124

dangling end energies are estimated as described by Bai et al. 2004 [51] and only apply 125

to the posttranslocated position. ∆G terms are expressed relative to the thermal energy 126

of the system, in units of kBT , where kBT = 0.6156 kcal/mol at T = 310 K. 127

Comparing kinetic models 128

To better understand the mechanisms that govern transcriptional pausing, we not only 129

estimated the kinetic model parameters but also the kinetic model itself. In this section 130

we describe six different model settings. Each model setting has a discrete set of values 131

giving a cross-product of 2× 2× 4× 2× 2× 2 = 128 models to compare. 132

Inclusion of the intermediate state, IS 133

There has been discussion concerning whether there exists an IS that acts as an entry 134

point for backtracking from the elongation pathway [1, 22]. The IS is catalytically 135

inactive and can act as a prolonged pause state regardless of whether backtracking is 136

subsequently instigated [42]. While incorporating this physical process may offer 137

additional explanatory power to the model, two additional parameters kU and kA must 138

be estimated. We therefore compared two models: a general model (IS = 1) where the 139

IS exists and is necessary for backtracking , and a simpler model (IS = 0) where there is 140

no IS and RNAP can backtrack freely (and there are two fewer parameters to estimate). 141

Inclusion of the gating tyrosine, GT 142

The crystal structure of the S. cerevisiae Pol II complex by Cheung et al. 2011 [11] 143

reveals a gating tyrosine that may inhibit backtracking. While back translocation into 144

the S(l,−1) position may be permitted, further backtracking into S(l,−2) is likely 145

delimited by this amino acid. We were interested whether the gating tyrosine plays is an 146

effector of transcriptional pausing, so we compared two models: one model (GT = 1) 147

where RNAP can readily translocate between S(l, 0) and S(l,−1) but translocation 148

between S(l,−1) and S(l,−2) is much less favourable, and a simpler model (GT = 0) 149

where the effects of the gating tyrosine are ignored (same as Fig 1). 150

Estimating the translocation transition state, TS 151

As the transcription bubble migrates along the gene, so too do the basepairing 152

configurations within the DNA/RNA hybrid and the DNA/DNA gene. In order for 153

RNAP to translocate from one position into the next, disruption of one hybrid basepair 154

and one gene basepair may be required. This translocation is assumed to occur through 155

a translocation transition state [55]. Four sequence-dependent methods for estimating 156

this transition state are described (Fig 2A). 157

The DNA/RNA basepairs within the hybrid of the translocation transition state are 158

assumed to be a subset of the basepairs within the two neighbouring states. These 159

basepairs could be the union ∪ or the intersection ∩ of the two sets. Similarly, the 160

DNA/DNA basepairs within the gene are assumed to be either the union ∪ or the 161

intersection ∩ of the DNA/DNA basepairs within the two neighbouring states. 162

This gives a total of four models. For ease of pronunciation, union is denoted by a 163

subscripted U and intersection is denoted by a subscripted I. In the model TS = HIGI , 164

the basepairs within the transition state’s hybrid (H) and gene (G) are each the 165

intersection of the two respective neighbouring states. Following the same notation, the 166

other three models are TS = HIGU , TS = HUGI , and TS = HUGU . These four models 167
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Fig 2. Kinetic model variants and parameters. A: The four translocation
transition state models. Four possible transition states between the backtracked S(l,−1)
and pretranslocated S(l, 0) states are displayed. A transition state can comprise of
hybrid (gene) basepairs that are the union or the intersection of the hybrid: HU and HI

respectively (gene: GU and GI respectively). B: The transcription bubble is described
by three parameters. In this example β1 = 2, h = 10, β2 = 3. C: Gibbs energy landscape
of translocation with the energies of translocation states S (solid lines) and
translocation transition states T (dashed lines) shown. The displayed energies are
sequence-independent in this diagram: the energies from nucleic acid thermodynamic
parameters would be added onto these values in the final calculations. Figure
corresponds to model {IS = 0,GT = 0,BT = 1,HT = 1}. D: State diagrams showing
the relationship between GT and BT, where IS = 0. Dashed line arrows refer to
translocation steps that are augmented by ∆G‡τ−. E: RNA secondary structures can act
as blockades (RB = 1) and prohibit translocation. The effect of λb = 8 nt is shown for
the first 75 nucleotides of the rpoB gene.

describe different mechanisms of translocation and could give different 168

sequence-dependent emergent properties. 169

To determine which, if any, of these four models are the most suitable we estimated 170

the value of TS. 171

Inclusion of RNA secondary structure blockades, RB 172

The simplest models of incorporating RNA secondary structure as a translocation 173

inhibitor make the assumption that transcription is sufficiently slow for mRNA to fold 174

into its minimum free energy structure within the same timescale [1, 44]. As a more 175

complex model, one could invoke a kinetic model of cotranscriptional folding derived 176

from something to the likes of Kinfold [58]. It was of interest how much this first model, 177

and its questionable assumptions, contributed to predictive and explanatory power with 178

respect to transcriptional pausing. We therefore compared two models of RNA folding: 179

the model RB = 0 with no RNA folding and the model RB = 1 where the minimum free 180

energy structure, as predicted by ViennaRNA suite [59,60], is used as a translocation 181

blockade. 182

Modelling off-pathway translocation, BT + HT 183

It is unclear to what extent backtracking BT ∈ {0, 1} and hypertranslocation 184

HT ∈ {0, 1} play roles in transcriptional pausing. While these pathways are certainly 185

real observed phenomena, it may be the case that they are not required to adequately 186

explain pausing. To elucidate this, we explored models in which either backtracking, or 187

hypertranslocation, or both, or neither, are illegal pathways. 188

Parameterisation of the kinetic model 189

In this section we describe how the rates presented in Fig 1 are calculated. The 190

parameters for calculating these rates were in some cases held constant based off 191

previous estimates, while in other cases were estimated from the data. Where estimated, 192

a prior distribution is required. Table 1 summarises these constants and priors. 193

Transcription bubble 194

The transcription bubble is described by three parameters (Fig 2B): the number of 195

unpaired template nucleotides on the 3′ and 5′ ends of the bubble, β1 and β2 196
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Table 1. Summary of parameters used in the kinetic model.

Parameter Units Prior Distribution

Model settings

IS Uniform{0,1}
GT Uniform{0,1}
TS Uniform{HIGI , HIGU , HUGI , HUGU}
RB Uniform{0,1}
BT Uniform{0,1}
HT Uniform{0,1}

Transcription bubble
β1 nt Uniform{0,1,2,3}
h nt Uniform{8,9,10,11,12}
β2 nt Uniform{0,1,2,3}

RNA folding λb nt 8

Translocation

∆Gτ1 kBT -2
∆G‡τ kBT Normal(21, 1)

∆G‡τ− kBT Normal(5, 2)

∆G‡τ+ kBT Normal(5, 2)

Intermediate state
kU s−1 Lognormal(-1.93, 1.54)
kA s−1 Lognormal(-1.93, 1.54)

Cleavage
kcleave s−1 Lognormal(-1.93, 1.54)
λcleave nt 10

Nucleotide
incorporation

kcat s−1 200
kbind µM −1 s−1 1
KD µM 50

[ATP] µM 3152
[CTP] µM 278
[GTP] µM 468
[UTP] µM 567

For full parameter descriptions refer to the corresponding main body subsection. Where
a parameter is estimated, a prior probability distribution is specified, and where a
parameter is held constant, its value is left in place. Normal distribution priors were
used for energy terms while lognormal priors were used for rates (parameterised such
that the mean and standard deviation specified are those in natural log space). See S1
Appendix for justifications behind these prior distributions.

respectively, and the number of paired template nucleotides in the DNA/mRNA hybrid, 197

h [1]. These three parameters are to be estimated from the data and expected to have a 198
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profound effect on the sequence-dependent properties of translocation [51]. 199

RNA folding 200

RNA folding is incorporated into the translocation model in a similar fashion to 201

Tadigotla et al. 2006 [44] where, provided that RB = 1, the RNA minimum free energy 202

(MFE) structure is predicted using the ViennaRNA suite [59,60], and these structures 203

can block translocation. However, the λb nucleotides proximal to the mRNA entry and 204

exit channels respectively are assumed to be unable to adopt a secondary structure due 205

to steric collisions with the enzyme, and are therefore unable to block translocation. 206

Suppose that (r1, r2, . . . rl) is the mRNA sequence of state S(l, t). Let R(i, j), where 207

1 ≤ i ≤ j ≤ l + 1, be the subsequence of nucleotides (ri, . . . , rj−1) which are basepaired 208

in the MFE structure of mRNA subsequence. R(i, i) is the empty set. Let U(l, t) and 209

D(l, t) be the set of basepaired nucleotides in the mRNA, upstream and downstream of 210

RNAP respectively. 211

U(l, t) = R(1, max(1, l + t− h− λb + 1)) (2)

D(l, t) = R(min(l + 1, l + t+ λb + 1), l + 1) (3)

Then, the backwards translocation rate out of state S(l, t) is equal to zero, due to 212

steric collision with upstream RNA, if rl−h−λb+t ∈ U(l, t). Similarly, the forward 213

translocation rate is equal to zero, due to downstream collisions, if rl+t+λb+1 ∈ D(l, t). 214

Translocation 215

The computation of translocation rates invokes transition state theory and is 216

parameterised as an extension to our previous work [55]. Translocation from state S is 217

described by the rate of backward translocation kbck(S) and the rate of forward 218

translocation kfwd(S). kbck and kfwd are therefore functions of S and are 219

sequence-dependent. As the transcription bubble migrates along the gene, the 220

basepairing within the gene and within the hybrid changes with it. 221

Translocation rates are principally computed from thermodynamic properties of 222

nucleic acid duplexes [56,57]. In order for RNA polymerase to translocate forward 223

(backward), two basepairs must be disrupted: (1) the basepair at the downstream 224

(upstream) edge of the transcription bubble, and (2) the basepair at the upstream 225

(downstream) end of the DNA/mRNA hybrid. The strength of basepairing in these 226

regions affects the sequence-dependent rate of translocation. For example in 227

SantaLucia’s parameters [56] 5′ TA/AT is the weakest doublet at −0.94 kBT while 5′ 228

GC/CG is the strongest at ∆G(bp) = −3.64 kBT . A larger energy barrier must be 229

overcome to disrupt the latter. 230

Let T (l, t) be the translocation transition state between states S(l, t) and S(l, t+ 1). 231

Using transition state theory, the rates of forward and backwards translocation out of 232

S(l, t) are 233

kbck(S(l, t)) = A exp{−(∆GT (l,t−1) −∆GS(l,t))} (4)

kfwd(S(l, t)) = A exp{−(∆GT (l,t) −∆GS(l,t))}, (5)

for some pre-exponential constant A, arbitrarily set here to 106 s−1 [55]. Two 234

energetic terms are required to compute these rates; the Gibbs energy of the 235

translocation state ∆GS(l,t), and the Gibbs energy of the translocation transition state 236

∆GT (l,t). We will describe these two components separately. 237
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First, calculating ∆GS(l,t) is straightforward (Fig 2C). It requires one translocation 238

parameter – ∆Gτ1. ∆GS(l,t) is primarily computed from DNA/DNA and DNA/mRNA 239

Gibbs energies ∆G
(bp)
S(l,t) of the state. 240

∆GS(l,t) = ∆G
(bp)
S(l,t) +

{
∆Gτ1 if t = 1

0 if t 6= 1.
(6)

where ∆Gτ1 is a term added onto the Gibbs energy of basepairing of the 241

posttranslocated state. ∆Gτ1 was found to be a necessary parameter to describe 242

elongation sufficiently for the E. coli RNAP and was estimated as ∼ −2 kBT [55] and 243

is set accordingly throughout this study (Table 1). 244

Second, calculating ∆GT (l,t) is more complex (Fig 2C). It requires a method for 245

estimating the nucleic acid energies of the transition state, and three translocation 246

parameters – G‡τ , G‡τ+, and G‡τ−. 247

∆GT (l,t) = ∆G
(bp)
T (l,t) + ∆G‡τ +



∞ if RB = 1 and rl−h−λb+t−1 ∈ U(l, t− 1) (Case 1)

∞ else if RB = 1 and rl+t+λb+1 ∈ D(l, t) (Case 2)

0 else if t = 0 (Case 3)

∆G‡τ+ else if t > 0 (Case 4)

∞ else if t > 0 and HT = 0 (Case 5)

∆G‡τ− else if t < −1 and BT = 1

or t = −1 and BT = 1 and GT = 0 (Case 6)

∞ else if t < −1 and BT = 0

or t = −1 and BT = 0 and GT = 0 (Case 7)

∆G‡τ− else if t = −1 and BT = 0 and GT = 1 (Case 8)

0 else if t = −1 and BT = 1 and GT = 1 (Case 9)

(7)

∆G
(bp)
T (l,t) is computed entirely from nucleic acid parameters [56, 57] and is dependent 248

on the value of TS. See Translocation transition state. 249

∆G‡τ describes the intrinsic activation barrier of translocation that must be 250

overcome in all translocation reactions. It should be set to a magnitude such that 251

forward and backward translocation rates are in the order of 101-102 s−1 [1, 55,61]. 252

The remaining terms in Equation 7 are dependent on the position of RNAP 253

(backtracked, pretranslocated, etc.) and the model itself and are broken down into cases. 254

Case 1: Upstream RNA blockade. When the RNA blockade model is enabled, ie. 255

RB = 1, backward translocation is not permitted if it requires breaking a basepair in 256

the mRNA immediately upstream of the enzyme. In this case, the transition state of 257

such a reaction has a Gibbs energy of infinity, corresponding to a translocation rate of 0. 258

See RNA folding. 259

Case 2: Downstream RNA blockade. Analogous to Case 1. Forward translocation is not 260

permitted if it requires breaking a downstream basepair. 261

Case 3: Main elongation pathway. T (0, l) is the transition state between the pre and 262

posttranslocated states. The total energy of the transition state is ∆G
(bp)
T (0,t) + ∆G‡τ and 263

acts as a baseline for all other activation energies. 264

Case 4: Hypertranslocation. When hypertranslocation is permitted, ie. HT = 1, 265

translocation into or out of a state where t > 0 is further augmented by the 266

hypertranslocation energy barrier ∆G‡τ+. 267
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Case 5: Illegal hypertranslocation. When hypertranslocation is disabled, ie. HT = 0, 268

then activation energies which correspond to hypertranslocation are set to infinity, 269

corresponding to translocation rates of zero. 270

Case 6: Backtracking. When backtracking is enabled ie. BT = 1, then the backtracking 271

activation energy ∆G‡τ− is added onto transition states associated with entering or 272

leaving a backtracked state S(l, t) where t < −1. Furthermore, if the gating tyrosine is 273

omitted from the model, ie. GT = 0, then this additional energy barrier also applies to 274

the transition between S(l, 0) and S(l,−1). See Fig 2D for state diagrams of Cases 6-9. 275

Case 7: Illegal backtracking. When backtracking is disabled BT = 0, then RNAP may 276

not translocate upstream of S(l,−1) so the energy of the transition state is infinity, and 277

the translocation rate is zero. If the gating tyrosine is also omitted from the model 278

GT = 0, then S(l,−1) is also an illegal state. 279

Case 8: Slow backstepping. When the gating tyrosine is modelled, but backtracking is 280

omitted {GT = 1,BT = 0}, translocation between S(l, 0) and S(l,−1) is permitted 281

however is assumed to be a slow reaction and therefore the transition state energy is 282

further augmented by ∆G‡τ−. 283

Case 9: Fast backstepping. When the gating tyrosine and backtracking are both 284

modelled {GT = 1,BT = 1}, translocation between S(l, 0) and S(l,−1) is permitted 285

and is assumed to be a fast reaction no different to that between S(l, 0) and S(l, 1). 286

Backtracking beyond this point is still assumed to be slow (Case 6). 287

In summary, the rates of translocation are calculated using transition state theory 288

(Equations 4 and 5). These rates are are sequence-dependent and are calculated from 289

translocation state energies (Equation 6) and translocation transition state energies 290

(Equation 7). These two terms are dependent on nucleic acid thermodynamic 291

parameters [56,57] and four model parameters – Gτ1, G‡τ , G‡τ−, and G‡τ+. An estimate 292

of the Gibbs energy of the translocation transition state TS is also required (Fig 2A), as 293

well as the values of RB,HT,BT, and GT. 294

Translocation transition state 295

This section describes how ∆G
(bp)
T (l,t) is computed, given the transition state model TS. 296

Suppose that S is the current state. Let bi be a basepair. Then, bi is an element of 297

G(S) if bi is a DNA/DNA basepair in state S, and bi is an element of H(S) if bi is a 298

DNA/RNA basepair in S. 299

Let T (l, t) be the translocation transition state between neighbouring states S(l, t) 300

and S(l, t+ 1). The set of basepairs in H(T (l, t)) and G(T (l, t)) depend on the current 301

transition state model TS. 302

H(T (l, t)) =

{
H(S(l, t)) ∩H(S(l, t+ 1)) if TS = HIGI or TS = HIGU

H(S(l, t)) ∪H(S(l, t+ 1)) if TS = HUGI or TS = HUGU
(8)

G(T (l, t)) =

{
G(S(l, t)) ∩G(S(l, t+ 1)) if TS = HIGI or TS = HUGI

G(S(l, t)) ∪G(S(l, t+ 1)) if TS = HIGU or TS = HUGU
(9)

Once the set of basepairing nucleotides comprising the gene G(T (l, t)) and the 303

hybrid H(T (l, t)) are known, the sequence-dependent Gibbs energy component of the 304

translocation transition state ∆G
(bp)
T (l,t) is readily computed [56,57]. 305
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However, because the number of basepairs in each of the four transition state models 306

TS differ, and their corresponding energies therefore systematically differ, ∆G
(bp)
T (l,t) must 307

be normalised such that the four models achieve the same average translocation rates. 308

This was achieved by calculating the mean value of ∆G
(bp)
T (l,t) across all positions in the 309

E. coli rpoB gene, for each transition state model TS. The normalisation constants were 310

calculated as -15.96 kBT , -11.26 kBT , -13.52 kBT , and -8.819 kBT , for models HIGI , 311

HIGU , HUGI , and HUGU , respectively. 312

For example, in model TS = HIGI , ∆G
(bp)
T (l,t) is equal to −15.96 kBT plus the actual 313

basepairing energies of the transition state computed from nearest neighbour 314

models [56,57]. 315

Intermediate state 316

Entry into the IS can be achieved by forward translocation from S(l,−1), or by 317

inactivation from the pretranslocated state S(l, 0). This first pathway is a 318

sequence-dependent reaction with a rate constant kfwd(S(l,−1)). This second pathway 319

occurs at a constant rate described by parameter kU . Similarly the IS can be exited by 320

backwards translocation into S(l,−1) with rate kbck(S(l, 0)), or by reactivation into 321

S(l, 0) at a constant rate of kA. If IS = 0 the IS is omitted and translocation can 322

directly bypass. See Fig 2D. 323

Cleavage 324

During cleavage, the 3′ end of the mRNA is, through some arbitrary mechanism, 325

truncated. We used a similar model to Lisica et al. 2016 [13], where cleavage is 326

described by two parameters: the first-order rate constant of cleavage kcleave and the 327

maximum number of positions RNAP can be backtracked by in order for cleavage to 328

occur λcleave. 329

Through cleavage, RNAP is restored from a backtracked state to a pretranslocated 330

state. 331

S(l, t) −−−−→
kcleave

S(l + t, 0) for λcleave ≤ t < 0

Nucleotide incorporation 332

Nucleotide incorporation is described by the rate of catalysis kcat, the second order rate 333

constant of NTP binding kbind, and the NTP dissociation constant KD = krel
kbind

, where 334

krel is the rate of NTP release. Partial equilibrium approximations were not made in 335

the NTP binding step. 336

Worked example 337

In this section, the outbound rates of an example state are fully calculated. Suppose 338

that the current state is S(31, 1) and that the template sequence is 339

TACCAAATGAGGTTATGGCTCTTTTTTGCATaagcattcctaaaaccatt

where the uppercase letters denote the first l = 31 positions which have already been 340

transcribed. The next nucleotide to be incorporated onto the mRNA is therefore U. 341

Suppose the kinetic model is 342

{IS = 0,GT = 1,TS = HIGI ,RB = 1,BT = 1,HT = 1}. Thus, the state pathway is 343
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· · ·�S(31, 0)
kfwd(S(31,0))

�
kbck(S(31,1))

S(31,1)
kfwd(S(31,1))

�
kbck(S(31,2))

S(31, 2)� · · ·

kbindKD
↑↓ kbind[UTP ]

SN (31, 1)

↓
· · ·

Assume that the transcription bubble is described by h = 11, β1 = 2, and β2 = 0. 344

The baseline Gibbs energy barrier ∆G‡τ = 21 kBT and the hypertranslocation barrier 345

∆G‡τ+ = 2 kBT . All other parameters used in this example are specified in Table 1. 346

In order to stochastically sample the next state (using the Gillespie 347

algorithm [53,55]), three rates must be calculated. 348

First, computing the rate of NTP binding is straightforward. 349

kbind[UTP ] = 1 µM−1 s−1 × 567 µM

= 567 s−1

Second, because RB = 1, in order to evaluate kbck(S(31, 1)) we must first compute 350

the upstream mRNA secondary structure to check for steric collisions. Using Equation 351

2, the first 13 nucleotides of the mRNA strand are free to fold. 352

U(31, 1) = R(1,max(1, l + t− h− λb + 1))

= R(1,max(1, 31 + 1− 11− 8 + 1))

= R(1, 14)

= {r2, r3, r4, r11, r12, r13}

The final calculation in the above equation describes an RNA hairpin and was 353

performed using the ViennaRNA suite [59]. Now, we can compute the Gibbs energy of 354

the transition state for this backward translocation, and its associated rate constant 355

∆GT (31,0) =∞ (Equation 7)

∴ kbck(S(31, 1)) = 0 s−1 (Equation 4)

Backwards translocation is impossible due to steric collisions with the RNA hairpin 356

(because of Equation 7, Case 1: RB = 1 and r13 ∈ U(31, 1)). 357

Third, because RB = 1, in order to evaluate kfwd(S(31, 1)) the downstream mRNA 358

structure must be approximated. As the current state is not backtracked, there is no 359

downstream mRNA free to fold. 360

D(31, 1) = R(min(l + 1, l + t+ λb + 1), l + 1) (Equation 3)

= R(min(32, 31 + 1 + 8 + 1), 32)

= R(32, 32)

= {}

It is clear that Case 2 of Equation 7 will fail and Case 5 will instead apply (t > 0 and 361

HT = 1). Therefore, in order to calculate the rate of hypertranslocation, we must first 362

compute the Gibbs energies of S(31, 1) and T (31, 1). The former term has Gibbs energy 363
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∆GS(31,1) = ∆G
(bp)
S(31,1) + ∆Gτ1 (Equation 6)

= −89.81 kBT − 2 kBT

= −91.81 kBT

where ∆G
(bp)
S(31,1) is computed using DNA/DNA and DNA/RNA thermodynamic 364

parameters [56,57], including the estimated dangling end contribution. According to the 365

TS = HIGI transition state model, the transition state is comprised of the basepairs 366

which exist in both S(31, 1) and S(31, 2) (ie. the intersection). Given the values of 367

β1, β2, and h, the DNA/DNA gene basepairs are 368

G(S(31, 1)) = {b1, . . . , b19, b33, . . . , b50}
G(S(31, 2)) = {b1, . . . , b20, b34, . . . , b50}
∴ G(T (31, 1)) = G(S(31, 1)) ∩G(S(31, 2))

= {b1, . . . , b19, b34, . . . , b50}

Similarly, the DNA/RNA hybrid basepairs are 369

H(S(31, 1)) = {b22, b23, . . . , b31}
H(S(31, 2)) = {b23, . . . , b31}
∴ H(T (31, 1)) = G(S(31, 1)) ∩G(S(31, 2))

= {b23, . . . , b31}

Therefore, by applying DNA/DNA parameters to G(T (31, 1)), the DNA/RNA 370

parameters to H(S(31, 2)), and the normalisation constant of TS = HIGI , the Gibbs 371

energy of the transition state is 372

∆GT (31,1) = ∆G
(bp)
T (31,1) + ∆G‡τ + ∆G‡τ+ (Equation 7, Case 4)

= −101.58 kBT + 21 kBT + 2 kBT

= −78.58 kBT

We can now calculate the forward translocation rate using Equation 5 373

kfwd(S(31, 1)) = A exp{−(∆GT (31,1) −∆GS(31,1))}
= 106 s−1 exp{−(−78.58 kBT −−91.81 kBT}
= 1.80 s−1

Therefore, the three rate constants leading out of S(31, 1) are 374

kbind[UTP ] = 567 s−1

kbck(S(31, 1)) = 0 s−1

kfwd(S(31, 1)) = 1.80 s−1
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Binary classification of pause sites 375

Pause site prediction is treated as a binary classification problem. Let 376

X = (X1, X2, . . . , XL) be the nucleotide sequence of a gene of length L. Site l can be 377

classified as a pause, Cl = P, or as not being a pause, Cl = N . 378

Two binary classifiers are described. First, the kinetic model classifier (KMC) 379

predicts pause sites based off the simulated time to catalysis of each genomic position. 380

Second, the naive Bayes classifier (NBC) predicts pause sites using a simple 381

nucleotide-windowed statistical technique. 382

19,960 pause sites from across the entire E. coli genome were identified in a high 383

throughput in vivo analysis [28]. This dataset contains the “known” P and N 384

classifications which are used to train and test the two classifiers. Using a full E. coli 385

genome sequence (Accession: NC 000913), we randomly partitioned these genes into a 386

training set and a test set. Due to computational limitations of the KMC, the two 387

classifiers are trained on 50 genes and tested on the remaining 2403 genes. An 388

additional 100 nt were included at the upstream and downstream ends of the translated 389

region of each gene to account for boundary effects. 390

Classifiers are assessed by the area under the curve (AUC) of a receiver operating 391

characteristic curve (ROC curve). The AUC quantifies the amount of information in a 392

classifier and accounts for true positive and false positive rates simultaneously. AUC is 393

bounded in the range [0, 1]. If the AUC is less than 0.5, then the classifier provides no 394

information and is no better than random, while a perfect classifier would have an AUC 395

of 1.0. See the review by Fawcett 2006 [62] for an introduction to ROC curves. 396

Kinetic model classifier 397

Classifying site Xl into class P or N is achieved by simulating the kinetic model using 398

the Gillespie algorithm [53,55]. Let fP(l) be the median time that the length of the 399

mRNA is exactly l nucleotides in length. 400

fP(l) =
N

median
i=1

{Mi,l}. (10)

where M is an N × L matrix, where entry (i, l) is the total time that the mRNA 401

contains exactly l nucleotides during simulation i, and N is the number of simulation 402

trials performed on each gene (N = 100). 403

Site l is classified as a pause site if and only if fP(l) > θ for some threshold θ. 404

Applying changes to the value of θ is required to build a ROC curve. 405

Naive Bayes classifier 406

The naive Bayes classifier is a simple probabilistic classifier derived from Bayes’ 407

theorem [63] and makes a suitable bioinformatics algorithm for sequence-based 408

prediction [64–66]. Classification of site l into P or N is computed through comparison 409

of the respective log posterior probabilities: 410
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gP(l) = log

{
P (Cl = P|X)

P (Cl = N|X)

}
(11)

= log

{
P (X|Cl = P)P (C = P)

P (X|Cl = N )P (C = N )

}
(12)

= (logP (C = P)− logP (C = N ))

l+w2∑
j=l−w1

logP (Xj |Cl = P)− logP (Xj |Cl = N ) (13)

The naive property of the NBC invokes the assumption of independence between 411

sites, allowing the likelihood to be computed as the product of likelihoods P (Xj |Cl = c) 412

across all sites in a window around l, where the window size is w1 + 1 +w2 (for w1 = 10 413

and w2 = 4). Log probabilities are trained using Laplace smoothing. 414

Site l is classified as a pause if gP(l) > θ for some θ. 415

Results 416

Searching the space of kinetic models and parameters 417

Our aim was to 1) use Bayesian inference to select the best of 128 models (Fig 3); and 418

2) estimate the parameters. This was achieved using the rejection approximate Bayesian 419

computation algorithm (R-ABC) [67,68]. 420

Fig 3. Comparison of kinetic models. Each square in the grid corresponds to one
of the 128 kinetic models. For example, the grid square indicated with a star
corresponds to the kinetic model which includes the intermediate state, does not model
the gating tyrosine, uses the HIGU model of translocation, employs the RNA blockade
model, and includes hypertranslocation but not backtracking. This model is denoted by
{IS = 1,GT = 0,TS = HIGU ,RB = 1,HT = 1,BT = 0}. Every square is shaded with
opacity proportional to its kinetic model’s posterior probability and is labelled with this
probability.

The kinetic-model-classifier is trained under a Bayesian framework: therefore the 421

goal is not to optimise the AUC but rather sample parameters and models from the 422

posterior distribution. However only parameters and models whose simulated value of 423

1-AUC is less than threshold ε are accepted into the posterior distribution (S2 424

Appendix). 425

The results of this analysis are displayed in Fig 3, 4, and 5. These results show that 426

the model with the highest posterior probability (of 0.155) is the model denoted by 427

{IS = 0,GT = 0,TS = HIGI ,RB = 1,HT = 1,BT = 0}. The geometric median (ie. a 428

point-estimate) of the posterior distribution has an AUC of 0.730 on the test set (and 429

0.746 on the training set), suggesting that while the kinetic model captures a reasonable 430

amount of information about transcriptional pausing, it is still a fairly weak classifier. 431

Assessment of feature importance 432

Our analysis suggests that TS is a critical model setting while h and β2 are critical 433

parameters. There is evidence that HT and RB may also be critical. We wanted to 434

confirm that these variables are indeed important for the prediction of pause sites, and 435

to quantify how much predictive power is contained in each variable. To do this, we 436
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Fig 4. Posterior distribution of kinetic model parameters. Posterior
distributions (coloured bars) and prior distributions (black curves) for the 9 estimated
parameters are shown. Posterior distributions reported are conditional on the models
which use the parameters. For example ∆G‡τ+ is conditional on HT = 1, while kU and
kA estimates are conditional on IS = 1. The geometric median point-estimate, the 95%
highest posterior density (HPD) interval (calculated using Tracer 1.6 [69]), and
posterior distribution sample size n are displayed above each plot (3 sf). These results

reveal that h, β2, ∆G‡τ , and ∆G‡τ+ are informed by the pause site data, while the
remaining parameters are largely uninformed.

Fig 5. Classification of pause sites. A: A ROC curve comparing the predictive
power of the kinetic model classifier (KMC) and the naive Bayes classifier (NBC).
Sequence logos built using B: known pause sites, C: the subset of known pause sites
which are correctly classified by the KMC (true positives), and D: the subset of known
pause sites which are not classified as pause sites by the KMC (false negatives). The
true positives and false negatives collectively comprise the true pause sites. The
nucleotide window used by the NBC and the estimated hybrid length are displayed. All
logos are generated using WebLogo [70] and trained on test set sequences.

recomputed the AUC of models, by sampling from the posterior distribution, using 437

samples that differ in the described variables (Table 2). 438

These results confirm that TS, h, and β2 are indeed critical variables. In the most 439

extreme case, changing the transition state model TS from HIGI to HUGU reduced the 440

AUC from 0.73 to 0.43; the latter corresponding to a predictive model that is worse 441

than assigning pause sites at random. In the least extreme case, changing h from 11 nt 442

to 10 nt reduced the AUC from 0.73 to 0.70. 443

Whereas, adjusting sampling from the posterior distribution, conditional on HT and 444

RB, did not yield any significant AUC changes across the four pairwise combinations of 445

HT and RB (other than a minor decrease in AUC for {HT = 0,RB = 1}). It is therefore 446

likely that these two model settings are not offering any further predictive power. 447

Naive Bayes model 448

We trained a naive Bayes classifier to predict pause sites using the same dataset [28] as 449

the kinetic model. This model enabled an estimation of the amount of information 450

available in the data, without the constraint of being physically plausible. 451

Similar to the kinetic model, we performed a ROC analysis on the NBC to evaluate 452

how accurately it can predict pause sites (Fig 5). The AUC of the NBC was 0.888 on 453

the test set (and 0.895 on training set), suggesting that the sequence within this window 454

contains a large amount of information about transcriptional pausing, even though the 455

sites are assessed independently. This model has significantly better prediction power 456

than the kinetic model. The extent of overfitting is minimal. 457

Discussion 458

In this study we inferred structural, kinetic, and thermodynamic parameters (Fig 4) of 459

kinetic models for the prediction of transcriptional pausing. We also inferred the kinetic 460

model itself to provide evidence for or against various kinetic model variants that have 461

been described in the literature (Fig 3). The posterior distribution of kinetic models is 462

interpreted using the Bayes factor, K, following the general guidelines by Kass and 463
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Table 2. Effects of critical parameters and model settings on AUC.

Variable(s) Value(s) AUC HPD

Transition state model, TS

HIGI 0.729* (0.725, 0.731)
HIGU 0.621 (0.61, 0.637)
HUGI 0.681 (0.665, 0.687)
HUGU 0.425 (0.401, 0.477)

Hybrid length, h

8 0.594 (0.59, 0.597)
9 0.615 (0.601, 0.618)
10 0.703 (0.696, 0.701)
11 0.729* (0.725, 0.731)
12 0.641 (0.639, 0.643)

Downstream bubble length, β2

0 0.729* (0.725, 0.731)
1 0.687 (0.683, 0.689)
2 0.67 (0.667, 0.672)
3 0.644 (0.64, 0.646)

Hypertranslocation and RNA folding, (HT,RB)

(0, 0) 0.729 (0.727, 0.731)
(0, 1) 0.727 (0.727, 0.728)
(1, 0) 0.729 (0.723, 0.73)
(1, 1) 0.729 (0.723, 0.731)

The effects which these parameters and model settings have on the AUC of the model
are measured using the test set (3 sf). For HT and RB, the kinetic model is sampled
from the posterior distribution, conditional on the values of these model settings. For
TS, h, and β2, as these values have posterior probabilities of 1.0, the kinetic model is
instead sampled from the posterior distribution such that its value of the respective
parameter is modified. These are compared with the unaltered baseline posterior
distribution, which is indicated with a *. The median and 95 % highest posterior
density (HPD) interval of the simulated AUC are displayed.

Raftery 1995 [71]. We compared the predictive power of the kinetic models to that of a 464

statistical technique: the naive Bayes classifier (Fig 5). 465

These results suggest that the translocation transition model TS and structural 466

parameters governing the transcription bubble (h and β2) are heavily informed by the 467

pause site data and are important parameters for the prediction of pause sites. The 468

relative Gibbs energies of the pre and posttranslocated state, and the rate of 469

translocation between the two, is the primary effector of pausing. In contrast, the data 470

tells us little about the remaining parameters and model settings. Overall, the kinetic 471

model contains a moderate degree of predictive power (AUC = 0.73), but is severely 472

lacking compared with the NBC (AUC = 0.89). 473

The structure of the transcription bubble strongly affects 474

pausing 475

We estimate that the transcription bubble contains an ĥ = 11 nt hybrid and a β̂2 = 0 nt 476

gap between the RNAP and the downstream gene region (Fig 4). These estimates each 477

have a posterior probability of 1.00, indicative of high certainty that these are the best 478

estimates for the data. In contrast the gap between the RNAP and the upstream 479

dsDNA β̂1 was not informed by the data. 480

Furthermore, the translocation transition model TS is an extremely important model 481

setting. We estimate that the best transition model estimate is T̂S = HIGI (Fig 3). 482
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This variant has a marginal posterior probability P (TS = HIGI |D) = 1.0, indicating 483

high confidence that this is the preferred transition state model. Our critical parameter 484

analysis reveals that by changing the value of TS, while holding all else constant, in the 485

extreme case the AUC declines from 0.73 down to 0.48 (Table 2). 486

Under the HIGI model, the transition state between two translocation states 487

contains the intersection between the two sets of DNA/RNA hybrid basepairs, and the 488

intersection between the two sets of DNA/DNA gene basepairs. 489

This model corresponds to a physical mechanism of translocation akin to a bubble 490

melting process (see Fig 2A). First, one DNA/DNA basepair within the gene and one 491

DNA/RNA basepair within the hybrid break, eg. due to thermal collisions. These two 492

bond breaking events could happen in any order and facilitate the formation of the 493

translocation transition state. Assuming that β1 = 0, h = 11, and β2 = 0 in a regular 494

translocation state, the effective values of these parameters would be β1 = 1, h = 10, 495

and β2 = 1 in the transition state. The transcription bubble is therefore one nucleotide 496

wider (from 11 to 12 nucleotides). Second, RNAP is able to diffuse into this opening 497

and, in no specific order, one basepair within the gene and one basepair within the 498

hybrid form. This completes the translocation step. 499

Examining the sequence logo generated from known pause sites (Fig 5B), we can see 500

that the nucleotides 1-2 positions proximal to the pause site are important, as are the 501

two nucleotides 9-10 positions upstream from the pause site. Pausing usually occurs at 502

a cytidine or uridine and the incoming NTP is usually guanosine. Comparing this with 503

the sequence logo generated from the pause sites which were correctly classified by the 504

kinetic model (Fig 5C), we can see that some of this pattern is captured by the kinetic 505

model. The two nucleotides 9-10 positions upstream from the pause site exist at the 506

upstream end of the h = 11 nt DNA/RNA hybrid, and the two nucleotides 1-2 positions 507

downstream from the pause site exist β2 = 0 nt downstream of the hybrid within the 508

DNA/DNA gene. These two regions constitute two basepair doublets and, under the 509

TS = HIGI model, must be broken to facilitate forward translocation into the 510

transition state and therefore into the posttranslocated position. These two doublets 511

tend to be G-C rich, which, under the nearest neighbour models, correspond to stronger 512

basepairs that require more energy to break than A-U or A-T basepairs [56,57]. 513

However, the kinetic model is unable to explain pause sites which do not have strong 514

basepairs at the upstream end of the hybrid. The kinetic model also places too much 515

weight on the position two nucleotides downstream from the pause site (position 23 in 516

the sequence logos). The reasonably large differences in positional information between 517

these two sequence logos suggests that the kinetic model is unable to model pausing 518

when the sequence composition even slightly deviates from this motif. 519

Estimates of β1 and β2 are consistent with previous estimates from crystal 520

structures [4–7]. However, based off these same structures the pretranslocated hybrid 521

length is estimated as 10 bp, which is inconsistent with our estimate of ĥ = 11 bp. This 522

is a peculiar contradiction, especially considering that our Bayesian protocol is 100% 523

certain that ĥ = 11 bp, so it may be more suitable to consider h not as being the true 524

hybrid size but rather the effective hybrid size during transcription. 525

Overall, there is strong evidence that by having accurate estimates for the 526

parameters which govern the size of the transcription bubble, and a good model of the 527

translocation transition state, the sequence-specific properties that emerge are 528

important for the prediction of pause sites. If two RNA polymerases were to have 529

different transcription bubble dynamics, they would behave quite differently on the 530

same sequence. 531
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Backtracking and the intermediate state are not necessary to 532

predict pausing 533

By combining three model variants – BT, GT, and IS – in a combinatorial fashion, eight 534

plausible variants of transcriptional pausing, through off-pathway upstream events, were 535

compared. Backtracking models were examined, and the Gibbs energy barrier of 536

backtracking ∆G‡τ− and the rate of RNA cleavage kcleave were estimated. The 537

hypothesised role the gating tyrosine plays in eliciting pauses, by permitting rapid 538

translocation into S(l,−1) while delimiting further backstepping, was incorporated with 539

the backtracking model (Fig 2D). Catalytically inactive intermediate state models were 540

assessed and the rates of entry kU and exit kA to and from this state were estimated. 541

And yet, none of these eight variants were notably superior in their ability to predict 542

the locations of pause sites. These three mechanisms have marginal posterior 543

probabilities ranging from 0.44 to 0.69 (Fig 3), to be interpreted as ‘not worth more 544

than a bare mention’ [71]. The four related parameters – ∆G‡τ−, kcleave, kU , and kA – 545

have posterior distributions almost the same as their prior distributions, consistent with 546

the data providing no information about these parameters. 547

A posterior probability of intermediate magnitude is indicative of the model setting 548

being neither necessary nor detrimental. Instead the feature is unnecessary. 549

Our findings are consistent with the hypothesis that the relative stability between 550

the pre and posttranslocated states chiefly facilitates the occurrence of pausing [21,51], 551

as opposed to the stability of those relative to the backtracked states [18,44,72]. Rather, 552

most pauses are brief (averaging 3 s) and do not involve backtracking [42]. It is likely 553

that backtracking occurs on a timescale so slow [73] that by the time RNAP has had 554

sufficient time to sample the energy landscape of backtracked states, the pause has 555

already begun, and therefore these energies are of little use for predicting the frequency 556

of pausing. 557

Pauses are hypothesised to occur largely through the conformational rearrangement 558

of the enzyme into a catalytically inactive form – the IS [1, 18–22]. This may occur in a 559

sequence-dependent manner where weaker DNA/RNA hybrids are more likely to invoke 560

this transition [18,19,34]. The sequence-independent model of this transition used in 561

this study was also of no use for predicting the locations of pause sites. 562

Although, backtracking, the gating tyrosine, and the IS were not able to explain the 563

frequency of pausing, they may be able to explain the duration of pausing. Treating this 564

system as a regression problem – by fitting to known pause durations – as opposed to a 565

classification problem – where pausing is viewed as a binary trait – may offer further 566

insights into these model features. 567

Hypertranslocation and mRNA folding are not necessary to 568

predict pausing 569

Our initial analysis suggested that hypertranslocation HT could be a necessary model 570

feature; with marginal posterior probability P (HT = 1|D) = 0.93 – corresponding to a 571

Bayes factors of 13.3 – therefore providing ‘positive evidence’ that ĤT = 1 [71]. 572

Accordingly, the posterior distribution of hypertranslocation Gibbs barrier ∆G‡τ+ is 573

quite different to its prior distribution (Fig 4). 574

There was also evidence that incorporating RNA folding into the model may be 575

necessary; P (RB = 1|D) = 0.87 and a Bayes factor of 6.7; ‘positive evidence’ [71]. In 576

the RB = 1 model, upstream (downstream) RNA secondary structures inhibit backward 577

(forward) translocation. 578

However, when these two model settings were systematically evaluated on the test 579

set, they were not found to be necessary. Subsampling from the posterior distribution 580
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conditional on HT and RB did not yield any significant change in AUC across the four 581

pairwise combinations of HT and RB, aside from a trivial decrease in AUC for 582

{HT = 0,RB = 1} (Table 2). It is therefore likely that although HT = 1 and RB = 1 583

are associated with higher posterior probabilities, the model which has these settings 584

enabled {HT = 1,RB = 1} does not contain any predictive power beyond that of 585

{HT = 0,RB = 0}, so the hypertranslocation and RNA blockade models are of little to 586

no use for the prediction of pause sites. 587

These results are consistent with the findings of Levint et al. 1987, who found no 588

correlation between the locations of pause sites and upstream RNA secondary 589

structures [74], and Dalal et al. 2006 [75], who used optical tweezers to inhibit mRNA 590

folding during transcription, and found that the kinetics of pausing were not affected by 591

the perturbation. 592

This is not to say that these mechanisms are not involved in pausing. RNA folding 593

and hypertranslocation cooperatively induce pausing at the his leader pause site (a 594

Class I pause), for instance. This is achieved by direct interaction between an upstream 595

hairpin and the RNAP [18]. However, on average, the described models of RNA folding 596

and hypertranslocation are of no assistance for the prediction of pause sites. 597

Predicting and explaining transcriptional pausing 598

The transcription kinetic model successfully predicted pause sites (and non-pause sites) 599

to a moderate level of accuracy (AUC = 0.73). The sequence-dependence of the kinetic 600

model emerges primarily from the Gibbs energies of basepairing. Therefore the AUC is 601

approximately a measure of how much information basepairing thermodynamics have 602

about transcriptional pause sites. 603

However, the NBC was significantly more successful at predicting the locations of 604

pause sites (AUC = 0.89). While there may exist other machine learning techniques 605

that perform even better than the NBC [50], this provides a lower-bound of the amount 606

of information contained in the data. With a sufficient understanding of the kinetics of 607

transcription, the kinetic model classifier should perform at least as well as the NBC did. 608

Gibbs energies of basepairing can only take the kinetic model so far. Physically 609

informed features that could extract the full potential of the kinetic model classifier 610

include: the effects of double-stranded DNA bending upstream and downstream of the 611

polymerase [19, 43]; a sequence-dependent model of entry into the IS [18, 19, 34]; specific 612

interactions between the DNA/RNA hybrid and the protein [22]; effects that the 613

promoter have on the way the polymerase interacts with the gene [76]; differential rates 614

of NTP binding, release, and catalysis across the four nucleotides [46]; effects that the 615

nucleotide context around the 3′ mRNA have on the rates of NTP incorporation [77]; or 616

the effects of local NTP depletion [78]. A mathematical understanding of such processes, 617

among others, may be necessary for the kinetic model to perform as well as a sequence 618

motif and bridge the gap between the two sequence logos (Fig 5). 619

Conclusion 620

In this study, we quantified the predictive power that standard kinetic models of 621

transcription elongation have with respect to identifying transcriptional pause sites. 622

Transcriptional pausing is not sufficiently understood to capture the signal from the 623

data as thoroughly as a non-physical statistical model. We suggest that the relative 624

stability between the pre and posttranslocated states, and the estimated energy 625

required to translocate between them, is the primary effector of pausing. Backtracking, 626

hypertranslocation, RNA blockades, and the catalytically inactive intermediate state are 627
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not required to explain whether pausing occurs, however they may explain pause 628

duration. 629

Supporting information 630

S1 Appendix. Prior distribution justifications. Brief justifications for the prior 631

distributions presented in Table 1. 632

S2 Appendix. Approximate Bayesian Computation. A description of the 633

R-ABC algorithm for the inference of parameters and models. 634
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