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Abstract 23 

Drug repurposing, identifying novel indications for drugs, bypasses common drug 24 
development pitfalls to ultimately deliver therapies to patients faster. However, 25 
most repurposing discoveries have been led by anecdotal observations (e.g. 26 
Viagra) or experimental-based repurposing screens, which are costly, time-27 
consuming, and imprecise.  Recently, more systematic computational 28 
approaches have been proposed, however these rely on utilizing the information 29 
from the diseases a drug is already approved to treat. This inherently limits the 30 
algorithms, making them unusable for investigational molecules. Here, we 31 
present a computational approach to drug repurposing, CATNIP, that requires 32 
only biological and chemical information of a molecule. CATNIP is trained with 33 
2,576 diverse small molecules and uses 16 different drug similarity features, 34 
such as structural, target, or pathway based similarity. This model obtains 35 
significant predictive power (AUC = 0.841). Using our model, we created a 36 
repurposing network to identify broad scale repurposing opportunities between 37 
drug types. By exploiting this network, we identified literature-supported 38 
repurposing candidates, such as the use of systemic hormonal preparations for 39 
the treatment of respiratory illnesses. Furthermore, we demonstrated that we can 40 
use our approach to identify novel uses for defined drug classes. We found that 41 
adrenergic uptake inhibitors, specifically amitriptyline and trimipramine, could be 42 
potential therapies for Parkinson’s disease. Additionally, using CATNIP, we 43 
predicted the kinase inhibitor, vandetanib, as a possible treatment for Type 2 44 
Diabetes. Overall, this systematic approach to drug repurposing lays the 45 
groundwork to streamline future drug development efforts. 46 
 47 
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Introduction 48 

With over $800 million spent bringing a single drug to market over the course of 49 

15 years, drug development has remained a costly and time-consuming affair1. In 50 

response, there has been an increase in interest in drug repurposing, the 51 

identification of novel indications for known, safe drugs. Successes in this area 52 

have been seen in the past, most notably in sildenafil (e.g. Viagra), which was 53 

originally intended to treat hypertension and angina pectoris but was later 54 

repurposed to treat erectile dysfunction. Other examples of compounds 55 

repurposed for new therapeutic applications include minoxidil2 and raloxifene3, 56 

which are now used to treat androgenic alopecia and osteoporosis, respectively. 57 

However, most of these repurposing opportunities were discovered through 58 

inefficient approaches including anecdotal observations or hypothesis-driven 59 

investigations, and a more efficient approach could lead to many more 60 

repurposing opportunities.  61 

 62 

Computational approaches for repurposing drugs are appealing in that they can 63 

be systematically and quickly applied to many drugs at a low cost compared to 64 

their experimental counterparts. One computational approach that has proven to 65 

be invaluable in other areas of the drug development pipeline is machine 66 

learning. Machine learning is the use of computational algorithms to learn from 67 

available data to make novel predictions and gain new insight. Using this 68 

technique, one can create unbiased algorithms to match seemingly disparate 69 

drugs by comparing their common features4, such as clinical indication, toxicity 70 

profile5 or therapeutic target6,7. Previously, our lab used a ‘similarity’ approach, 71 

leveraging the principle that similar drugs tend to have similar characteristics, to 72 

predict a drug’s target by investigating the known targets of other drugs that were 73 

predicted to be “similar” to the investigated drug based on shared features6. We 74 

found that DRD2, a dopamine receptor, was the predicted target for the 75 

compound ONC201. After identifying and experimentally validating this target, 76 

clinical trials were shifted to focus on gliomas, which are now successfully 77 

completing phase two trials at the time of this publication8. The approach of 78 
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leveraging drug similarity could immensely aid drug repurposing efforts with the 79 

appropriate data.  80 

 81 

Others have successfully used this ‘similarity’ approach to repurpose drugs and 82 

demonstrated high predictive power when tested against FDA approved drug-83 

diseases9. However, these methods have primarily linked drugs together using a 84 

disease-centric approach instead of using features related to the drug itself (i.e. 85 

drug-centric). These repurposing opportunities are identified by predicting 86 

diseases similar to the diseases a drug is already known to treat. Disease 87 

similarities can be based on semantic, pathophysiological, or clinical similarities 88 

related to the drug’s clinical indication. For example, PREDICT, a repurposing 89 

method developed by Gottlieb et al.10, exploits the semantic similarity of disease 90 

terms as a form of disease-disease similarity. Such approaches, while reliable, 91 

limit the scope of the repositioning effort in several ways. First, the vast majority 92 

of small molecules never reach clinical approval and would be overlooked in this 93 

type of analysis. Second, the use of a disease-centric approach biases 94 

repurposing predictions toward exclusively similar clinical diseases (i.e.: cancer 95 

drugs to other cancer types) 11. We postulated that using solely drug information, 96 

such as chemical and biological features, would be a more effective and broader 97 

approach to drug repurposing. 98 

 99 

Here, we propose a novel approach to drug repurposing, which operates by a 100 

platform we call, Creating A Translational Network for Indication Prediction 101 

(CATNIP). CATNIP is a machine-learning algorithm that learns to predict whether 102 

two molecules share an indication based solely on the drug’s chemical and 103 

biological features, using 2,576 unique drugs. The systematic application of 104 

CATNIP to molecule pairs creates a network with ~4.6 million nodes that can 105 

then be used to identify potential drug repurposing opportunities. Because 106 

CATNIP uses chemical structure and targets as key features, it can effectively 107 

bridge between different therapeutic indications. In this report, we have identified 108 

various candidate drug classes that are predicted to have therapeutic activity 109 
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outside of their intended indication in diseases such as Parkinson’s disease and 110 

Type 2 Diabetes.  111 

 112 

Results 113 

  114 

Variance in drug indication nomenclature can be standardized 115 

We collected a wide variety of drugs (N=3,066, including both approved and 116 

investigational molecules) with a diverse set of indications to ensure that our drug 117 

network covered a large portion of the known chemical space. A subset of these 118 

drugs (2,576 FDA approved drugs and 2,492 indications taken from DrugBank12) 119 

were used as a gold-standard of drug-indication associations in the training set 120 

for the model. Disease names are often not standardized, which can lead to 121 

many diverse names for the same disease. This problem leads to many drug 122 

pairs appearing to not have shared indications, when they are associated with 123 

two different names for the same disease. To address inconsistencies in 124 

nomenclature for drug indications, such as “prostate carcinoma” and “carcinoma 125 

of the prostate”, the MetaMap tool13 was applied (Methods). Using MetaMap, we 126 

clustered the 2,492 DrugBank indications into 1,042 standardized indications. A 127 

multitude of indication types were included in this standardization including, but 128 

not limited to, oncological, mental health, and neurological diseases (Figure 129 

S1A). Our rigorous standardization of drug indications ensured an accurate 130 

training set, allowing for the discovery and modeling of drug-indication 131 

relationships.  132 

 133 

Drug pairs sharing indications have other similar characteristics 134 

We hypothesized that pairs of drugs that shared at least one indication would 135 

have other similar drug characteristics (Table S1). To test this hypothesis, we 136 

integrated the similarity of two drugs across chemical and biological drug 137 

properties, and created a computational model to predict if two drugs will share 138 

an indication (Figure 1). All 16 of the drug similarity features (Table S1) collected 139 

could significantly distinguish between drug pairs known to share an indication 140 
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and those not known to share an indication (Figure S2-5). For example, we 141 

found that drug pairs with a shared clinical indication, according to their listed 142 

DrugBank indications, tended to have significant overlap in targets (D-statistic = 143 

0.168, p-value < 0.001, Figure S2A). The feature which best discriminated 144 

between drug pairs that shared a clinical indication versus drug pairs that do not 145 

was the similarity between the KEGG pathways that each drug’s targets are 146 

involved in (D-statistic = 0.241, p < 0.001, Figure S4C). Pathway similarity was 147 

calculated as the Jaccard Index between the KEGG pathways that contain each 148 

drug’s gene targets (Methods).  The difference in effect size between the target 149 

similarity and the pathway similarity (D-statistic= 0.168 vs 0.241, respectively) 150 

indicates that the drugs do not necessarily have to target the same exact genes, 151 

but rather the same biological pathway, in order to share a clinical indication. 152 

Additionally, we found that drug pairs that share an indication had a more similar 153 

chemical structure than drug pairs that did not share an indication (D-statistic = 154 

0.105, p-value < 0.001, Figure S5A). Overall, these features seem to indicate 155 

sufficient power in differentiating drugs that share and do not share indications, 156 

which we hypothesized can then be leveraged to create a predictive model.  157 

 158 

Drug pairs that share indications can be predicted by model  159 

Using these diverse drug properties as features we trained a Gradient Boosting 160 

model to predict if two drugs share a clinical indication. A Gradient Boosting 161 

model showed superior results when compared with other algorithms (Methods, 162 

Table S2). The model output is a drug similarity score (hereby referred to as a 163 

“CATNIP score”), which allows us to classify drug pairs that share clinical 164 

indications. We performed a 5-fold cross-validation analysis and achieved 165 

significant predictive performance with an area-under-the-receiver-operator curve 166 

(AUC) of 0.841 (Figure 2A).  We confirmed the statistical significance of our 167 

model with a precision-recall curve (PRC) because of the class imbalance in our 168 

dataset between drug pairs that share indications against those that do not 169 

(23,840 Shared, 1,299,623 Not Shared). When compared to random predictions, 170 
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our model showed significant improvement (0.189 vs 0.0184 area-under PRC, 171 

Figure S6).  172 

 173 

It has been shown before that structurally similar drugs have a high probability of 174 

treating the same indication15. However, there are many examples of drug pairs 175 

that defy this rule. For example, tamoxifen16 and anastrozole17 are structurally 176 

dissimilar compounds (Dice similarity = 0.372) that treat the same indication 177 

(Metathesaurus term: Cancer, Breast). To ensure that our model could 178 

accurately classify drug pairs that share an indication but are not structurally 179 

similar, we recalculated all performance metrics to control for high and low 180 

structural similarity. High performance was retained under both of these 181 

conditions (high structural similarity AUC = 0.885, low structural similarity AUC = 182 

0.828 AUC, Figure 2A). These performance metrics confirm that our model is 183 

robust enough to predict if a drug pair will share an indication with or without 184 

structural similarity.  185 

 186 

Network clusters identify drugs with similar clinical characteristics 187 

We constructed a repurposing network by calculating a CATNIP score for all 188 

possible drug pairs found within DrugBank, and assigning the drugs as nodes 189 

and the CATNIP score as the edge weight. We pruned the network using a cut-190 

off value of 7.4 for the CATNIP scores (Figure 2B), which included 792 different 191 

drug pairs. This cut-off is equivalent to a predicted probability of >99% to share 192 

an indication and allowed for a balance between confidence within our 193 

predictions and drug diversity and availability.  194 

 195 

We hypothesized that drugs sharing at least one indication would cluster together 196 

in our network. To confirm this theory, we classified each drug per its 1st order 197 

Anatomical Therapeutic Chemical (ATC) classification. This identification is a 198 

method of distinguishing the clinical use of a drug that is widely used in European 199 

and North American chemoinformatics databases18. Using ATC, we observed 200 

clearly defined clusters within the repurposing network (Figure 2B). Many 201 
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clusters featured multiple ATC classifications, suggesting potential repurposing 202 

opportunities. For example, one cluster included the thiazolidinediones, 203 

rosiglitazone and pioglitazone (ATC classification: ‘Alimentary Tract and 204 

Metabolism’) and the fibrates, fenofibrate and bezafibrate (ATC classification: 205 

‘Cardiovascular system’). These two clustered ATC classifications were 206 

connected by a high (7.42) CATNIP score between bezafibrate and pioglitazone, 207 

an antidiabetic drug; a relationship driven by the shared targeting of PPARa and 208 

PPARg resulting in the improvement of lipid and glucose metabolism. Bezafibrate 209 

has shown efficacy in the treatment of Type 2 Diabetes in numerous 210 

retrospective and pre-clinical studies, including Phase 2 trials19-21, however is still 211 

not an approved antidiabetic. The identification of bezafibrate as a potential 212 

diabetes treatment is a key example of how CATNIP can be used to identify 213 

repurposing opportunities.  214 

 215 

We reasoned that the connections between ATC classifications across all the 216 

drug clusters could provide additional aid for drug repurposing purposes. Using 217 

the pruned network (CATNIP Score > 7.4), we collected all the scores between 218 

drugs of differing ATC classifications. From this collection, we were able to 219 

determine the median score associated between each pair of ATC 220 

classifications. The ATC classifications with the highest median CATNIP scores 221 

had literature support for numerous repurposing efforts between them (Table 1).  222 

For example, drugs with the ATC classifications of “Respiratory System” and 223 

“Systemic Hormonal Preparations, excluding sex hormones and insulins” were 224 

strongly connected to each other (7.97 median CATNIP score). This connection 225 

was driven by highly scored pairs of drugs including rimexolone to mometasone 226 

(8.31 CATNIP score) and prednisone to triamcinolone (8.13 CATNIP score). 227 

These connections are supported by the fact that hormonal agents like 228 

glucocorticoids and beta adrenergic agonists have been used for decades to 229 

relax the airway musculature in patients with reactive airways disease and 230 

chronic obstructive pulmonary disease22. Interestingly, our analysis identified 231 

glucagon, a peptide hormone that increases blood glucose levels, as a candidate 232 
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for “Respiratory System” repurposing and this use already has clinical 233 

support23,24. Additionally, drugs classified as “Respiratory System” and 234 

“Dermatological” were also observed to be highly associated because of 235 

interactions such as the one between ciclesonide and hydrocortisone (8.43 236 

CATNIP score). Ciclesonide and hydrocortisone do in fact share a clinical 237 

indication, “Asthma Bronchial”, giving added confidence to our findings. These 238 

types of network observations are important in laying the groundwork for 239 

suggesting novel clinical repurposing strategies for FDA-approved drugs. 240 

   241 

CATNIP identifies novel disease areas for drug classes 242 

We investigated the ability to leverage CATNIP scores to identify repurposing 243 

opportunities by evaluating specific drug classes. Drug classes are predefined in 244 

DrugBank. In order to identify actionable repurposing possibilities, we narrowed 245 

this list down to 50 classes containing inhibitors, antagonists, or agonists of 246 

specific gene or protein families. We focused our attention on specific disease 247 

areas that are attractive for drug repurposing opportunities, due to a lack of 248 

current treatments or high rates of acquired resistance. The specific disease 249 

areas were: “mental disorders”, “neurological diseases”, “diabetes”, and “cancer” 250 

(cancer was further divided into specific cancer types due to the large variance in 251 

disease pathology between types, Methods). We hypothesized that CATNIP 252 

scores could be used to identify specific drug classes that would be efficacious 253 

for a new disease area. For each drug class and disease area, we found the 254 

statistical difference in the CATNIP score distribution between two sets of drug 255 

pairs. The first set included pairs that had one drug within the drug class and the 256 

other drug approved for the disease in question, while the other set included drug 257 

pairs that had one drug within the drug class and the other drug not approved for 258 

the disease in question (Methods). We compared the effect size, estimated by 259 

the Wilcoxon location shift, for all drug class-disease pairs that had a significant 260 

difference in distribution compared to drug class-non-disease pairs (FDR < 0.1, 261 

Figure 3A-B, Figure S7-8). By using CATNIP scores, we found that many well-262 

known drug class-diseases associations could be recovered. For example, 263 
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“muscarinic antagonists” were highly ranked for “neurological diseases” and 264 

many such agents are FDA-approved for this indication25. In addition, we found 265 

that “kinase inhibitors” were closely associated with the treatment of cancer and 266 

“dopamine antagonists” for the treatment of “mental disorders”26, 27 (Wilcoxon 267 

Location Shift = 0.711-0.945 for “kinase inhibitors” and select cancer types, 268 

Location Shift = 0. 882 for “dopamine antagonists” and “mental disorders”, p-269 

value < 0.001, Figure S9). In fact, almost all drug class-disease associations 270 

contained at least one FDA-approved drug for the respective disease, giving us 271 

added confidence in our model. Of note, each drug was allowed to be 272 

categorized into numerous drug classes, leading to unexpected, yet easily 273 

explained, results; for example, “dopamine antagonists” appearing as a top drug 274 

class for “neurological diseases”. This is due to risperidone, a drug traditionally 275 

used for schizophrenia and mood disorders, also having a secondary indication 276 

of Alzheimer’s type severe dementia.  277 

 278 

Next, we further interrogated the drug classes associated with “neurological 279 

diseases” and “diabetes”, specifically. CATNIP scores were able to correctly 280 

identify almost all drug classes known to treat these diseases (Figure 3A-B). To 281 

identify possible repurposing candidates, we focused our attention on drug 282 

classes shown to have a large positive effect size with this CATNIP analysis but 283 

are not currently approved for treatment. For “neurological diseases”, the use of 284 

adrenergic uptake inhibitors, traditionally used as antidepressants, was the top 285 

repurposing candidate (Figure 3A). For “diabetes” alpha 1 antagonists and 286 

kinase inhibitors were identified as possible novel treatments for diabetes 287 

(Figure 3B). We believe further investigation into these drug classes and 288 

diseases could lead to successful clinical applications.  289 

 290 

CATNIP interpretability reveals reasoning for repurposing candidates 291 

From our list of repurposing candidates, we chose two novel drug class-disease 292 

associations to further investigate.  293 

 294 
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Adrenergic uptake inhibitors applied to Parkinson’s disease 295 

 296 

First, we evaluated the relationship between “neurological diseases” and 297 

“adrenergic uptake inhibitors”. We focused on the drug pairs with the highest 298 

CATNIP scores, i.e. those predicted with the highest confidence to share at least 299 

one indication (Figure 3C). Of all the adrenergic uptake inhibitors, we found that 300 

amitriptyline and trimipramine, two anti-depressants, had the highest CATNIP 301 

scores with the “neurological diseases” drugs. The drugs that shared the 302 

strongest connections with amitriptyline and trimipramine were drugs approved 303 

for Parkinson’s disease (PD). Specifically, metixene, atropine, pergolide and 304 

benzatropine were associated with amitriptyline, according to CATNIP, and 305 

trimipramine was associated to benzatropine and rotigotine. Trimipramine was 306 

also strongly connected with orphenadrine, which is sometimes used off label in 307 

PD, but will not be included in the following analyses. 308 

 309 

Using the CATNIP model, we evaluated which features contributed towards the 310 

prediction of amitriptyline and trimipramine to share an indication with PD drugs. 311 

We found that target, gene ontology, and pathway similarity all strongly 312 

contributed to the predictions for both amitriptyline and trimipramine (Figure 3D, 313 

Figure S10). Since target similarity and distance between targets (in a protein-314 

protein interaction network) were among the top contributing features, we 315 

investigated which gene targets were shared amongst these drug pairs. We 316 

found that amitriptyline targets three specific gene classes that are also targeted 317 

by at least one of the PD drugs: muscarinic acetylcholine receptors, G-coupled 318 

protein receptors (GPCRs), and alpha adrenergic receptor. Trimipramine also 319 

targets muscarinic acetylcholine receptors, alpha-adrenergic receptors, and 320 

dopamine transporters, which is similar to benzatropine, a PD drug. All these 321 

receptors have well-defined relationships with PD and other neurological 322 

diseases25, 28, 29, which adds support for repurposing amitriptyline and/or 323 

trimipramine. 324 

 325 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/748244doi: bioRxiv preprint 

https://doi.org/10.1101/748244
http://creativecommons.org/licenses/by-nc-nd/4.0/


Amitriptyline may be an ideal candidate for use in PD patients. We evaluated the 326 

shared molecular function gene ontology terms shared between amitriptyline and 327 

all four PD drugs. GPCR activity was once again identified (Supplementary 328 

Data). We then interrogated the biological pathways these drug targets are 329 

involved in and found many broad GPCR pathways overlapping between 330 

amitriptyline and the PD drugs (Figure S11) including the Reactome pathway 331 

“GASTRIN_CREB_SIGNALLING PATHWAY VIA PKC AND MAPK”. Several 332 

recent studies support the link between gastrin-releasing peptide signaling to 333 

brain function30. Through CATNIP, we have identified “adrenergic uptake 334 

inhibitors” like amitriptyline and trimipramine as a possible treatment for PD. 335 

 336 

Kinase inhibitors applied to Diabetes 337 

Our CATNIP analysis identified an opportunity to repurpose “kinase inhibitors” for 338 

the treatment of diabetes (Figure 3B). Of the drug pairs evaluated in this context, 339 

the link between vandetanib, a thyroid cancer drug, and gliclazide, a Type 2 340 

diabetes drug (CATNIP Score = 6.39, Figure 3E) was the strongest. This 341 

association was driven by target similarity and similarity between KEGG 342 

pathways of the drug targets (Figure 3F). Vendetanib and gliclazide have an 343 

overlapping target, VEGFA. Several KEGG pathways are shared between 344 

vandetanib and gliclazide including the “Cytokine cytokine receptor interaction” 345 

pathway (Supplementary Data). This pathway contains VEGFA, the shared 346 

target, and the epidermal growth factor receptor (EGFR), another one of 347 

vandetanib’s targets. The similarity between these two drug’s targets and 348 

pathway effects leads us to believe there is strong potential for vendetanib to be 349 

repurposed.  350 

 351 

Discussion 352 

Although considerable improvements have been made in drug repurposing 353 

efforts over the past decade, the use of previous disease associations will 354 

eventually curtail these improvements due to the imposed restriction of previous 355 

knowledge. Our new approach, CATNIP, could provide a highly effective aid to 356 
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drug repurposing endeavors. Here, we accurately predicted drugs that shared an 357 

indication, while keeping high levels of both sensitivity and specificity. Leveraging 358 

our prediction metric enabled us to generate a network for repurposing, 359 

identifying, and repurposing predictions based on system-wide drug scopes. 360 

 361 

The CATNIP method allows for broad-scale drug repurposing opportunities to be 362 

readily identified. By identifying and interpreting our drug similarity features, we 363 

can investigate the possible mechanisms behind these repurposing candidates. 364 

The benefit of using drug similarity features is two-fold. First, these features are 365 

readily available for both approved and investigational drugs, which have been 366 

underserved by previous repurposing methods. Second, the interpretability of the 367 

features allows us to identify possible mechanisms of action when we back 368 

engineer what contributed to high CATNIP scores.  369 

 370 

We found strong support for repurposing amitriptyline and trimipramine, both of 371 

which are in clinical use as anti-depressants, for PD. These drugs have many 372 

functions in addition to being adrenergic uptake inhibitors, such as serotonin 373 

blockers, anticholinergics, and the mechanisms overlapping with current PD 374 

drugs described above. Movement Disorders Society guidelines found 375 

insufficient evidence to support the use of amitriptyline for depression in PD31 376 

and a published Practice Parameter found only level C evidence for its use32. 377 

However, amitriptyline has been commonly used for not only depression but 378 

other off-label indications in neurological disorders, including pain33. While clinical 379 

trials have been conducted for the effect of amitriptyline on depression in PD 380 

patients34, currently there are no trials evaluating amitriptyline or trimipramine as 381 

a treatment for other symptoms and signs of PD. There have, however, been 382 

preclinical studies evaluating amitriptyline as a potential therapy for PD. In rodent 383 

models of PD, amitriptyline affects levels of neurotrophic factors including 384 

BDNF35  and decreases dopamine cell loss in these models36, 37. It has been 385 

suggested to mitigate microglial inflammation38. Moreover, with the suggestion 386 
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that amitriptyline may have shorter term symptomatic motor benefit, it may 387 

enhance levodopa efficacy39. 388 

 389 

When we more closely evaluated trimipramine, we found compelling evidence 390 

this could be a potential PD therapeutic. Specifically, the targets of trimipramine 391 

make it a potentially strong therapeutic to combat loss of motor function amongst 392 

PD patients. This benefit is due to the dual targeting of DRD2 and alpha 2 393 

adrenergic receptors, which is similar to piribedil, an investigational PD 394 

medication that was not included within our final CATNIP network due to a lack of 395 

available information. In a review of piribedil, it was highlighted that the agonistic 396 

D2/D3 activity combined with alpha 2 adrenergic antagonism can lead to 397 

preservation of motor function40. However, further research must be done to 398 

better understand the exact effects that trimipramine has on both dopamine and 399 

alpha 2 adrenergic receptors. Further research into trimipramine could quickly 400 

lead to a clinical trial for PD patients with specific motor function end points. 401 

 402 

We also identified a repurposing opportunity with kinase inhibitors for the 403 

treatment of diabetes, due to the strong predicted connection between 404 

vandetanib, a thyroid cancer drug, and gliclazide. While there have been some 405 

preclinical animal studies investigating the use of kinase inhibitors in diabetes41, 406 
42, to our knowledge, there has yet to be an approved kinase inhibitor for the 407 

treatment of diabetes. Both vandetanib and gliclazide are known to target 408 

VEGFA, which has shown a clear connection to diabetes pathology43 and 409 

treatment44. Additionally, Hagberg et al. published work suggesting that 410 

antagonism of VEGFB, a gene within the same pathway as VEGFA, improves 411 

insulin sensitivity and increases skeletal muscle glucose uptake in db/db mice45. 412 

Because vandetanib targets VEGFR146, the receptor VEGFB binds, it could also 413 

have insulin sensitizing effects. Further experimental work is required to verify 414 

this hypothesis47.   415 

 416 
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Besides the targeting of VEGFA/VEGFR1, vandetanib’s target EGFR can also 417 

potentially help diabetes pathology. Inflammatory cytokines (including, but not 418 

limited to, IL-8 and TNF-α) have been shown to be associated with the 419 

progression of diabetic neuropathy48. The inhibition of EGFR through the use of a 420 

kinase inhibitor in past work has reduced the expression of both to IL-8 and TNF-421 

α in rats49. Therefore, we believe vandetanib could be considered as a potential 422 

diabetes treatment, due to its ability to target EGFR leading to a possible 423 

decrease in inflammatory cytokine production.  424 

 425 

In addition to the exciting predicted repurposing opportunities we have chosen to 426 

highlight, many other drug classes showed significant repurposing potential for 427 

mental disorders, neurological diseases, and several different cancer types. 428 

While diving into each of these opportunities is outside the scope of this paper, 429 

we hope that researchers take it upon themselves to further investigate these 430 

candidate drug class-disease associations. 431 

 432 

It is important to acknowledge certain limitations to CATNIP, such as data 433 

availability and the application to rare diseases. Although this model does not 434 

rely on disease similarity information, it does require known molecular target 435 

information to obtain peak predictive power. This target information can 436 

frequently be unavailable for early stage compounds. Additionally, this method 437 

would have limited use when searching for drugs to be repurposed for diseases 438 

with very few or no clinically approved compounds.  439 

 440 

To our knowledge, CATNIP is the first method capable of predicting a novel 441 

indication for a drug without relying on disease similarities. Many predictions 442 

gained from CATNIP have substantial preclinical research or mechanistic 443 

support, suggesting that other predictions may also provide valuable information 444 

for future investigations. Due to its demonstrated ability to identify large scale 445 

drug repurposing opportunities, CATNIP will likely serve as a significant basis 446 

towards a bright future in drug repurposing efforts. 447 
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 448 

Methods 449 

 450 

Indication Mapping 451 

Using a custom Python script, we webscraped DrugBank 5.050 for drug 452 

compound names and indication information with a total of 3066 drugs being 453 

found. Indication information were run through the Unified Medical Language 454 

System (UMLS) tool, MetaMap13, to match DrugBank assigned indications to 455 

MESH IDs and UMLS Concept Unique Identifiers (CUIs). MetaMap is a 456 

computational approach that combines linguistic and natural language 457 

processing techniques to map biomedical texts to the UMLS Metathesaurus. 458 

MetaMap has previously been shown to successfully exceeded human mapping 459 

capabilities14. Using a custom Python script we identified synonym candidate to 460 

further improve indication semantics.  A random subset of the indications were 461 

manually reviewed and found to correctly map to standardized terms with a 95% 462 

accuracy (Figure S1B). We then filtered our list of drugs to the 2576 drugs that 463 

shared at least one indication with another drug. 464 

 465 

Similarity Feature Collection 466 

Compound Features 467 

Similarities between drugs were found by creating all possible pairs of the drugs 468 

with known indications. Multiple compound similarity features and drug target 469 

similarity features were collected. The drug targets listed within DrugBank 5.050 470 

were used as our set of ‘known targets’ for each drug. Additionally, we collected 471 

genomic information about each drug target using MSigDB51, 52. The features, 472 

sources and metrics used to measure similarity are listed in Supplementary 473 

Table 1. The measures of similarity included, but were not limited to, Pearson 474 

Correlation, Jaccard Index, and Dice Similarity. In cases where there was 475 

insufficient or missing information, features were imputed by using the median 476 

value for that feature in drug pairs with complete information.   477 

 478 
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Network Features 479 

We curated a biological network that contains 22,399 protein-coding genes, 480 

6,679 drugs, and 170 TFs. The protein-protein interactions represent established 481 

interaction53-55, which include both physical (protein-protein) and non-physical 482 

(phosphorylation, metabolic, signaling, and regulatory) interactions. The drug-483 

protein interactions were curated from several drug target databases55. 484 

 485 

Statistical Analysis 486 

For each similarity feature, a Kolmogorov-Smirnov (KS) test was performed 487 

between the set of drug pairs that shared an indication and those that did not 488 

share an indication. The KS test was chosen to identify non-linear predictive 489 

power. In addition, the Pearson correlation between all numeric features was 490 

calculated. These tests were performed using custom scripts in R statistical 491 

software 56.   492 

 493 

Model Building  494 

We trained a two-class classifier predictive model using the features described 495 

above. Our classes were determined as a binary of “shared” or “non-shared” 496 

indication. Drugs were only included if they shared an indication with at least one 497 

other drug. A 5-fold cross-validation gradient boosting model was used after 498 

careful model selection and implemented using the XGBoost package57 within 499 

the R statistical software. Additional models that were tested and compared 500 

using the AUC and AUPRC of 5-fold cross-validation were: Support Vector 501 

Machine with a radial kernel model, logistic regression with elastic net and 502 

logistic regression with lasso, all using custom R scripts. A custom-made R script 503 

was used to implement a grid-search to optimize the hyperparameters of our 504 

model. Our model objective was a logistic regression for binary classification and 505 

we output a score pre-logistic transformation. The class size of “shared” vs. “non-506 

shared” was imbalanced, therefore we applied downsampling to each fold of 507 

training via the R package Caret58.  508 

 509 
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Classification Evaluation 510 

For evaluating the model performance on predicting if two drugs share an 511 

indication, receiver operating characteristic (ROC) and precision-recall curve 512 

(PRC) curves were created in R using the pROC59 and precrec60 packages 513 

respectively. The raw-logistic values were normalized on a scale from 0-1 to 514 

enable easier interpretation and ROC/PRC calculation. Area-under-the-ROC 515 

curve (AUC) and area-under-the-PRC (AUPRC) scores were used to evaluate 516 

model performance.  517 

 518 

Drug Similarity Network 519 

Network Construction 520 

We constructed a drug similarity network based upon our classifier results with 521 

drugs as nodes and our raw model output as the edge weight. This network was 522 

visualized using the visNetwork package61 and used in analyses using the iGraph 523 

package62 within R56.   524 

 525 

ATC Repurposing Analysis 526 

The Anatomical Therapeutic Chemical (ATC) code for all drugs were found in 527 

DrugBank50, and the highest level code was assigned. Drugs with multiple ATC 528 

codes assigned to them were re-assigned into the category “Various”. A circular 529 

repurposing network was created with ATC codes as the nodes using the 530 

iGraph62 and gGraph63 packages with R56.   The graph edge weights were based 531 

on the mean classifier output between all drugs of each ATC code category. To 532 

reduce noise within the repurposing network an initial cut-off of drug pairs with a 533 

classifier output of 7.4 and above was implemented, leaving 792 drug pairs to 534 

examine. Manual literature searches were used to validate repurposing 535 

opportunities.  536 

 537 

Drug Class Repurposing Analysis 538 

Drug classes for all drugs were found in DrugBank50 and were filtered to include 539 

only “inhibitor”, “antagonist,” and “agonist” classes that had at least 20 drugs, to 540 
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ensure enough statistical power. Additionally, we identified four main disease 541 

areas of interest: “mental disorders”, “neurological diseases”, “diabetes”, and 542 

“cancer”. The UMLS13 sematic codes “modb” and “neop” were used to identify 543 

indications falling within mental disorders and cancer, respectively. Cancer was 544 

further refined into different cancer types based on a keyword search in a custom 545 

Python script. All UMLS concept IDs containing the word “diabetes” were 546 

included within the diabetes category. For “neurological diseases”, we refined our 547 

list to only include Parkinson’s Disease, Alzheimer’s, Epilepsy, and Dementia, to 548 

balance both specificity in disease type and enough drugs to make statistically 549 

sufficient sample size.  550 

 551 

Wilcox-Mann-Whitney tests between all drug class-disease associations were 552 

performed. The test specifically tested if the mean of the CATNIP scores of drug 553 

pairs with one drug being a member of the class of interest and the other being 554 

approved for the disease of interest were significantly different than the mean of 555 

the CATNIP scores of all drug pairs that included one drug within the class of 556 

interest and the other drug not being approved for the diseases of interest. A 557 

positive location shift meant that drug class-disease pairs had significantly higher 558 

CATNIP scores than drug class-non-disease pairs. A FDR multiple hypothesis 559 

correction was applied.  560 

 561 

CATNIP Feature Effect Analysis 562 

The effect of each feature on the CATNIP score for specific drug pairs was found 563 

by iteratively changing the feature value to the median value of that feature for all 564 

drug pairs. Since the clear majority of all drug pairs do not share an indication 565 

this is the best approximate for that feature having no contribution to the CATNIP 566 

score. The difference in the new CATNIP score and the correct CATNIP score 567 

was then measured.  568 

 569 

 570 
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 815 
Figure 1: Schematic of CATNIP repurposing approach. A) The use of drug 816 

similarity properties to predict if two drugs will share an indication using a 817 

gradient boosting model, the model is referred to as CATNIP. B) Schematic 818 

showing the use of CATNIP output scores to create a network, with the scores 819 

used as edge weights. The colors of each drug represent the known disease and 820 

this demonstrates how one could identify novel indications for drugs through the 821 

network.  822 
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 823 
Figure 2: CATNIP model accurately predicts drugs that share an indication and 824 

can be used for repurposing. A) Receiver-operating characteristic curve for 825 

CATNIP, the performance for drug pairs with high and low structural similarity is 826 

also shown. B) A network of all drug pairs with a CATNIP score higher than 7.4. 827 

Nodes (drugs) are colored based on ATC classification and a specific example of 828 

repurposing between ATC classifications is highlighted. C) A graph of all ATC 829 

classification and the median CATNIP score between the drugs belonging to 830 

each of them (only including drug pairs with > 7.4 CATNIP score). The edges 831 

between ATC Classifications with the highest median CATNIP scores are colored 832 

red.  833 
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 835 
Figure 3: CATNIP identifies drug class repurposing opportunities. The location 836 

shift, calculated using Wilcox-Mann-Whitney for all CATNIP scores of drug class-837 

disease drug pairs vs drug class-non-disease drug pairs for A) “neurological 838 

diseases” and B) “diabetes”. Drug classes are colored based on the percent of 839 

drugs within the class that are approved for treatment of the specific disease and 840 

only significant associations are shown (FDR < 0.1). C) The network of 841 

neurological drugs and adrenergic uptake inhibitors drug pairs with the highest 842 

CATNIP scores. D) The decrease in the CATNIP score when removing each 843 

feature for amitriptyline and select Parkinson’s Disease drugs.  E) The network of 844 

anti-diabetes and kinase inhibitor drug pairs with the highest CATNIP scores. F) 845 

The decrease in the CATNIP score when removing each feature for the drug pair 846 

vandetanib and gliclazide. 847 
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Table 1: Literature Support for ATC Repurposing Predictions 848 

ATC Code 1 ATC Code 2 Reference 
Dermatologicals Respiratory System 64-68 

Alimentary Tract and 
Metabolism Respiratory System 69-72 

Sensory Organs Respiratory System 73-75 

Systemic Hormonal 
Preparations, Excluding 

Sex Hormones And 
Insulins 

Respiratory System 76, 77 

Sensory Organs Alimentary Tract and 
Metabolism 

78-82 

 849 

Supplementary Figures 850 
Figure S1: MetaMap performs well in drug indication mapping. A) The number of 851 
occurences of different UMLS sematic types. B) The accuracy of mapping 852 
indications using MetaMap for indications categorized a “Structured” and the 853 
“Description” section.  854 
 855 
Figure S2: Target ontology similarity data types vary for drug pairs that share an 856 
indication and those that do not. The violin plots of similarity distributions for the 857 
similarities of targets’ A) biological processes, B) cellular component, C) 858 
molecular function, D) chemical perturbation, E) oncological, F) immunogenic, G) 859 
micro-RNA, and H) transcription factor. Statistical significance found by 860 
Kolmogorov-Smirnov test. 861 
 862 
Figure S3: Target similarity data types vary for drug pairs that share an indication 863 
and those that do not. The violin plots of similarity distributions for the similarities 864 
of A) targets, B) the Protein-Protein Interaction network distance between targets 865 
and the C) correlation of target essential within cancer cell lines. Statistical 866 
significance found by Kolmogorov-Smirnov test. 867 
 868 
Figure S4:  Target  pathway similarity data types vary for drug pairs that share an 869 
indication and those that do not. The violin plots of similarity distributions for the 870 
similarities of the A) reactome pathways,  B) all pathway types and C) KEGG 871 
pathways a drug’s target is known to be involved within. Statistical significance 872 
found by Kolmogorov-Smirnov test. 873 
 874 
Figure S5: Structure similarity varies for drug pairs that share an indication and 875 
those that do not. A) The violin plot of the Dice chemical fingerprint similarity, 876 
statistical significance found by Kolmogorov-Smirnov test. 877 
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 878 
Figure S6: CATNIP performs significantly better than random. A) The Precision –879 
Recall curve for classifying if two drugs share an indication using CATNIP and 880 
the random expectation.  881 
 882 
Figure S7: CATNIP identifies drug class repurposing opportunities. The location 883 
shift, calculated using Wilcox-Mann-Whitney for all CATNIP scores of drug class-884 
disease drug pairs vs drug class-non-disease drug pairs for A) Mental Disorder, 885 
B) Skin Cancer, C) Lung Cancer, D) Breast Cancer, E) Thyroid Cancer, F) Large 886 
Intestine Cancer, G) Upper Aerodigestive Tract Cancer H) Gastric Cancer I) 887 
Renal Cancer. Drug classes are colored based on the percent of drugs within the 888 
class that are approved for treatment of the specific disease and only significant 889 
associations are shown (FDR < 0.1). 890 
 891 
Figure S8: CATNIP identifies other drug class repurposing opportunities within 892 
cancer. The location shift, calculated using Wilcox-Mann-Whitney for all CATNIP 893 
scores of drug class-disease drug pairs vs drug class-non-disease drug pairs for 894 
A) Urinary Tract Cancer, B) Pleura Cancer, C) Endometrium Cancer, D) Ovarian 895 
Cancer, E) Pancreatic Cancer, F) Bone Cancer, G) Oesophagus Cancer, H) 896 
Lymphoma/Leukemia, and I) Autonomic Ganglia Cancer.Drug classes are 897 
colored based on the percent of drugs within the class that are approved for 898 
treatment of the specific disease and only significant associations are shown 899 
(FDR < 0.1). 900 
 901 
Figure S9: CATNIP scores are statistically higher between drugs of certain drug 902 
classes and drugs that treat associated diseases. The distributions of CATNIP 903 
score between A) kinase inhibitors and drugs known to treat cancer and those 904 
that do not and B) dopamine antagonists and drugs known to treat mental illness 905 
and those that do not.  906 
 907 
Figure S10: Target features drive the prediction of trimipramine as a Parkinson’s 908 
Disease treatment. A) The decrease in the CATNIP score when removing each 909 
feature for trimipramine and select Parkinson’s Disease drugs. 910 
 911 
Figure S11: Many pathways or gene ontology groups overlap, fueling CATNIP 912 
predictions. The overlap between amitriptyline and select Parkinson’s Disease 913 
drugs for A) reactome pathways, B) KEGG pathways, and D) molecular function 914 
gene ontologies. The overlap between vandetanib and gliclazide for A) reactome 915 
pathways, B) KEGG pathways, and D) molecular function gene ontologies. 916 
 917 
Supplementary Tables 918 
Table S1: The drug similarity features used within CATNIP. 919 
 920 
Table S2: Comparison of model performance using other model types.   921 
 922 
Supplementary Data 923 
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File 1: All pathways and gene ontologies that amitriptyline’s targets and the 924 
targets of select Parkinson’s Disease drugs’ targets are associated with. 925 
 926 
File 2: All pathways and gene ontologies that trimipramine’s targets and the 927 
targets of select Parkinson’s Disease drugs’ targets are associated with. 928 
 929 
File 3: All pathways and gene ontologies that vandetanib’s targets and 930 
gliclazide’s are associated with. 931 
 932 
 933 
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