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Abstract

Synapses across different brain regions display distinct structure-function relationships. We investigate the

interplay of fundamental design principles that shape the transmission properties of the excitatory CA3-CA1

pyramidal cell connection, a prototypic synapse for studying the mechanisms of learning in the hippocampus.

This small synapse is characterized by probabilistic release of transmitter, which is markedly facilitated in

response to naturally occurring trains of action potentials. Based on a physiologically realistic computational

model of the CA3 presynaptic terminal, we show how unreliability and short-term dynamics of vesicle release

work together to regulate the trade-off of information transfer versus energy use. We propose that individual

CA3-CA1 synapses are designed to operate at close to maximum possible capacity of information transfer

in an efficient manner. Experimental measurements reveal a wide range of vesicle release probabilities

at hippocampal synapses, which may be a necessary consequence of long-term plasticity and homeostatic

mechanisms that manifest as presynaptic modifications of release probability. We show that the timescales

and magnitude of short-term plasticity render synaptic information transfer nearly independent of differences

in release probability. Thus, individual synapses transmit optimally while maintaining a heterogeneous

distribution of presynaptic strengths indicative of synaptically-encoded memory representations. Our results

support the view that organizing principles that are evident on higher scales of neural organization percolate

down to the design of an individual synapse.
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1. INTRODUCTION

Signal transmission at chemical synapses accounts for a significant proportion of metabolic costs

during normal neural activity in the mammalian brain1. Understanding the role of competing

demands imposed by energy consumption and information processing in shaping nervous systems

has been an enduring question in neuroscience research2–5; one may then ask if the notion of

energetic efficiency trickles down to the level of individual synapses. In this context, failures of

transmitter release, while unsuccessful in relaying presynaptic action potentials, may help conserve

synaptic resources by lowering average release rates. Indeed, probabilistic release is a characterizing

feature found across a number of synapses6, and a fundamental source of stochasticity in neural

dynamics7. Previous studies have suggested that synaptic failures support both efficient neuronal

coding8 and communication between neurons9, but these studies did not include the effect of use-

dependent short-term plasticity (STP) that typically accompanies probabilistic release and can

significantly modulate the time course of synaptic responses to natural activity patterns10–12.

Excitatory CA3-CA1 pyramidal cell connections, a crucial component of the hippocampal cir-

cuitry engaged during spatial navigation and implicated in important forms of learning13–16, provide

a distinctive example of low release probability synapses17. Low transmission rates for single spikes

are contrasted with strong enhancement of release probabilities in response to natural stimuli18;

this short-term facilitation (STF) occurs over timescales of milliseconds to seconds. Dynamic CA3-

CA1 synapses were proposed to be optimally designed for conveying information on spike times in

short bursts occurring at physiologically relevant frequencies19. However, the concomitant energy

costs associated with vesicle release and recycling supporting this form of transmission are not

known.

Here, we use a computational model to investigate the relevance of energetic constraints to design

and function of hippocampal synapses that are characterized by low initial release probabilities but

marked activity-dependent STP. Previous studies of information transmission at cortical synapses

considered short-time dynamics arising from vesicle depletion alone20–23, or made simplifying model

assumptions about presynaptic organization (e.g., availability of at most one vesicle per release

site)9,24, limiting their physiological relevance for describing facilitating hippocampal synapses.

Another distinguishing feature of our study is that we do not ascribe a notion of information to ‘a’

spike as is often done9,21, as it is unclear if every presynaptic spike can be assigned meaning at the

CA3-CA1 synapse. In the hippocampus, neural information may be encoded in changing firing rates

rather than the precise timing of individual spikes. A relevant example is provided by the selective

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/748400doi: bioRxiv preprint 

https://doi.org/10.1101/748400
http://creativecommons.org/licenses/by-nd/4.0/


activation of specific subsets of pyramidal cells whenever the animal enters their preferred spatial

location25, and such brief increases in firing punctuating a low-activity background are regarded

as units of information26. This suggests that, instead of a ‘spike-centric’ approach assessing how

reliably synapses with dynamic strengths convey presynaptic spike times to the target cell, it may

be more meaningful to work with a notion of information that directly relates to a physiologically

identifiable temporal ‘signal’ encoded in the irregular firing activity of the presynaptic neuron.

Vesicle release properties are seen to vary widely across synapses, being tuned to the functional

demands of the circuits in which they are embedded27–29. Thus, addressing design principles on

a general level is impeded by the diversity of synapse types found in the nervous system and the

neural activity patterns that they process. How a small hippocampal synapse defined by low release

probability and a limited pool of available vesicles, equipped with short-term plasticity, regulates

the local balance between reliability and economy of signaling in a physiological setting has not

been addressed thus far. Our model includes relevant biological details and characterizes the role

of activity-dependent, short-term release dynamics in modulating the transmission of rate-coded

presynaptic signals. CA3 synaptic populations display considerable heterogeneity in their trans-

mitter release properties30–32, and we particularly sought to address how these differences among

synapses impact their ability to relay information-carrying spike trains. We show that the CA3-

CA1 synapse operates in a regime that maintains low energy costs while maximizing information

dynamically via STP for the entire heterogeneous population of intrinsic release probabilities seen

at these synapses.

2. METHODS

Experimental methods have provided valuable information about the ultratructural organiza-

tion and distribution of dynamic properties at CA3-CA1 presynaptic terminals30,33. Individual

CA3 synaptic boutons typically have a single active zone33, where glutamate release occurs in a

probabilistic manner17 and shows a complex mix of use-dependent depression due to refractori-

ness in vesicle recovery and rapid calcium-mediated facilitation of the release machinery29,34. We

adopted a mathematical description of this synapse which captures key attributes of its short-time

release dynamics, and quantified through numerical simulations its responses to irregular spike

trains mimicking naturally occurring presynaptic cell activity. The model details and setup for our

analysis are briefly described below.
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Estimating synaptic information rates and efficiency:

Experimental recordings from rodent hippocampus suggest that individual pyramidal cells in

area CA3 show location-specific (place cell) firing during free exploration35. Further it has been

argued that variability seen in these brief increases in firing during individual passes through the

preferred location may encode additional attributes such as aspects of the animal’s trajectory36,37,

its motion relative to goal direction38, variable attentional state of the animal39,40, modulation by

contextual cues41,42 (besides simply the variable duration, or equivalently, the running speed, at

each pass), etc. These observations motivate our model wherein we consider synaptic processing

of integrated spatial and contextual signals represented by the timing and size (number of spikes)

of place field discharges of the CA3 neuron. We thus define an effective ‘input’ signal, φ(t),

underlying the variable firing activity of the presynaptic cell which is assumed to be zero everywhere

except whenever the trajectory crosses the cells preferred location. Every pass through the place

field is associated with a non-zero value of φ, φi, which in our model is sampled from a uniform

distribution on the interval [φmin, φmax]. This range is adjusted to be compatible with the statistics

of experimentally recorded hippocampal spike train data (described below).

Individual place field passes are assumed to be uncorrelated in time and occur sparsely, at a

mean rate of rs s−1. In order to estimate information rate carried by φ(t), time is uniformly divided

into sufficiently short steps of ∆t (� 1/rs), which is taken to be the (fixed) duration of every pass;

every time step is thus treated as an independent realization of the probability distribution of φ,

P(φ), that is determined by the value of rs. The time-averaged, discretized, entropy rate of the

input signal is quantified in the usual manner using Shannon’s measure43:

Rs = −(1/∆t)
∑
φ

P (φ)log2P (φ) (bits/s) (1)

where the sum runs over all values that φ can assume, P(φ) here being approximated by a discrete

distribution over nφ possible states (set to 20 in our analysis). The value of φ during every place

field pass determines the corresponding burst size; the number of spikes comprising every burst is

thus given by a second, conditional, Poisson distribution with mean λ(φ) (the exact form of which

depends on the specific interpretation of the φ variable; see below), and these spikes are assumed

to occur at random times within the corresponding pass of duration ∆t. To be consistent with

experimental data, a small amount of ‘noise’ is also added to the system, modeled as a constant

background presynaptic spiking rate of rn s
−1 (this spiking is uncorrelated with the spatial context

and could arise, say, from synaptic or channel noise).
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The synaptic response to presynaptic spike patterns consists of a sequence of evoked transmitter

release events, and we quantify how well this discrete temporal sequence conveys the temporal

modulation of the signal φ underlying the irregular firing behavior of the presynaptic neuron. In

analogy with the input, we approximate the CA3 synaptic output by binning releases occurring

within every time step ∆t. Thus, every burst evokes a variable number of release events, nr,

and the coarse-grained response profile is given by a sequence of nr values (one number per ∆t

step, and that are assumed to produce graded postsynaptic responses via temporal summation

of EPSPs or NMDA receptor-gated Ca2+ transients). Under the assumption of low noise level,

synaptic transmission is characterized by the stationary joint probability distribution P(φ, nr) ≡

P(φ)P(nr|φ) which is (implicitly) sampled at every time step in our simulations. The conditional

distribution P(nr|φ) is governed by the form of the synaptic dynamics used in the model and

encapsulates the effects of STP. Synaptic responses to successive bursts can be considered to be

uncorrelated, which is a valid approximation when the typical interval between place field passes is

longer than the slowest timescale in the model of synaptic dynamics (this is set by the recovery rate

of the release-ready vesicle pool; see below). We characterize the fidelity of information transmission

at an individual synapse in terms of a discretized version of the average mutual information rate

(Rmutual), a standard nonparametric measure of statistical relatedness of two variables, which can

be expressed as a difference between the total entropy of the synaptic response and the noise

entropy43:

Rrs = −(1/∆t)

∑
nr

P (nr)log2P (nr)−
∑
φ

∑
nr

P (φ)P (nr | φ)log2P (nr | φ)

 (bits/s). (2)

This rate is numerically estimated from the pooled data from the simulation run for sufficiently

long duration.

Following earlier studies9,21, local efficiency of the synaptic code is quantified in terms of the

average number of releases per bit transmitted per synapse, and we use the measure E(s−1) =

Nr/(Rrs/Rs), where Nr denotes the mean rate of fusion events (averaged over every simulation

run). Nr accounts for use of synaptic resources during signal transmission and also provides a

proxy for the energetic costs of generating postsynaptic responses (membrane potential transients).

Dynamical model of probabilistic synapses:

Every synaptic release site is characterized by its basal spike-evoked transmission probability,

P 0
s , and maximum size of the docked pool of release-ready vesicles (RRP), Nmax. The synaptic
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release probability (Ps) is distinct from the fusion probability per docked vesicle (pv), and under

the assumption that docked vesicles can fuse independently of each other, the two are related by

Ps = 1 - (1 - pv)
NRRP , NRRP being the instantaneous RRP size at the release site.

We model the synchronous component of vesicle release evoked by presynaptic spikes30, and

assume that every spike can trigger release of at most one vesicle per synapse. This assumption of

uniquantal release at glutamatergic CA3-CA1 synapses is compatible with experimental findings34

suggesting a refractory phase associated with fusion of a vesicle, which may inhibit subsequent

release events in a short time period (∼10 ms) following the initial spike when the local calcium

concentration at the release site is high. Following its release, every vesicle is assumed to be recov-

ered independently, and this refilling is also modeled as a stochastic process with mean recovery

timescale of τr per vesicle. During bouts of intense spiking activity, rapid depletion of the docked

vesicle pool can occur, mediating a form of transient depression whose strength and duration are

controlled by τr together with the resting pool size at the synapse. We set τr to 2 s, consistent

with experimentally measured refilling rates at hippocampal synapses44.

Transient depression due to slow recycling of released vesicles is complemented by activity-

dependent changes in vesicle fusion at the release site. We adopt a reduced kinetic model (Fig.

1A) to describe this short-term facilitation (STF) regulated by spike-driven calcium dynamics at

the active zone, which follows from a number of previous studies of presynaptic plasticity11,45.

The spike-triggered per-vesicle release probability, pv, is treated as a dynamical variable whose

dependence on the presynaptic spiking history is governed by the following equation:

dpv
dt

=
(p0v − pv)

τf
+ αf (1− pv)

∑
i

δ(t− ti) (3)

with the sum running over the set of all spike times. Thus, the arrival of every presynaptic spike

increments the value of pv by an amount proportional to the synaptic gain parameter αf , and the

factor (1 - pv) ensures that pv, being a probability, does not exceed 1. The first term on the RHS

of Eq. 1 describes the exponential relaxation of pv to its baseline value p0v in the absence of spiking

activity. Interspike intervals shorter than the facilitation time constant, τf , are expected to induce

strong enhancement of vesicle release. Following previous studies, we model a rapid form of STF

with τf = 150 ms44,46. Longer-lasting forms of presynaptic plasticity such as augmentation are not

considered here; these components are normally induced in experimental settings with sustained

high frequency synaptic stimulation10, and unlikely to be of significance during the sparse, sporadic

spiking activity observed in the physiological conditions modeled here.

The form of STF given by Eq. 3 implies a general trend of decreasing facilitation with increase
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in the basal synaptic release efficacy, which is supported by experimental recordings of individual

hippocampal synapses30,31. In order to select a physiologically relevant value for the gain pa-

rameter αf , we refer to previous experimental data on paired-pulse stimulation at rat CA3-CA1

synapses30. This synaptic population displayed a broad range of baseline Ps values (∼0.05-1), and

the release probabilities recorded in response to two spikes separated by a short interval (40 ms)

yielded a distribution of paired pulse facilitation ratios (PPR) whose dependence on the initial

synaptic release probability (Ps) was well-fit by the relation PPR = (1 - (1 - Ps)
aP b

s )/Ps (a = 1.24 ±

0.15, b = -0.41 ± 0.05). Using our simplified description of presynaptic dynamics, we analytically

estimated the PPR in our model over a realistic range of basal per-vesicle release probabilities (p0v

= 10−4 - 1) and RRP sizes (Nmax = 1-15), and found the value of αf for which this distribution of

values was best fit by the above empirical model. The minimum mean-squared error was obtained

at αf ≈ 0.03. We thus set α∗f = 0.03 as the biological reference value of the gain parameter in

our simulations, and, separately, also examined the effects of reducing or increasing the level of

facilitation on synaptic transmission properties (Fig. 1B).

Model implementation:

Realistic values of various parameters for the input stimulus were chosen in accordance with in

vivo CA3 spike recordings from awake, freely moving rodents35, which have been used in previous

STP studies19,44,47. This dataset comprises inhomogeneous spike trains spanning a broad range

of discharge frequencies (∼5-60 Hz) and burst sizes (∼3-30 spikes per burst), with typically long

intervals (∼several sec) separating individual discharges. We modeled two specific implementa-

tions of the temporal signal φ(t) shaping presynaptic spiking activity: one describing frequency

modulation of sporadic place field firing (rate remapping), and another wherein it represents the

variable duration (with fixed spiking frequency) of individual place field passes. Non-zero instances

of φ were sampled randomly from an appropriate dynamic range accordingly. For the variable fre-

quency case, spike rate for every pass was sampled from the 6-60 Hz range, and the step size

was set to ∆t = 0.5 s which also gives a consistent range of spike numbers per burst (3-30 on

average). Alternately, variable-duration passes were modeled with a fixed in-field firing rate of 30

Hz (the average discharge frequency from experimental recordings) and individual passes spanning

.1-1 s, again giving between 3 and 30 spikes per burst on average. Further, to simplify estimation

of information rates in this case, the step size was fixed at ∆t = 0.1 s, and every time a place

field pass was reckoned to occur, that step was assigned a variable number of spikes, based on the
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duration (value of φ) corresponding to that instance. Thus, variable duration bursts were rescaled

to a constant step ∆t; this is a valid approximation when estimating average information rates

over very long times, provided that burst durations� 1/rs, which is compatible with the available

data. To reduce errors in estimation of Rinfo in this approximation, facilitation and refilling time

constants were also appropriately rescaled when implementing STP dynamics within every place

field crossing by the corresponding duration tB (τf → τf∆t/tB and τr → τr∆t/tB), to mitigate

over (under) estimating the effect of STF (vesicle recycling).

Monte Carlo simulations of the STP model were carried out for a range of input rates (rs = .05-

.2 s−1), low noise levels (rn = 0-1 s−1) and maximum RRP sizes (Nmax = 1-15), and dependence

of results on the basal p0v was characterized over ∼4 orders of magnitude (p0v = .0001-1). For every

distinct parameter combination, 20 independent runs (each of 3 x 104 s duration) were simulated,

and the time-averaged rates of information flow and release events were estimated for every trial.

The averages from our simulations were found to provide accurate estimates of the asymptotic

information rates, justifying comparisons between different synaptic configurations in terms of

the corresponding across-trial averages. To specifically assess the differential effect of short-term

facilitation on synaptic function, every synapse with STF (referred to as a dynamic synapse) was

compared with an equivalent static synapse which lacks facilitation while still exhibiting activity-

dependent vesicle depletion (this corresponds to setting αf = 0 in Eq. 3). In the following, only

the results for the model with variable burst frequency are presented, although we have separately

verified that the findings are closely reproduced for the variable-duration model as well.

All simulations, data analysis and visualization were performed in Python using the NumPy,

SciPy and Matplotlib modules.

3. RESULTS

3.1 Improved signaling at unreliable synapses with short-term facilitation

How does short-term facilitation shape the vesicle code conveying information about presynaptic

cell activity at stochastic hippocampal synapses? Experimental measurements reveal consider-

able diversity in the RRP size, release probability and STP properties across individual CA3-CA1

synapses30,33 (Fig. 1B). To explore the role of various synaptic attributes in modulating its trans-

mission properties, we simulated the synaptic response to regular presynaptic spike trains occurring

at different rates. Fig. 1C shows the response of a synapse to persistent spiking at 30 Hz (the
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average frequency in experimentally recorded bursts) for high and low initial failure rates (P 0
s =

0.1 and 0.9) and a canonical maximum RRP size of Nmax = 8. For the low Ps synapse, the time-

dependent release probability initially increases due to strong activity-dependent facilitation and

reaches a maximum, before the effect of vesicle depletion and slower recovery takes over, causing

a drop in the response which eventually settles at a steady state value determined by the fir-

ing frequency. In contrast, the high Ps synapse shows a monotonically decreasing response with

time, as it undergoes weaker facilitation and a larger initial Ps also implies faster depletion of the

readily-releasable vesicle pool. The above qualitative differences illustrate the regimes of synaptic

enhancement and depression encompassed by the STP model (Fig. 1A) that is based on phys-

iological parameters for facilitation and depletion. To further bring out the differences between

these two limits, we quantified the asymptotic/steady-state response amplitude of the dynamic

synapse to input trains spanning a wide range of frequencies (0.1-100 Hz) as a function of the

initial transmitter release probability. Fig. 1D shows the normalized synaptic response profiles for

different base synaptic failure rates at a fixed RRP size (Nmax = 8). High Ps synapses are most

effective at transmitting spikes arriving at low frequencies, and with increasing facilitation (lower

Ps), the optimal transmission frequency is shifted to higher frequencies, demonstrating a transition

from depression-dominated to facilitation-dominated behavior governed by the overall nature of

STP dynamics (Eq. 3).

It is to be noted that RRP size also influences synaptic behavior along with the value of P 0
s ,

the latter being a function of the maximum number of vesicles available for release as well as the

basal per-vesicle fusion probability. To demonstrate the role of RRP size in modulating synaptic

behavior, the frequency-response relation estimated for different numbers of release-ready vesicles

with a fixed basal synaptic failure rate (P 0
s = 0.2) is shown in Fig. 1E. These curves highlight

the role of RRP size in tuning the response profile of the synapse: synapses with a given fixed

average rate of failures (P 0
s ) but differing in their number of available vesicles show a range of

responses, from low-pass filtering for smaller Nmax (corresponding to high basal p0v) to higher

optimal transmission frequencies for larger RRP sizes (lower basal p0v). Taken together, the above

examples (Figs. 1C-1E) capture the broad repertoire of behavior displayed across an ensemble of

facilitating probabilistic synapses in the physiological regime controlled by the interplay among

key synaptic parameters governing transmitter release and recovery.

Naturally occurring firing patterns in the CA3 region that encode behaviorally relevant inte-

grated spatial and contextual signals are characterized by brief increases in firing frequency (spike

bursts) separated by long periods of low activity44. We next examine synaptic processing of spike
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trains mimicking these activity patterns. Figure 2A illustrates the steps involved in our simulation

of STP dynamics for a synapse with P 0
s = 0.2 when the presynaptic spiking pattern carries infor-

mation in the temporal sequence of burst occurrences and the variable firing frequency associated

with every burst. The stochastic, time-varying signal is reflected in the brief spike discharges of the

presynaptic neuron during passages through its preferred location (place field); this spiking activity

drives the temporal dynamics of pv and the transmitter release probability, eliciting a sequence

of vesicle release events. We used a binning procedure to estimate the mean information content

in the quantal release profile about the presynaptic signal (see Methods for details). Figure 2B

(top left) shows the relative mutual information rate, Rinfo (= Rrs/Rs), as a function of the basal

probability of vesicle release (p0v) for different noise levels, for both a canonical synapse exhibiting

STP (solid lines) and an equivalent synapse which does not show STF (dashed lines). Figure 2B

(top right) illustrates the dependence of synaptic information rates on the RRP size for a fixed

noise level of rn = 0.1 Hz. These examples indicate a general enhancement of synaptic informa-

tion transfer with short-term facilitation, as noted earlier in related contexts19,48. Further, this

increase is more pronounced for synapses with lower release probability, aligning with our expecta-

tion that smaller basal p0v combined with stronger facilitation (Fig. 1B) accentuates the differential

response to bursts and single spikes, enhancing the ability of the synapse to selectively transmit

information-carrying spike discharges. To address the generality of the above results, we repeated

our simulations over a biologically relevant range of parameter values (input rate = 0.05-0.2 Hz,

noise level = 0-1 Hz and RRP size = 1-15). The overall difference in synaptic information capacity

in the presence and absence of short-term facilitation is summarized as a distribution of relative

changes in Rinfo (percent difference of means) in Fig. 2B (bottom), and the color coding rep-

resents statistical significance of pairwise differences (two-sided Wilcoxon rank-sum test followed

by Benjamini-Hochberg adjustment for multiple comparisons; blue: significant at FDR < .001,

red: not significant). STF is found to robustly improve the fidelity of synaptic signaling in the

physiological regime. The differential effect of STF scales inversely with the basal synaptic release

efficacy, and is more marked for higher synaptic failure rates (lower p0v). The effect of facilita-

tion is diminished with increase in the basal release probability, and there is little difference in

transmission efficacy between the dynamic and static synapses for p0v values above ∼0.1.

How can this improved reliability of synaptic information transmission be understood in simple

terms? We recall that the synaptic response to information-carrying brief spike discharges consists

of a variable number of release events; thus, the information content of the vesicle code in our for-

mulation is essentially determined by how well the different output sizes (total number of releases
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triggered by a spike discharge) can discriminate between different input states (i.e. the variable

spiking frequency, or duration, associated with every burst). We characterize the reliability of this

mapping in terms of the cumulative number of released vesicles as a function of the burst size

(number of spikes). Figure 2C (i) compares the responses of a canonical synapse (basal p0v = 0.03)

with and without STF to Poisson spiking at a mean rate of 30 Hz. In the presence of facilitation,

not only is the average response amplitude (total number of release events for a given burst size)

larger, but more importantly, it is also a more reliable readout of the burst size, due to reduced

variability of responses relative to the static synapse. This difference is clearly seen in Figs. 2C

(iii) & (iv), where two distinct measures for response fluctuations are plotted as functions of the

number of spikes (n). The coefficient of variation (CV, defined as the standard deviation of the

response relative to its mean) is lower for the synapse with STF, and the separability, defined as

Sn = (µn+1 - µn)/(σn+1 + σn) (µn and σn denoting the mean and SD, respectively, of the response

to n spikes), is larger with STF. The initial steeper increase in the mean response with the number

of spikes (Fig. 2C (i)), together with smaller dispersion of responses (Figs. 2C (iii) & (iv)), implies

better correspondence between the response amplitude and the burst length when STF is included.

It is to be noted, though, that this increased reliability is also accompanied by faster depletion

of the readily-releasable vesicle pool at the facilitating synapse (Fig. 2C (ii)), implying reduced

dynamic range of burst sizes that can be conveyed by synaptic release events (this is indicated by

a sharp change in the slope of the response profile for the STF synapse beyond some threshold

spike number in Fig. 2C (i)). However, our results indicate that, in the biologically relevant

parameter range considered here, STF, despite driving faster depletion, is distinctly advantageous

for the shorter bursts of activity (Figs. 2C (iii) & (iv)), and leads to significant net improvement

in synaptic information transfer (Fig. 2B). In sum, our simulations of STP dynamics highlight

a crucial functional role for activity-dependent facilitation at unreliable hippocampal synapses,

in enabling improved transmission of information represented by time-varying presynaptic cell

activity in a physiologically relevant setting.

3.2 Reliable signaling at realistic STP synapses is nearly independent of their basal

release properties

The results in the previous section (Fig. 2B) indicate that, for realistic number of vesicles, the

signaling capacity of an STP synapse is not only increased relative to a static synapse, but, notably,

also independent of its basal per-vesicle release rate (p0v) for the characteristic inhomogeneous spik-
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ing patterns associated with CA3 pyramidal cells studied here. To elaborate on the dependence of

synaptic information transfer on its basal transmission probability, we scaled the mean information

rate estimated for each value of p0v by the maximum value attained across the full range of p0v values

considered (this was done separately for every combination of input rate, noise rate and vesicle

pool size). This rescaling factors out the dependence on the other model parameters, and reveals

the general trend in dependence of synaptic information transfer on its intrinsic reliability.

Figure 3A (top) shows the distribution of scaled information capacity values separately for

synapses with STF (blue points) and lacking STF (grey points); each point represents a particular

combination of model parameters and p0v. These results indicate that synaptic information trans-

duction is robust to differences in the basal pv at dynamic synapses. In other words, STP ensures

that synapses with widely varying basal fusion probabilities transmit at comparable rates (median

of values for each p0v & 95% over the full range of p0v values considered here). In sharp contrast,

information transfer at synapses lacking STF shows strong dependence on the magnitude of the

basal pv, and is strongly impaired for synapses with p0v . 0.1.

These data are especially interesting in the light of the considerable heterogeneity in the magni-

tude of p0v at hippocampal CA3 synaptic populations as reported by experimental studies30–32. Our

analysis indicates that synaptic information transfer in the presence of dynamic gain control (Eq.

3) is nearly invariant to differences in the basal fusion probability per vesicle (Fig. 3A, bottom).

We thus propose that physiologically realistic STP works to counteract degradation of presynaptic

signals at synapses with small release probabilities, and enables these synapses to maintain stable

information rates in the face of necessary heterogeneity in basal pv, arising from long-term changes

associated with learning or homeostatic plasticity mechanisms on the circuit/network level.

The above analysis reveals significant overall difference in the nature of information transfer at

stochastic synapses in the presence of short-term facilitation (Fig. 3A). How sensitive are these

effects to its magnitude? Recalling that the dynamics of the release probability in our effective

description of STP (Eq. 3) is essentially controlled by the gain parameter αf , which was adjusted

to be compatible with experimental findings, we ask how the behavior of synapses changes for

weaker or stronger facilitation. Fig. 3B shows an example of the (unscaled) synaptic information

rate (mean ± SEM) as a function of the basal p0v for a synapse with Nmax = 8 vesicles, across a

range of αf values spanning ∼3 orders of magnitude (.001-1). Fig. 3C compares the distributions

of rescaled information rate (estimated as before over a broad range of model parameters) for

different levels of facilitation. The dispersion of estimates for each p0v is represented in terms

of the median (solid line) ± interquartile range (IQR) separately for every αf . These results
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indicate that the profile of scaled synaptic information capacity is strongly modulated by changes

in αf especially at the smaller p0v values (. .1). This is a reflection of the greater sensitivity of

facilitation at smaller basal release probabilities to changes in αf in the STF model (Fig. 1B).

In particular, reduction in αf below the biological estimate (α∗f ) suppresses information transfer

for smaller release probabilities and introduces heterogeneity in the ensemble behavior, whereas

synaptic transmission capacity for αf & α∗f is nearly independent of the basal synaptic failure rate.

3.3 Short-term release dynamics regulates the capacity-cost trade-off at probabilistic

synapses

In the previous section we have shown that short-term facilitation, in general, enables probabilistic

synapses to signal the occurrence and length of brief high-frequency spike discharges more reliably.

What is the theoretical limit on synaptic information capacity achievable at individual facilitating

synapses, when transmitter release is governed by the STP model analyzed here (Fig. 1A)? For

every combination of stimulus rate (rs), noise (rn) and RRP size (Nmax), we estimated the max-

imum rate of synaptic information transfer attainable when αf and p0v are allowed to vary, and

we examined how well biological synapses (corresponding to αf = α∗f ) compare against this upper

bound on Rinfo (denoted as R∗info). Fig. 4A displays the distribution of the normalized channel

capacity for different choices of αf (different colors); each point corresponds to a particular combi-

nation of model parameters and maximum RRP size. Our results show that biological synapses (αf

≈ α∗f ) uniformly reach high, near-optimal, information rates under physiological conditions over

∼4 orders of magnitude of the basal per-vesicle release probability examined here (the median of

normalized values for each p0v exceeds 90% over the full range of p0v values considered). In contrast,

probabilistic synapses with weaker facilitation, or no facilitation altogether, are much less effective

at conveying information about presynaptic spiking activity, and the fidelity of information transfer

at these synapses is markedly suppressed for p0v . .1 (Fig. 4A).

Previous studies have emphasized the relevance of energetic constraints for a better understand-

ing of neurobiological design on diverse scales2,4; examples from sensory systems, in particular, sug-

gest that synaptic function may be significantly influenced by energy (resource) limitations49,50.

To evaluate the potential role of energy constraints in shaping synaptic information processing in

the hippocampus, we revisit the example in Fig. 3B, and quantify the synaptic vesicle use vis-à-vis

information transfer at individual facilitating synapses. Fig. 4B shows the dependence of the av-

erage vesicle release rate and the energy efficiency of information transduction (∼ average number
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of vesicles needed to transmit a bit), respectively, on the basal pv for different levels of synaptic

facilitation (different colors) at a canonical CA3 synapse (Nmax = 8). In general, vesicle use scales

up with the basal probability of release (p0v) and with the strength of synaptic facilitation (αf ),

as expected (Fig. 4B, left). Notably, though, an increase in synaptic information transfer with

stronger facilitation is accompanied by reduction in the synaptic energy efficiency, i.e., each re-

leased vesicle packs a smaller punch on average (Fig. 4B, right). The supralinear scaling of energy

costs with synaptic information capacity implied by these examples suggests that in the context

of realistic spiking patterns, individual CA3 synapses do not operate at optimal energy efficiency

(according to the local measure of efficiency examined here), or minimize energy consumption; in

fact, synapses lacking STP (black curves in Fig. 4B) require fewer releases per unit of informa-

tion transmitted, albeit at significantly reduced overall information capacity, relative to dynamic

synapses.

Do energy constraints, then, play no significant role in shaping the vesicle code at unreliable

hippocampal synapses? Examining the regime of stronger facilitation (αf & α∗f ) in the above

example provides a potential clue in this regard. Figs. 3B and 4B together indicate that a canonical

synapse operating in the physiological regime (αf ≈ α∗f ) transmits information at near-optimal

capacity, and further increase in αf (by an order of magnitude, from 0.03 to 0.3 or 1) provides

little additional benefit; the increased facilitation is, however, accompanied by a disproportionately

larger increase in energy costs of synaptic transmission (this may be seen by comparing the green

with the red/brown curves separately in Figs. 3B and 4B). This specific example suggests that

biological CA3 synapses may be poised to operate near the upper bound on information transfer

rate while energy usage is minimized to the extent that performance is not compromised.

To elaborate on the nature and generality of this energy-function trade-off, we compared bio-

logical STP synapses (αf ∼ α∗f ) with synapses exhibiting weaker or stronger facilitation over ∼3

decades of magnitude, estimating the relative change in the mean signaling capacity and mean

vesicle use per synapse when αf is scaled up or down by a factor of ∼10 relative to its physiological

reference value (α∗f ). Fig. 4C (top) shows the distribution of relative changes over a range of model

parameters (see Methods) for the specific example of p0v = 0.03, and each cluster of data points

represents a different comparison (α∗f → αf ). This aggregated data from our simulations indicates

that stronger synaptic facilitation relative to the biological set-point provides little improvement in

information transfer rates, but a relatively larger increase in energy use; reducing facilitation, on

the other hand, is associated with a sharp reduction in synaptic information capacity. The overall

differences evident in Fig. 4C (top) are found to be quite general and hold across a broad range of
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p0v values examined (Fig. 4C, bottom).

The general trends suggested by Fig. 4C are displayed clearly in Fig. 4D, which shows how

the normalized synaptic information capacity (Rinfo/R∗info) and normalized average rate of vesicle

release (Rves/R∗ves) vary with the strength of synaptic facilitation (αf ). Each box (median ± IQR)

summarizes the distribution of values for a particular p0v, and the different colored lines connect

the median values corresponding to each choice of p0v. Simulations of our STP model suggest that

synaptic information capacity is in general an increasing function of the strength of facilitation

(αf ), but saturates around the physiological level (αf ≈ α∗f ) (Fig. 4D, top). Comparing it to Fig.

4D (bottom), further increase in synaptic gain comes at a larger energy cost, bringing diminishing

returns. By contrast, reducing facilitation below the physiological operating point (αf ≈ α∗f ) by

∼an order of magnitude compromises synaptic channel capacity considerably, and the suppression

of information transfer rates is particularly marked at smaller basal vesicle release probabilities

(p0v). In sum, our results quantitatively demonstrate a novel form of local optimization embodied

by short-term plasticity of vesicle release at probabilistic CA3-CA1 synapses, and suggest that,

under physiological conditions, individual synapses do not consume more resources than necessary

while supporting highest-possible fidelity of information transmission.

4. DISCUSSION

Is energy-efficient signaling a relevant design principle to account for salient properties of prob-

abilistic transmitter release at individual hippocampal synapses? Previous investigations have

focused on understanding energetic optimality at sensory pathway synapses49–52. Given the diver-

sity in synaptic morphology and tight structure-function relationships in synapses observed across

brain areas, questions on synaptic design must be specific and addressed in a local context. In

line with this, we examined short-term plasticity at a cortical facilitating synapse, specifically the

hippocampal Schaffer collateral-CA1 synapse. Our synaptic model invoked detailed characteriz-

ing properties of single CA3-CA1 terminals such as RRP size, release probability per vesicle and

facilitation profiles derived from experiments and evaluated their impact on transmission of realis-

tic activity patterns. This allowed us to obtain biologically relevant insights into synapse-specific

design principles in the hippocampus. Our results provide a potentially normative account of

biologically observed synaptic facilitation in terms of a local energy-information trade-off.

We estimated the capacity of a dynamic synapse, viewed as an unreliable channel, to communi-

cate behaviorally relevant temporal signals coded in presynaptic spiking activity via discrete vesicle
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release events. Our quantitative analysis shows how short-term facilitation significantly improves

the fidelity of synaptic information transduction. Remarkably, our simulations demonstrate that

realistic STP enables CA3 synapses with vastly different basal release properties (p0v) to convey

brief, variable high-frequency spike bursts with comparable efficacy; in stark contrast, this invari-

ance is absent at static or weakly facilitating synapses. Further, physiological information rates

over a broad range of release probabilities closely approach the predicted maximum capacity of a

facilitating synapse of this type, i.e. within the limits imposed by the overall form of the model

of presynaptic dynamics analyzed here. We propose a nuanced form of optimality that is at odds

with minimization of vesicle efficiency, quantified as the average number of quanta released per

bit transmitted. Instead, our findings are consistent with the view that realistic STP synapses

are poised, to within an order of magnitude in the gain parameter αf , to maintain near-maximal

information transmission rates while penalizing excessive energy use (Fig. 5). Thus, we present

evidence that energetic costs may also be important for regulating properties of activity-dependent

facilitation at low-release probability synapses. Interestingly, an analogous form of optimality was

previously proposed in the context of the mammalian visual system53. It was shown here that

synaptic energy restrictions can significantly shape early stimulus representations in the retina,

and that the observed centre-surround receptive fields provide the best balance between efficiency

and performance, enabling near-maximal information transmission with largest possible synaptic

energy savings. It remains to be seen, to what extent our findings are relevant to some of the other

facilitating synapses in the mammalian central nervous system54–56.

A key insight from our model is that synaptic information rates with physiological STF are

nearly invariant to differences in the basal fusion probability per vesicle (p0v) that are present among

individual CA3-CA1 synapses. This synaptic diversity, on the one hand, may represent the intrinsic,

across-synapse differences in the ultrastructural details regulating transmitter release57. On the

other hand, a heterogeneous distribution of release probabilities may be a reflection of synaptically

encoded memories, which are thought to be stored as distributed patterns of synaptic strength

changes via activity-dependent long-term plasticity58,59. Experimental evidence, besides theoretical

considerations, suggests that both Hebbian and heterosynaptic plasticity in the hippocampus can

have a presynaptic as well as postsynaptic locus of expression60–64, that may be instantiated as

persistent changes in p0v. Additionally, variation in the basal pv may arise as a consequence of

homeostatic65–67 or neuromodulatory68,69 regulation of presynaptic calcium influx. In summary,

several ongoing processes likely underlie the observed dispersion in CA3 presynaptic efficacies.

Our analysis suggests that realistic STP dynamics operates at a set-point that compensates for this
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synaptic heterogeneity to support stable information rates, thereby implying a plausible mechanism

to dissociate the dynamic synaptic interactions shaping ongoing circuit computations from the

slower, longer-term adaptive changes that may be happening at these synapses due to learning or

homeostatic adjustments.

Rate of vesicle release versus information transmitted is constrained by the synaptic gain pa-

rameter αf , which decides the operating point of the ensemble of CA3 synapses (Figs. 4D &

5). αf may be tuned over evolutionary timescales to some suitable optimum determined by the

relative influence of different, competing selective pressures. This aligns with recent understand-

ing of the evolutionary diversification of the synaptic proteome that may have contributed to

functional specializations in brain areas and emergent behavior70. In the context of the biophys-

ical machinery governing transmitter release, what does the parameter αf correspond to? Basal

probability of spike-evoked release is governed by synchronous activation of the fast calcium sensor,

Synaptotagmin-1 (Syt1)71,72. On the other hand, recent findings have identified a separate calcium

sensor, Syt7, carrying a high-affinity binding site for Ca2+ but with relatively slower kinetics73,

which was shown to be essential for progressive synaptic facilitation at CA3-CA1 terminals during

persistent stimulation, but not for the initial (basal) synaptic response74. Efficacy of its interac-

tion with the protein machinery mediating vesicle fusion, or the kinetic parameters governing its

sensitivity to calcium, could thus provide a possible biophysical basis to interpret the parameter

αf . Alternately, kinetic parameters regulating calcium-induced calcium release from intracellular

stores which have been implicated in enabling short-term facilitation at hippocampal synapses75,76,

or developmental parameters regulating the relative arrangement of calcium channels and the re-

lease machinery77,78, may account for the magnitude of αf . Biophysically detailed computational

models of presynaptic calcium dynamics79, outside the scope of the present study, can potentially

shed more light on the molecular underpinnings of STP approximated by the reduced description

in Eq. 3 and help suggest physical interpretations of αf .

Although our study specifically examines the role of local constraints in shaping synaptic release

properties, it is expected that synapse design also carries imprints of selection pressures at higher

levels of neural organization. A number of previous studies have elaborated on the functional

implications of synaptic short-term plasticity for collective dynamics on neuronal networks80–82. It

is thus plausible, and quite likely, that properties of individual synapses reflect such system-level

design considerations as well. The present work, in particular, does not account for the typical RRP

size of CA3 synapses, which is experimentally found to be close to ∼10 vesicles per bouton30,33.

Our analysis, in fact, indicates that average synaptic information capacity is a monotonically
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increasing function of the size of the RRP; thus, if information transfer is to be improved, larger

synapses ought be favored, which runs somewhat counter to the limit on synapse size reported

by experiments. We surmise that an optimal RRP size might represent a compromise between

reliability of signaling at individual synapses and information processing capacity on the network

level. Given strong constraints on neural volume (or equivalently, on total availability of synaptic

resources) as proposed previously4,83, cortical connectivity might trade off high-fidelity synaptic

transmission (proportional to RRP size) for increased network complexity from a higher density

of smaller, albeit less reliable, synapses (based on scaling arguments)84,85. Detailed analysis of

network information processing under physical constraints will be needed to evaluate the role of

such an interaction across scales in shaping the design of fundamental computational elements in

the brain.

To conclude, we propose that quantitative properties of probabilistic vesicle release at individ-

ual hippocampal synapses can be meaningfully interpreted in terms of a local cost-versus-capacity

trade-off. Our results suggest that design of single synapses is primarily constrained to ensure

optimal performance for diverse synaptic strengths, and this is achieved in an energetically cost-

effective manner.
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FIG. 1: Modeling short-term plasticity (STP) at stochastic hippocampal synapses
(A) Outline of the reduced model of presynaptic STP used in the study, which includes activity-dependent facilitation
of neurotransmitter release (STF) and depression due to slower recovery of released vesicles. STF is controlled by the
dimensionless gain parameter αf . (B) Distribution of paired-pulse facilitation ratios (PPR) over a realistic range of
RRP sizes (1-15) and basal per-vesicle release probabilities (p0v ranging from 10−4 to 1) in the STP model. Different
levels of facilitation (αf ) are represented by different colors. The dashed curve captures the empirical distribution
of PPR values (from Dobrunz & Stevens, 1997), and the solid black line corresponds to PPR = 1. (C) Example of
STP dynamics at realistic synapses with high (P 0

s = 0.1) and low (P 0
s = 0.9) initial failure rates during response to

regular presynaptic spiking at 30 Hz. Solid and dashed curves correspond to synapses with STF and lacking STF
(constant pv), respectively. Results shown as mean ± SEM over 104 independent trials; Nmax = 8. (D) Regimes of
facilitation and depression illustrated by the frequency dependence of normalized asymptotic/steady-state response
for synapses with different basal failure rates (different colors). All synapses have the same maximum RRP size of
8. Results shown as mean ± SEM over 104 trials per parameter combination. (E) Dependence of synaptic filtering
on the number of available vesicles illustrated by the frequency-response curves for synapses with the same initial
release probability (P 0

s = 0.2) and varying maximum RRP size (different colors represent different Nmax). Results
shown as mean ± SEM over 104 trials per parameter combination.
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FIG. 2: Elevated transmission of information-carrying spike patterns with synaptic short-term plas-
ticity
(A) Time trace illustrating the transformation of an input signal (φ(t)) into a sequence of synaptic release events
governed by STP. P 0

s ≈ 0.2, Nmax = 8, and rs = rn = 0.1 s−1. (B) Top left : Time-averaged rate of information
transfer by synaptic release events (Rinfo) as a function of the basal per-vesicle fusion probability (p0v) for a synapse
with STF (continuous curves) and an equivalent synapse lacking STF (dashed curves). Different colors indicate
different noise levels. (Results shown as mean ± SEM over 20 independent simulations; Nmax = 8 and rs = .1
s.) Top right : Synaptic information transfer rates with STF (continuous curves) and without STF (dashed curves)
for different numbers of available vesicles (different colors). (Results shown as mean ± SEM over 20 independent
trials; rn = rs = 0.1 s−1.) Bottom: Enhancement of synaptic information transmission with STF summarized as a
distribution of relative changes (% difference of means relative to static synapse) over a biologically relevant range
of input/model parameters (see Methods for details). Inset shows a magnified view of the .01 ≤ p0v ≤ 1 interval.
Color-coding indicates statistical significance of pairwise differences (blue: significant at FDR < .001 level, red: not
significant). (C) Synaptic response (i) and progressive depletion of the readily releasable vesicle pool (ii) as functions
of the number of input spikes for a synapse with STF (blue) and lacking STF (orange). Response fluctuations are
quantified in terms of the CV of number of release events (iii) and separability of responses to bursts differing in size
by a single spike (iv). Results in (i) & (ii) shown as mean ± SD (1000 independent trials); P 0

s ≈ 0.2, Nmax = 8, and
spikes are Poisson-distributed with mean frequency of 30 Hz.
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FIG. 3: Information transmission properties in an ensemble of facilitating CA3-CA1 synapses
(A) Top: Dependence of information rate estimates (rescaled values) on the basal probability of vesicle release (p0v)
for synapses with STF in the biological regime (green) and lacking STF (black) over a realistic range of input/model
parameters (see Methods for details). Every point represents a distinct parameter combination, and continuous lines
connect the medians (one per value of p0v). Bottom: Distribution of rescaled information rates in a representative
population of static (black) and facilitating (green) synapses with variable per-vesicle basal release probability (p0v)
(n = 1000 synapses, randomly sampled from .05 ≤ P 0

s ≤ 0.6 and 1 ≤ Nmax ≤ 15). (B) Estimated time-averaged
information rate as a function of the basal per-vesicle release probability (p0v) for synapses with different levels of
facilitation (∼3 decades in the facilitation parameter αf ). Results shown as mean ± SEM (20 independent trials)
for each choice of αf . Nmax = 8; rs = rn = 0.1 s−1. The static synapse with no STF is shown in black. (C)
Distributions of rescaled information rates over a realistic range of inputs/model parameters for different magnitudes
of the synaptic gain αf (0.001-1). Each distribution is displayed in terms of the medians and 25th-75th percentile
(interquartile) ranges (per value of p0v).
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FIG. 4: Optimal signaling and synaptic energy efficiency with physiologically realistic STP dynamics
(A) Distributions of normalized synaptic information rate (fraction of maximum capacity) over a biologically relevant
range of parameters for different choices of the facilitation parameter αf (different colors). Each distribution is
displayed in terms of the data medians and interquartile ranges over a wide range of p0v values. Realistic synapses
(α∗

f ≈ 0.03) transmit at close to maximum capacity overall (median values > 90% across all p0v). (B) Example
profiles of the time-averaged rate of vesicle release (left) and synaptic energy efficiency (right) for synapses with
different choices of αf (all other parameter settings are same as in the example in Fig. 3B). Data shown as mean
± SEM (20 independent simulations). (C) Top: Box-plots of relative changes (%) in synaptic information capacity
and average vesicle requirement when synaptic gain is scaled either up or down by a factor of ∼10 relative to the
physiological level (α∗

f ) for a synapse with basal p0v = 0.03. Each distribution covers a biologically relevant range of
input parameters and maximum RRP sizes (n = 180 points; see Methods for details). Bottom: Summary statistics
of relative changes (%) in synaptic information rate (left) and vesicle usage (right) when αf is scaled up (orange)
or down (blue) by 10x, for a wide range of p0v values. (D) Estimates of normalized signaling capacity (top) and
vesicle use (bottom) as functions of the synaptic gain parameter αf which spans ∼3 orders of magnitude (also shown,
for reference, are results for the static synapse, corresponding to αf = 0). Each box summarizes the results over a
biologically relevant range of input/model parameters, and lines connect the median values for each choice of αf ;
profiles for different choices of the basal p0v are represented by different colors. Vertical dashed lines highlight the
biological set-point (α∗

f ≈ 0.03).
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FIG. 5: Activity-dependent short-term facilitation regulates the cost versus capacity trade-off at
unreliable CA3-CA1 synapses
The feasible “configurational space” of an STP synapse (gray) is parametrized by the strength of synaptic gain,
which constrains the relation between information transmitted across the synapse and the corresponding vesicle
consumption. Our results suggest that biological synapses localize to the optimal regime indicated in green.
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