
 

Toxicogenomic identification of repositioned therapy for a monogenic disease 

Eric J. Kort MD MS1,2, Nazish Sayed MD PhD3, Chun Liu PhD3, Sean M. Wu MD PhD3,4, 

Joseph C. Wu MD PhD3,4,5, Stefan Jovinge MD PhD1,3,* 

 

 

 

Affiliations: 

1DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum 

Health & Van Andel Institute, Grand Rapids, Michigan, USA.  

2Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, 

Michigan, USA.  

3Cardiovascular Institute, Stanford University, Stanford, CA USA 

4Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, 

CA, USA 

5Department of Radiology, Stanford University, Stanford, CA USA 

*Correspondence to Stefan Jovinge: Stefan.jovinge@vai.org 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/748863doi: bioRxiv preprint 

https://doi.org/10.1101/748863


Abstract 

The cost of drug development from initial concept to FDA approval has been estimated to be 

about 2.6 billion USD.1 This cost precludes development of targeted therapies for rare diseases 

such as monogenetic cardiomyopathies. As part of the Library of Integrated Network-based 

Cellular Signatures (LINCS) program funded by the NIH, the Broad Institute of MIT has 

publicly released transcriptional profiles quantifying the effects of more than 25,000 

perturbagens on the expression of 978 genes in up to 77 cell lines.2 Transcriptomics has been 

shown to be a powerful tool in repurposing drugs3,4 and this dataset affords us the unique 

opportunity to systematically identify small molecule mimics or inhibitors of specific genes, 

thereby identifying novel treatments for genetic disorders. In this report, we take this approach 

to identify a novel drug therapy for a monogenic form of familial dilated cardiomyopathy with 

the transcriptional profile of FDA approved drugs.  This approach could potentially be 

replicated for a wide range of monogenic diseases. 

Background 

Mutations in the LMNA gene are associated with familial dilated cardiomyopathy5-7 as well as 

premature aging syndromes.8 LMNA encodes for Lamin A/C, a nuclear structural protein which 

also plays a key role in chromatin organization and transcriptional regulation.9 These mutations 

may be either missense mutations, leading to severe early disease presumably due to dominant 

negative or pathological gain of function, or nonsense mutations characterized by late-onset 

disease due to haploinsufficiency.10,11 LMNA has been shown to be involved in the regulation 

of several signaling pathways whose disruption may contribute to the disease phenotype.  These 

include PDGF signaling, autophagy via Akt/Beclin signaling, MAPK signaling, and histone 

modification.12-16  
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Results 

In this study, we leveraged analysis of the LINCS L1000 dataset combined with iPSC based in 

vitro assays to identify FDA approved compounds that can reverse the effects of LMNA 

mutation at the transcriptional level (Fig. 1). We first obtained the Level 3 (normalized 

expression value) data from the NIH LINCS program. For our analysis, we utilized only the 

978 directly measured genes (the “landmark” genes).  The z-scores published by the LINCS 

program at the time we conducted this analysis were calculated for each sample vs. all the other 

samples on each experimental plate. For the purposes of our analysis, we wanted the z-scores 

calculated vs. controls only. Therefore, we calculated robust z-scores for each treated sample ( 
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 where 𝜇2,/0 is the median value for the appropriate vehicle or empty vector controls 

on each plate). 

We next sought to identify those genes that consistently and specifically shifted in 

expression as a result of LMNA knockdown (Fig. 2). To find genes that consistently responded 

to LMNA knockdown, we performed a “rank of ranks” analysis. First, we ranked the z-scores 

(genes) within each sample that was treated with LMNA-targeting short hairpins (n=84) 

constructs in the LINCS dataset (Fig. 2A, left-hand panel). Next, we combined these ranks 

across the samples into a single list and tested each gene to see how random their ranks were 

across samples by means of the Kolmogorov Smirnov statistic—essentially inverting the 

traditional Gene Set Enrichment Analysis17 to quantify the enrichment of each gene across a set 

of samples rather than a set of genes within each sample (Fig. 2A, right hand panel).  

We also wanted to know how specific these gene expression changes were to LMNA 

knockdown vs. artefactual components of the experimental set up of the LINCS assay or non-
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specific cellular responses to genetic perturbation. Therefore, we repeated the above gene 

scoring using 100,000 random sets of gene-perturbed samples, with each set having the same 

number of samples as our LMNA perturbed set. This procedure allowed us to determine the 

probability that the differential expression statistic calculated for each gene from the LMNA 

perturbed samples was a unique feature of LMNA perturbation as opposed to a generic response 

frequently observed in random sets of gene-perturbed samples (Fig. 2b). The resulting 

bootstrapped p-values were adjusted to control the false discovery rate (FDR).18 

Interestingly, while the most extreme differential scores were all highly significant as 

determined by this analysis, there were several genes that had intermediate differential 

expression scores that were nevertheless highly significant when compared to random 

perturbations (Fig. 2B). We selected those genes with FDR adjusted p-value < 0.001 and an 

enrichment (KS) score > 0.2 (absolute value) as our LMNA knockdown signature (supplemental 

Table S1). These genes were quite consistently down- or up-regulated across samples and cell 

lines (Fig. 2C).  

PDGFA was among the most upregulated genes in our LMNA knockdown signature, 

consistent with recent work documenting activation of PDGF signaling in cardiomyocytes 

harboring mutation of LMNA.12 In addition, we performed Gene Ontology term enrichment 

analysis19 on the Biological Function Ontology for the genes in our signature (Fig 2C). This 

analysis identified multiple GO terms related to autophagy, apoptosis, and hypoxia response 

that were enriched in our LMNA knockdown gene set, also consistent with prior work.7,20  

We next sought to identify drugs that could reverse this LMNA knockdown signature. 

There is some evidence that parametric approaches are quantifiably superior to non-parametric 

scoring metrics for this type of gene signature enrichment analysis. As a result, we chose the 
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XSUM statistic to quantify reversal of the LMNA signature within drug treated samples.21  

Since there were many samples per drug in the L1000 dataset, we took the median score for 

each drug. In this way, we informatically screened over 600 FDA approved drugs for their 

ability to reverse the LMNA knockdown signature. We again assigned p-values to these scores 

by permutation (based on 10,000 random gene signatures). 

As validation, we submitted our LMNA signature to the original CMAP enrichment tool 

(https://portals.broadinstitute.org/cmap/)22 to see what drugs could reverse our knockdown 

signature as determined by the CMAP connectivity score (Table S2). Of the FDA approved 

drugs in our L1000 dataset, 6 demonstrated a significant ability to reverse the LMNA signature 

according the CMAP enrichment tool. Of these 6 drugs, 4 also had significant enrichment scores 

based on the XSUM statistic derived from the L1000 dataset (Fig. 3A). These 4 drugs had 

stronger enrichment scores based on the original CMAP tool compared to the 2 drugs that were 

not enriched in the L1000 analysis. 

We noted that multiple angiotensin receptor blockers (ARBs) exhibited significant 

reversal of the LMNA knockdown signature (Table S3 and Fig 4B), including olmesartan which 

was among the group of drugs that reversed this signature most significantly.  However, not all 

ARBs exhibited this feature. It has previously been demonstrated that the various members of 

this drug class have variable transcriptional effects.23-25 When we analyzed all ARBs in our 

dataset as a group, this class of drugs collectively exhibited a significant reversal of the LMNA 

knockdown signature, but this effect was weaker for the entire class than for olmesartan or 

irbesartan specifically (FDR = 0.0147 vs. 0.0001 and 0.0021, respectively).  

When we examined the effect of the highest scoring ARBs (olmesartan and irbesartan) 

on the expression of the individual genes in the LMNA knockdown signature, we noted that 
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these drugs down regulated many of the genes upregulated by LMNA knockdown, and vice 

versa (Fig 4C).  There was no such trend apparent for telmisartan, which did not exhibit 

significant enrichment in our analysis. However, the transcriptional effects of olmesartan and 

irbesartan were not universal with respect to the LMNA regulated genes, indicating that these 

drugs were acting on only portions of the LMNA knockdown “axis”.   

We next tested whether olmesartan and/or irbesartan treatment could influence the 

expression of cardiac markers and/or function of cardiomyocytes derived from induced 

pluripotent stem cells (iPSC-CMs) harboring a disease-related LMNA nonsense mutation. 

These cells harbor a heterozygous insertion of a guanine between nucleotides 348 and 349, 

causing a frameshift mutation at codon 117, and resulting premature stop at codon 129. In iPSC-

CMs from a healthy control patient treated for 48 hours, a slight increase in MYH6 was 

observed in olmesartan treated cells, and a slight increase in TNNT2 expression was observed 

in captopril treated cells (Fig. 4A). In contrast, there was a 1.5-fold increase in MYH6, MYH7, 

and TNNT2 in olmesartan treated iPSC-CMs derived from a patient harboring a nonsense 

LMNA mutation. Other treatments tested either had no effect on these markers or suppressed 

their expression. We hypothesized that increased expression of these sarcomeric genes would 

correspond to improved contractility in these LMNA mutant cells.  

To test that hypothesis, we examined what effect, if any, treatment of iPSC-CMs with 

these drugs had on the functional properties of these cells. For this, we examined the contractile 

properties of healthy control and LMNA-mutated iPSC-CMs. Irbesartan treatment of iPSC-

CMs derived from a control patient produced a very small (though statistically significant) 

increase in contraction velocity (Fig 4B), but no significant effect on contractile rate relative to 

DMSO treated controls, while olmesartan had no effect on the behavior of these cells relative 
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to DMSO control.  In contrast, olmesartan treatment of iPSC-CMs derived from the LMNA-

mutation patient resulted in a marked increase in both contraction velocity and beating rate. 

While there was a trend towards increased relaxation velocity in olmesartan treated cells 

compared to DMSO only control, this difference was not significant. However, olmesartan 

treatment was associated with significantly faster relaxation velocity as compared to the other 

drugs tested. These observations support the hypothesis that olmesartan will not exacerbate any 

underlying diastolic dysfunction and may in fact be favorable to other heart failure medications 

with respect to diastolic function.  

Conclusions 

These results demonstrate that the LINCS L1000 database can be exploited to perform an in 

silico screen for repositionable drugs that reverse the transcriptional consequences of specific 

genetic perturbations. One of two treatments we identified in such a way for LMNA mutation 

related cardiomyopathy showed a favorable response in our in vitro model—suggesting that 

this approach to drug repositioning for rare diseases may be a promising alternative to the 

traditional drug development pipeline. 

Methods 

Statistics 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized. The investigators who performed the phenotype assessment of the CMs were 

blinded to group allocation during experiments and data collection. The studies comply 

with all ethical regulations.  
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Data Availability 

This analysis was performed on the initial release for the LINCS L1000 dataset. Updated data 

from LINCS is available under accession #GSE92742. The relevant same plate vehicle/vector 

control z-scores we calculated from the original LINCS L1000 data release, as well as R scripts 

to reproduce the analysis and figures presented here, are available at  

https://github.com/vanandelinstitute/Lamin. 

LMNA Gene Signature Definition 

Full details of the generation of the LMNA gene expression signature and drug selection based 

on that signature using the LINCS L1000 database, are provided in a supplementary file 

(data_analysis.html). This information and supporting data required to repeat the analysis 

presented in this paper (including regenerating the figures) are freely available from github: 

https://github.com/vanandelinstitute/Lamin. Briefly, normalized gene expression data was 

obtained from the LINCS L1000 program. We then calculated the robust z-score for each gene 

within each sample relative to vehicle treated samples of the same cell type on the same 384 

well plate. We extracted the z-scores for all instances treated with short hairpins targeting 

LMNA. This data was ranked sample-wise. Second, the entire matrix of ranks (978 genes by 84 

shRNA samples) was ranked and Kolmogorov Smirnov analysis was performed on the position 

of each occurrence of each gene within this vector of ranks. The resulting analysis quantifies 

the extent to which the expression of each gene was consistently biased up or down relative to 

all other genes. 

Finally, a bootstrapping procedure as performed to estimate significance of the KS score 

for each gene. We calculated KS scores for 100,000 random sets of shRNA treated samples (84 
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samples in each set to match the LMNA set) in the LINCS data. The resulting p-values were 

adjusted for multiple comparisons using the method of Benjamini and Hochberg to control the 

false discovery rate at less than 5%.18 

Drug Selection 

To estimate the bias in gene expression for the genes in our LMNA signature within each sample 

in the L1000 dataset treated with and FDA approved compound, we used the XSUM metric 

because there is some evidence it is among the more performant algorithms for CMAP type 

data.21 The XSUM limits its search to the top N variable genes. However, since the L1000 

dataset is already confined to the 978 most variant genes in the genome as determined by the 

LINCS program, we did not filter the gene set further. Therefore, we take the sum of the z-

scores for our upregulated genes and subtract the sum of the z-scores of the down regulated 

genes within the 978 L1000 genes for each drug perturbed instance. Because there are multiple 

instances per drug, we collapsed these scores to a single score per drug by taking the median.We 

again used a bootstrapping procedure to estimate the significance of each drug’s score relative 

to random perturbations. We scored 10,000 random gene signatures (each with the same number 

of “up” and “down” regulated genes as the LMNA signature) to estimate how specific each 

drug was to the LMNA signature. Drugs were then ranked based on their bootstrapped p-value. 

Generation of human iPSCs  

Protocol for isolation and use of patient blood-derived peripheral blood mononuclear cell 

(PBMC) were approved by the Stanford University Human Subjects Research Institutional 

Review Board. PBMCs were isolated using a Ficoll-Paque PLUS gradient (GE Healthcare) and 

expanded as previously reported.26  For reprogramming, 1 million PBMCs were plated in 
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medium supplemented with four OSKM reprogramming factors (CytoTune-iPS Sendai 

Reprogramming Kit, Life Technologies) according to the manufacturer’s recommendations. 

The medium was changed after 24hr transfection and transferred to E7N medium (E8 medium 

minus TGFβ1 and 200 µM sodium butyrate) on day 3. Colonies were picked into 1 well of a 

12-well plate (1-colony in each well) on around day 20 and cultured in E8 with 10 µM Y-27632 

(Selleckchem). hiPSCs were then expanded into 6-well plated (coated with 1:200 growth factor-

reduced Matrigel) and maintained in E8 medium. Confluent hiPSCs were passaged every four 

days using 0.5 mM EDTA.  

Differentiation of hiPSCs to cardiomyocytes 

hiPSCs were routinely maintained in 6-well plates as described above. Cells were grown to 

reach 90% confluency and then subjected to differentiation in RPMI/B27 without insulin 

medium (Life Technologies) supplemented with 6 µM CHIR99021 (Selleckchem). Following 

48h, the cells were subjected to the same medium supplemented with 4 µM IWR-1-endo 

(Selleckchem). On day 7, the medium was changed to RPMI-B27 with insulin and exchanged 

every other day. Beating hiPSC-CMs usually can be observed around day 7 to day 10. On day 

11, the medium was switched to RPMI-B27 without D-glucose (Life Technologies) for 4 days 

to purify cardiomyocytes. For drug treatment and function analysis, purified iPSC-CMs were 

dissociated using TrypLE Express (Life Technologies) and re-plated to Matrigel-coated plates 

accordingly. 

Drug Treatment 

The indicated drug compounds were reconstituted from powder in DMSO to a working 

concentration of 10mM. Drugs were then added to the cell culture wells to a final concentration 
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of 10µM and the cell were returned to the cell culture incubator for the indicated times. Controls 

were treated with DMSO alone.  

Quantitative real-time PCR. 

RNA was extracted using a QIAGEN RNeasy kit following the manufacturer’s instructions. 

cDNA was synthesized from 100 ng of total RNA using the High Capacity RNA-to-cDNA kit 

(ThermoFisher Scientific). Realtime-PCR was performed using TaqMan Gene Expression 

Master Mix and TaqMan probes (GAPDH, Hs02758991_g1; TNNT2, Hs00165960_m1; 

MYH6, Hs01101425_m1; MYH7, Hs01110632_m1). PCR reactions were conducted on 

7900HT Real-Time PCR system (ThermoFisher Scientific) with triplicates and assessed using 

ΔΔCt relative quantification (RQ) method normalizing to GAPDH housekeeping gene. 

High-content video-based cardiomyocyte contractility analysis   

hiPSC differentiated cardiomyocytes were plated onto Matrigel-coated 96 well plates (40,000 

per well) as described above. Following treatment with drugs, iPSC-CMs were examined on 

Sony SI8000 Live Cell Imaging System (Sony Biotechnology) with CO2 and 37 °C temperature 

incubation. Cell activities were recorded the beating video at a high frame rate (150 fps), focus 

and light conditions were automated controlled by the SI8000 software. After data acquisition, 

displacement and magnitudes of cardiomyocyte motions were calculated and presented using a 

motion detection algorithm by SI8000 software. 
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Figure 1. Overview of approach. The LINCS L1000 data was downloaded, and expression levels 
were converted to z-scores by comparing each treated sample to corresponding controls. From this 
dataset, we identify a gene-specific signature (in this case, the signature describing the 
transcriptional consequences of LMNA knockdown). With this signature, gene-targeting drugs are 
identified. The candidate drugs are then validated—in this case by testing in patient and healthy 
control iPSC-derived cardiomyocytes. Estimated duration and cost of this repositioning pipeline 
are provided for reference. 
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Figure 2. Establishment of LMNA knockdown gene signature. (A) Genes were scored based on 
how consistently and how strongly they were up- or down-regulated by LMNA knockdown in the 
LINCS L1000 database.  Permutation of random sets of short hairpin perturbed samples was used 
to estimate the significance of these expression shifts.  We selected those genes with both a KS 
score > 0.3 and a –log p-value > 0.3 as our LMNA knockdown gene set. (B) The LMNA 
knockdown gene signature showed fairly uniform up- or down-regulation across all samples in the 
L1000 dataset across all cell types treated. (C) Gene ontology enrichment analysis suggests that 
the genes in this signature are involved in pathways related to autophagy and apoptosis.  
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Figure 3. The LMNA knockdown signature was used to identify drugs that could reverse these 
transcriptional changes in vitro. (A) We first submitted the gene signature to the original CMAP 
web tool.  Of the top 6 drugs that most strongly reversed the LMNA knockdown signature based 
on that tool, 4 also exhibited highly significant reversal of this signature in the LINCS L1000 data, 
suggesting there was some coherence between the various platforms and analytic approaches used 
by these systems. (B) We note that two angiotensin receptor blockers were among the most highly 
significant drugs based on their ability to reverse the LMNA knockdown signature.  Indeed, 3 of 
7 ARBs in the database showed gene set enrichment with an FDR adjusted p-value of < 0.05.  (C) 
These ARBs do not reverse the entirety of the LMNA signature.  Rather, high scoring ARBs 
(olmesartan and irbesartan) reverse highly overlapping segments of the LMNA signature, whereas 
telmisartan (a low scoring drug) exhibits a more random expression pattern for the genes in the 
LMNA knockdown signature. 
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Figure 4. In vitro validation of the effect of predicted drugs on cardiomyocyte transcription and 
phenotype. All results are from duplicate experiments, with 3 technical replicates per experiment 
(total N=6). All error bars are +SEM. (A) We measured the expression of three cardiac markers 
(MYH6, MYH7, and TNNT2) by quantitative PCR in cardiomyocytes derived from iPSC cells 
from a healthy control and a patient harboring a LMNA mutation.  Fold-change relative to DMSO 
treated controls was calculated for each marker after 48 hours of treatment with the drugs shown, 
which include 2 of the ARBs identified by our analysis, and two angiotensin converting enzyme 
inhibitors used as controls due to their canonical activity on the same pathway as ARBs. Significant 
differences from DMSO treated samples are indicated (*: p < 0.05, **: p< 0.01, ***: p<0.001 by 
two-tailed t-tests). (B) Beating rate, contractile velocity, and relaxation velocity were measured by 
quantitative video microscopy in both control and LMNA mutant cardiomyocytes. Rate is 
expressed in beats per minute. Contractile force is expressed in micrometers per second. 
Significant differences from DMSO and/or olmesartan treated samples are indicated (*: p < 0.05, 
**: p< 0.01, ***: p<0.001 by two-tailed t-tests).  
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L1000 id Entrez ID Symbol Direction Score Adj. P 
204131_s_at 2309 FOXO3 up 0.31038 0.00026 
200059_s_at 387 RHOA up 0.33561 0.00026 
200807_s_at 3329 HSPD1 up 0.45058 0.00026 
203952_at 22926 ATF6 up 0.31712 0.00026 
207181_s_at 840 CASP7 up 0.34447 0.00026 
205463_s_at 5154 PDGFA up 0.60383 0.00026 
204949_at 3385 ICAM3 up 0.33742 0.00026 
212189_s_at 25839 COG4 up 0.23888 0.00026 
217789_at 58533 SNX6 up 0.29959 0.00026 
203171_s_at 23378 RRP8 up 0.29550 0.00026 
200670_at 7494 XBP1 up 0.27354 0.00026 
202749_at 7485 WRB up 0.33783 0.00026 
202942_at 2109 ETFB up 0.31963 0.00026 
201620_at 8720 MBTPS1 up 0.31108 0.00026 
203931_s_at 6182 MRPL12 up 0.39031 0.00026 
201819_at 949 SCARB1 up 0.54351 0.00026 
201827_at 6603 SMARCD2 up 0.29545 0.00026 
208398_s_at 9519 TBPL1 up 0.26473 0.00026 
36936_at 7264 TSTA3 up 0.42983 0.00026 
202651_at 9926 LPGAT1 up 0.53546 0.00026 
201761_at 10797 MTHFD2 up 0.40639 0.00026 
201572_x_at 1635 DCTD up 0.44987 0.00026 
200698_at 11014 KDELR2 up 0.27340 0.00026 
202812_at 2548 GAA up 0.48100 0.00026 
202494_at 10450 PPIE up 0.30327 0.00026 
201849_at 664 BNIP3 up 0.27682 0.00026 
203675_at 4925 NUCB2 up 0.24168 0.00026 
202722_s_at 2673 GFPT1 up 0.30721 0.00026 
201412_at 26020 LRP10 up 0.24893 0.00026 
201503_at 10146 G3BP1 up 0.48116 0.00026 
212811_x_at 6509 SLC1A4 up 0.27994 0.00026 
201788_at 11325 DDX42 up 0.33371 0.00026 
204781_s_at 355 FAS up 0.29861 0.00026 
218845_at 56940 DUSP22 up 0.31922 0.00026 
204999_s_at 22809 ATF5 up 0.42710 0.00026 
217761_at 55256 ADI1 up 0.40836 0.00026 
202732_at 11142 PKIG up 0.28803 0.00026 
221539_at 1978 EIF4EBP1 up 0.26660 0.00039 
212051_at 147179 WIPF2 up 0.28797 0.00039 
201614_s_at 8607 RUVBL1 up 0.30746 0.00039 
204256_at 79071 ELOVL6 up 0.32921 0.00039 
202738_s_at 5257 PHKB up 0.27767 0.00039 
203188_at 11041 B4GAT1 up 0.26010 0.00039 
201709_s_at 8508 NIPSNAP1 up 0.20795 0.00039 
201080_at 8396 PIP4K2B up 0.31016 0.00039 
202260_s_at 6812 STXBP1 up 0.37298 0.00039 
212955_s_at 5438 POLR2I up 0.32508 0.00039 
205452_at 9488 PIGB up 0.24231 0.00039 
219222_at 64080 RBKS up 0.27915 0.00039 
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L1000 id Entrez ID Symbol Direction Score Adj. P 
207842_s_at NA NA up 0.23652 0.00056 
203557_s_at 5092 PCBD1 up 0.32056 0.00056 
218292_s_at 51422 PRKAG2 up 0.23998 0.00070 
212140_at 23244 PDS5A up 0.28592 0.00070 
205895_s_at 9221 NOLC1 up 0.36963 0.00070 
209860_s_at 310 ANXA7 up 0.21816 0.00070 
203135_at 6908 TBP up 0.22961 0.00083 
201626_at 3638 INSIG1 up 0.29395 0.00083 
202963_at 5993 RFX5 up 0.39054 0.00083 
202696_at 9943 OXSR1 up 0.21009 0.00096 
209662_at 1070 CETN3 up 0.34161 0.00096 
221478_at 665 BNIP3L down 0.30824 0.00051 
203665_at 3162 HMOX1 down 0.53932 0.00051 
208905_at 54205 CYCS down 0.27988 0.00051 
209588_at 2048 EPHB2 down 0.45589 0.00051 
201416_at 6659 SOX4 down 0.26452 0.00051 
202986_at 9915 ARNT2 down 0.23398 0.00051 
204000_at 10681 GNB5 down 0.23472 0.00051 
201611_s_at 23463 ICMT down 0.40633 0.00051 
201243_s_at 481 ATP1B1 down 0.38234 0.00051 
205963_s_at 9093 DNAJA3 down 0.26364 0.00051 
214259_s_at 8574 AKR7A2 down 0.30203 0.00051 
209364_at 572 BAD down 0.33628 0.00051 
203546_at 9670 IPO13 down 0.26234 0.00051 
209409_at 2887 GRB10 down 0.40340 0.00051 
203696_s_at 5982 RFC2 down 0.34627 0.00051 
218898_at 79850 FAM57A down 0.34849 0.00051 
203279_at 9695 EDEM1 down 0.47046 0.00051 
203315_at 8440 NCK2 down 0.30229 0.00078 
217766_s_at 23585 TMEM50A down 0.29173 0.00078 
203218_at 5601 MAPK9 down 0.21427 0.00078 
202184_s_at 55746 NUP133 down 0.25876 0.00078 
200895_s_at 2288 FKBP4 down 0.28478 0.00078 
202720_at 26136 TES down 0.21366 0.00078 

 

Supplemental Table S1: LMNA Knockdown Signature Genes. Genes identified as consistently 
and specifically perturbed by LMNA targeting short hairpin treatment. The direction column 
indicates whether the gene is up-regulated or down-regulated by short hairpin treatment relative to 
controls. 
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rank cmap name mean n enrichment p 
1 vorinostat -0.599 12 -0.771 0 
2 trichostatin A -0.412 182 -0.5 0 
3 scriptaid -0.684 3 -0.941 0.00032 
4 rifabutin -0.608 3 -0.889 0.00268 
5 rolitetracycline -0.247 4 -0.801 0.00304 
7 difenidol -0.381 3 -0.859 0.00563 

9 
methacholine 

chloride -0.407 3 -0.851 0.00659 
13 levamisole -0.325 4 -0.728 0.01112 
15 loperamide -0.438 6 -0.603 0.01357 
16 sulfadiazine -0.322 5 -0.645 0.01402 
18 lobelanidine -0.35 4 -0.706 0.01554 
19 GW-8510 -0.445 4 -0.701 0.01649 
20 calmidazolium -0.542 2 -0.906 0.01795 
21 ticarcillin -0.487 3 -0.775 0.02342 
23 MK-886 -0.483 2 -0.882 0.02813 
24 imipenem -0.358 4 -0.665 0.02847 
27 suloctidil -0.339 4 -0.651 0.03495 
29 crotamiton -0.43 4 -0.644 0.03847 
31 piracetam -0.335 4 -0.636 0.04269 
33 etamivan -0.313 4 -0.633 0.04434 

Supplemental Table S2: Drugs which significantly reverse the LMNA knockdown signature as 
determined by the original CMAP web tool.  
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Drug P-value   Drug P-value   Drug P-value 
Acyclovir 0.000100   Erlotinib 0.002700   Ganciclovir 0.012899 
Chloramphenicol 0.000100   Prazosin 0.002900   Doxorubicin 0.013599 
Diclofenac 0.000100   Carteolol 0.003100   Paclitaxel 0.013599 
Elvitegravir 0.000100   Acetylcholine 0.003200   Citalopram 0.013899 
Imatinib 0.000100   Glimepiride 0.003200   Mitoxantrone 0.015098 
Olmesartan 0.000100   Alprazolam 0.003400   Methotrexate 0.015198 
Praziquantel 0.000100   Everolimus 0.003400   Entecavir 0.016898 
Carbidopa 0.000200   Benzonatate 0.003600   Ruxolitinib 0.016998 
Clopidogrel 0.000200   Methoxsalen 0.003600   Raltegravir 0.018098 
Isotretinoin 0.000200   Indinavir 0.003800   Nortriptyline 0.018198 
Ketoprofen 0.000200   Modafinil 0.003800   Meloxicam 0.018498 
Mafenide 0.000200   Plerixafor 0.004000   Vorinostat 0.019498 
Auranofin 0.000300   Levetiracetam 0.004700   Isosorbide 0.019998 
Minoxidil 0.000300   Disulfiram 0.004900   Daunorubicin 0.020698 
Olopatadine 0.000300   Trichostatin-A 0.004900   Gemcitabine 0.021698 
Tenofovir 0.000300   Prednisone 0.005099   Hydroflumethiazide 0.021798 
Dinoprostone 0.000500   Ingenol 0.005199   Droperidol 0.022298 
Homatropine 0.000500   Ranolazine 0.005199   Nicardipine 0.022998 
Metaxalone 0.000600   Cilastatin 0.005299   Nimodipine 0.023198 
Riluzole 0.000600   Penicillin 0.005399   Etoposide 0.023898 
Cefuroxime 0.000700   Gatifloxacin 0.005999   Cyclophosphamide 0.024098 
Fludarabine 0.000700   Panobinostat 0.006099   Fenofibrate 0.025397 
Fluvoxamine 0.000700   Ciclopirox 0.006399   Testosterone 0.025397 
Belinostat 0.000800   Edrophonium 0.006999   Tolmetin 0.026097 
Ramipril 0.000800   Etodolac 0.007099   Pimozide 0.028097 
Propafenone 0.000900   Amantadine 0.007199   Eprosartan 0.028497 
Temsirolimus 0.001000   Alitretinoin 0.007299   Epirubicin 0.028997 
Loperamide 0.001100   Nefazodone 0.007399   Pirfenidone 0.028997 
Cefotaxime 0.001200   Atenolol 0.007599   Brinzolamide 0.030497 
Pitavastatin 0.001300   Formoterol 0.007599   Doxylamine 0.031697 
Anagrelide 0.001400   Capecitabine 0.008099   Primaquine 0.032197 
Clozapine 0.001400   Amiodarone 0.008199   Propylthiouracil 0.033097 
Ponatinib 0.001400   Ezetimibe 0.008199   Fluconazole 0.034397 
Acamprosate 0.001500   Nafcillin 0.008199   Tretinoin 0.035296 
Rifabutin 0.001600   Topotecan 0.008199   Moxifloxacin 0.036496 
Diazoxide 0.001700   Balsalazide 0.008599   Flurbiprofen 0.037596 
Sildenafil 0.001700   Acarbose 0.008799   Ethosuximide 0.038396 
Imiquimod 0.002000   Cortisone 0.008899   Dactinomycin 0.040596 
Irbesartan 0.002100   Nizatidine 0.008999   Levofloxacin 0.041196 
Bumetanide 0.002200   Granisetron 0.009199   Ticlopidine 0.041596 
Isradipine 0.002200   Propofol 0.009899   Leflunomide 0.042796 
Busulfan 0.002300   Levocetirizine 0.010099   Ketorolac 0.042896 
Bimatoprost 0.002400   Vincristine 0.010699   Niacin 0.046795 
Venlafaxine 0.002400   Gefitinib 0.010799   Bortezomib 0.047095 
Quinine 0.002600   Metronidazole 0.010799   Fluocinolone 0.048895 
Carbamazepine 0.002700   Bethanechol 0.011799       

Supplemental Table S3: Drugs which significantly reversed LMNA knockdown signature in our 
analysis of L1000 dataset. 
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