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Abstract 

In the resting state (closed or open eyes) the electroencephalogram (EEG) and the magnetoencephalogram (MEG) 

exibit rhythmic brain activity is typically the 10 Hz alpha rhythm. It has a topographic frequency spectral 

distribution that is, quite similar for both modalities-- something not surprising since both EEG and MEG are 

generated by the same basic oscillations in thalamocortical circuitry. However, different physical aspects underpin 

the two types of signals. Does this difference lead to a different distribution of reconstructed sources for EEG and 

MEG rhythms? This question is important for the transferal of results from one modality to the other but has 

surprisingly received scant attention till now. We address this issue by comparing eyes open EEG source spectra 

recorded from 77 subjects from the Cuban Human Brain Mapping project with the MEG of 63 subjects from the 

Human Connectome Project. Source spectra for each voxel and frequency were obtained via a novel sparse-

covariance inverse method (BC-VARETA) based on individualized BEM head models with subject-specific 

regularization parameters (noise to signal ratio). We circumvent the zero inflated statistical issue arising from 

sparse estimation by employing a novel dimensionality reduction technique known as Zero-inflated Factor 

Analysis (ZIFA). Both minimum energy and Hotelling's T-2 tests showed that ZIFA scores for MEG and EEG 

sources were significantly different at all frequency bands. These results exclude a simple identification of MEG 

and EEG sources of resting-state EEG rhythms. Further study is required to determine the relative contribution 

of instrumental, physical or physiological mechanisms to these differences. 
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1. Introduction 
At resting state EEG and MEG readings show an evident rhythmic activity in frequency spectra, specifically 

alpha band. Postsynaptic potentials (PSP) are continuously happening even in resting state (both eyes open and 

closed). These PSPs are generated from the same cortical networks (thalamocortical, cortical-cortical, etc.) PSPs 

generate primary current densities (PCD) at the cortical surface and these PCDs are measured as electric potential 

or magnetic field by EEG electrodes and MEG magnetometers respectively. Since both phenomena are generated 
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from the same cortical activity, there should not be any differences in these rhythms which seems evident at first 

sight. However, both modalities are physically different in nature, so they suffer from different effects of volume 

conduction. Moreover, the measurement noise in the recorded signals might be different since the engineering 

and physics behind the signal and sensors that are used for acquiring those signals is different for both modalities.  

These biological and instrumental factors affect the M/EEG signals. However, it’s an ongoing discussion that 

whether the sources of the acquired rhythmic activities are the same or different. The term source localizatepion is 

used to define the process of reconstructing the cortical source spectra or to localize the cortical activity from the 

electromagnetic rhythms. While comparing source localization, there are different results based on a variety of 

experiments. Some claimed EEG source localization is better than MEG (Liu, Dale, & Belliveau, 2002), (Gavaret, 

Badier, Bartolomei, Bénar, & Chauvel, 2014) (Klamer, et al., 2014) others found in their experiments that MEG 

has better source localization accuracy (Cohen & Cuffin, 1991) (Cuffin, 1983), while others did not find 

significant differences (Hedrich, Pellegrino, Kobayashi, Lina, & Grova, 2017) (Waldert, et al., 2008) (Cuffin, 

1983) between two modalities performance on source localization. There is a significant amount of research that 

claims combining EEG and MEG outperforms individual modality in terms of source localization and spike 

detection (Lin, et al., 2003) (Knake, et al., 2006) (Sharon, Hämäläinen, Tootell, Halgren, & Belliveau, 2007) 

(Muthuraman, et al., 2014) (Plummer, et al., 2019).  

One major difference between EEG and MEG is the sensitivity to source orientation and source Signal-to-

Noise Ratios (SNR) at different brain areas. Evidence for the sensitivity of EEG to tangential and MEG to radial 

sources are found in many studies (Cuffin, 1983) (Haueisen, Funke, Güllmar, & Eichardt, 2012). However, there 

are results showing the opposite case and that opens the discussion of the sensitivity of EEG and MEG to different 

source orientation (Hunold, Funke, Eichardt, Stenroos, & Haueisen, 2016) (Rossi, Luria, Sommariva, & 

Sorrentino, 2017). The sensitivity of EEG and MEG to deep and superficial sources has been discussed in many 

studies claiming MEG is not able to give high SNRs for deep sources while EEG is successful in that (Hunold, 

Funke, Eichardt, Stenroos, & Haueisen, 2016).  

As mentioned earlier that volume conduction effect has influence on the readings of both modalities. This is 

demonstrated in the experiments conducted by many researchers for different head models (Vorwerk, et al.) 

(Siems, Pape, Hipp, & Siegel, 2016). They also found that tissue anisotropy and the white matter has major 

conduction effect for EEG while MEG is only affected by white matter anisotropy (Haueisen, et al., 2002) (Siems, 

Pape, Hipp, & Siegel, 2016).  These two phenomena also affect source reconstruction accuracy where EEG is 

more susceptible to muscle artifacts and different head models while MEG is less prone to both factors (Wolters, 

et al., 2006). 

There are some shortcomings in almost all the current studies. The comparative studies were not based on a 

statistical analysis of source spectra. Real head models were not used in many studies, the number of subjects was 

not significantly high, modern inverse solutions were not used to incorporate the effects of cortical activity as 

well as connectivity estimation techniques. All these aspects are very important to achieve a transferal between 

these two modalities. In this study, we discuss this issue by comparing the resting state (eyes open) of 77 subjects 

from Cuban Human Brain Mapping project and MEG of 63 Human Connectome Project. Figure 1. shows a 

flowchart for the methodology that has been used for statistical comparison of two modalities. We have used a 

novel inverse method BC-VARETA which works on the individual head model based on Boundry Element 

Method (BEM). We perform statistical testing on the results of the inverse solution we used and found both 

modalities significantly different. These results may be helpful in achieving the cross-modality transfer of 

information. 

2. Materials and Methods 

2.1. Dataset  

The EEG data we analyzed is from Cuban Brain Mapping Project (Hernandez-Gonzalez, et al., 2011). EEG was 

recorded using 58 channels, electrodes were placed according to the international 10/20 electrode system. The 

EEG data was acquired from 77 healthy subjects (64 male and 13 females, ages between 19 to 50 years old) in 
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resting state with eyes open. The sampling frequency was 200 Hz. Magnetic resonance imaging (MRI) was 

performed on (MAGNETOM Symphony Siemens, 1.5 Tesla) equipped with a 32-channel head coil.  

The MEG data that has been studied in this work is from the Human Connectome Project (Van Essen, et al., 2011) 

(Behrens, et al., 2013)(Van Essen et al., 2011) (Behrens et al., 2013), led by Washington University, University 

of Minnesota, and Oxford University ( https://www.humanconnectome.org/ ) (Hileman, et al., 2013). MRI for the 

anatomical data was collected using a 3 Tesla (3T) Siemens Skyra scanner. The MEG data was acquired using 

248 magnetometer channels and 23 reference channels of a whole head MAGNES 3600 (4D Neuroimaging, San 

Diego, CA) system. The sampling frequency of the preprocessed data was 508 Hz. We analyzed 63 healthy 

subjects (33 male and 30 females, ages between 22 to 35 years old) with eyes open resting-state condition.  

 

 

 

EEG data MEG data 

Pre-Processing Pre-Processing 

Head Modeling 

using T1w images 

Head Modeling 

using T1w images 

Estimating Lead Field 

Estimating brain sources using  

BC-VARETA 

Estimating Lead Field 

Estimating brain sources using  

BC-VARETA 

Zero Inflation Factor Analysis 

Statistical comparison by Hotelling’s T2 test, minimum energy 

test 
Figure 1 Flowchart of research methodology 
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2.2.  Preprocessing 

The EEG data was filtered using a band-pass filter of 0.5 Hz to 60 Hz. Furthermore, Independent Component 

Analysis (ICA) (Comon, 1994) was applied on the time series data, to remove the artifacts. 

The MEG data were preprocessed by the Human Connectome Project teams using MEG Connectome pipeline 

(Van Essen, et al., 2011) . A high-pass filter of 1.3 Hz and a low-pass filter 150 Hz was applied to the data with 

two additional notch filters of 59-61 Hz and 119-121 Hz. Moreover, ICA was used for artifact removal. 

2.3. Forward model 

To estimate the realistic head models of individual subjects, Freesurfer toolbox was used( 

http://www.freesurfer.net/ ) (Dale, Fischl, & Sereno, 1999) (Fischl, 2012) (Dale, Fischl, & Sereno, 1999) (Fischl, 

2012) on T1w images. Brainstorm ( https://neuroimage.usc.edu/brainstorm/ ) (Tadel, Baillet, Mosher, Pantazis, 

& Leahy, 2011) (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) was used to apply Boundary Element Method 

(BEM) (Fuchs, Kastner, Wagner, Hawes, & Ebersole, 2002) for head modeling and estimation of the lead field 

for each subject. The lead field was computed for 6002 sources. 

2.4. Brain Connectivity Variable Resolution Tomographic Analysis (BC-VARETA) 
Furthermore, the Data Empirical Covariance was computed using Fourier Transform (48 equispaced frequency 

components between 0-19 Hz were used). The time-series data, lead field matrix and Data Empirical Covariance 

was used to apply BC-VARETA and the source activity and connectivity along the whole spectra were obtained.  

The Brain Connectivity Variable Resolution Tomographic Analysis (BC-VARETA) (Gonzalez-Moreira, Paz-

Linares, Martinez-Montes, & Valdes-Sosa, Third Generation MEEG Source Connectivity Analysis Toolbox (BC-

VARETA 1.0) and Validation Benchmark, 2018)(Gonzalez-Moreira et al., 2018) is a recently proposed technique 

to reconstruct source distribution from M/EEG rhythms. This method rests on a Bayesian identification approach 

of linear dynamical systems in the frequency domain. The M/EEG generative model underlying BC-VARETA is 

expressed in terms of spectral equations of a Linear State Space Model (LSSM), which is estimated by Hidden 

Gaussian Graphical State-Model (HIGGS) (Paz-Linares, Gonzalez-Moreira, Martinez-Montes, & Valdes-Sosa, 

2018)(Paz-Linares et al., 2018a). BC-VARETA uses a univariate version of HIGGS that allows searching the 

sparse subspace with statistical guarantees, an instance of  SSBL based on the Elastic-Net model (Paz-Linares et 

al., 2017). The synergy of these algorithms (HIGGS and SSBL) turns BC-VARETA in a high-resolution technique 

for source activity estimation that outperforms state-of-the-art methods by several orders of magnitude (Gonzalez-

Moreira, et al., 2018)(Paz-Linares et al., 2018b). 

 

2.5. Frequency scaling 
Outliers in the data could add bias to the results of the statistical comparison between sources of M/EEG 

rhythmic activity. To deal with outliers, frequency scaling was applied according to the characteristics of the 

data. Following are the steps: 

(1) The values smaller than 10−3 were discarded (were set to 0).  

(2) log10 was applied to the non-zero values of source spectra. This was to obtain ZIFA scores (explained in 

next section).  

(3) An arbitrary number was added to deal with negative values generated due to log transformation in step 2.  

(4) For each subject and each frequency component, normalization was done by dividing with the maximum 

value. 
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Finally, we obtained the scaled source spectra, refer Figure 2(b). 

(a)      (b) 

Figure 2 M/EEG source activity (a) before frequency scaling (b) after scaling data 

2.6. Zero inflation Factor analysis (ZIFA) 

When data is highly sparse due to a large number of unobserved values this is known as Zero Inflation. While 

dealing with source leakage and to minimizes the False Positive sources, BC- VARETA use Sparse Hermitian 

Sources Graphical Model (Paz-Linares, Gonzalez-Moreira, Martinez-Montes, & Valdes-Sosa, 2018). This 

generates a large number of zero activations. Thus, the resultant source spectra were highly sparse or Zero-

Inflated. The histogram of source activations is shown in Figure 3. which demonstrates zero inflation in 

reconstructed source space.  

 

 

Principal components analysis (PCA) (Pearson, 1901) (Harold Hotelling, 1933) (Ku, Storer, & Georgakis, 1995) 

is the most frequently used method in the literature for data cleaning and dimensionality reduction. PCA finds the 

direction of the largest variances as principal components and uses a linear transformation to model a latent space. 

However. it does not account for a large number of zero or null values in the data. Specialized statistical methods 

are needed to deal with zero-inflated data. Therefore, for the comparison of M/EEG rhythms in the reconstructed 

zero-inflated source spectra, we applied a novel method known as Zero-inflated factor analysis (ZIFA) (Pierson 

& Yau, 2015). It is an extension of probabilistic principal components analysis (PPCA) (Michael, E. Tipping & 

Figure 3 histogram for source activations shows Highly sparse or Zero inflated source space 
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Christopher M. Bishop, 1999). The main idea is to reduce the dimensionality of data while considering the effect 

of zeros. It suggests that zeros in the data are generated by a separate process. Hence, it models zero and non-zero 

source activations independently. A Python-based software implementation and source codes are available online 

via an MIT License: https://github.com/epierson9/ZIFA. (Pierson & Yau, 2015). 

ZIFA was applied for dimensionality reduction on highly sparse source space. Based on the variance explained 

by each factor, it was decided to retain only the first 40 factors as the dimensions of latent space and the rest were 

discarded (refer Figure 4).  

 

 

Figure 4 Explained variance of each factor obtained by ZIFA 

2.7. Statistical Testing for Comparing Sources of M/EEG rhythmic activity 

After the dimensionality reduction, we have applied two multivariate non-parametric statistical tests Hotelling’s 

T-2 test and Minimum Energy Norm test, to identify the statistically significant difference in the ZIFA scores, 

generated by the sources of the rhythms in the two modalities. 

3. Results  
Applying BC-VARETA on the EEG and MEG time series, we have obtained the source activations for the M/EEG 

rhythms. As BC-VARETA maps activity and connectivity in the frequency domain. The results of BC-VARETA for 

each subject were source spectra for each voxel(6002) in 48 equispaced frequency bins between 0-19 Hz. Figure 5 

shows the distribution of source activity of MEG and EEG after rescaling, the mean values of each frequency bin are 

Figure 5 The mean value in each frequency bin resulting from BC_VARETA for MEG versus EEG 
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plotted. It is evident, that the range of mean MEG source activations has a larger spread than EEG. However, most of 

the mean values of both modalities are in the red squared region. 

Later, Zero Inflated factor analysis (ZIFA) was applied for dimensionality reduction in highly sparse source 

activations. The results are shown in Figure 6. The histogram of ZIFA factors in latent space shows a normal 

distribution which is almost symmetrical around zero. Furthermore, ZIFA was also applied separately on frequency 

band-specific source spectra (i.e. delta: 0.7812 Hz to 3.9060 Hz, theta: 4.2966 Hz to 7.8120 Hz, alpha: 8.2026 Hz to 

13.6710 Hz, beta: 14.0616 Hz to 18.7488 Hz). 

 

Figure 6 The histogram of factors from ZIFA  

To answer the question about the generators/sources of EEG and MEG rhythms, that if these sources are essentially 

the same or different, the statistical tests  were applied on the scores of ZIFA, to find out any significant differences 

in the two modalities. The results are shown in Table 1. 

Test 

Band 

Energy statistical test Hotelling’s T-squared test 

P-value Energy statistic P-value Hotelling statistic 

All bands 0.001 32.18 0 970 

Delta band 0.001 25.44 9.56e-13 319 

Theta band 0.001 35.13 2.35e-14 361 

Alpha band 0.001 36 0 838 

Beta band 0.001 39.23 0 1004 

Table 1 Results of the T-2 test and Minimum Energy Test 

With all frequency components (0 Hz to 19 Hz), the P-value of the energy test is 0.001 (less than 0.05) and Hotelling’s 

test is 0 (less than 0.001). Furthermore, when each frequency band is compared separately, the results have shown that 

the P-values of energy test and Hotelling’s test are all less than 0.001 (delta: 0.7812 Hz to 3.9060 Hz, theta: 4.2966 

Hz to 7.8120 Hz, alpha: 8.2026 Hz to 13.6710 Hz, beta: 14.0616 Hz to 18.7488 Hz). 
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4. Discussion 
The results have shown that the source of EEG and MEG rhythms are different when BC-VARETA was used as 

inverse methods. The comparison was done using the non-parametric multivariate statistical test. The mean 

distribution for sources of M/EEG rhythms for all the subjects is shown in Figure 7, where x-axis corresponds to 

(6002) sources in each frequency component. It clearly suggests that in the high-frequency bands, the values of MEG 

are much higher than EEG. Whereas. for the low-frequency bands, the values of MEG and EEG sources are similar. 

 

 

Figure 7 Mean value of each feature from the source activity of EEG and MEG for different frequencies (Hz) 

 

 However, the topographical map for the mean value of alpha band (Figure 8), shows that the activation region 

of EEG and MEG is almost the same, that is occipital area, except some activation in the frontal area of MEG. It is 

evident that the source activations of EEG and MEG rhythms are very similar. The previous studies in the literature, 

shows that there should be some similarities/overlap between sources of both modalities (Burgess, et al., 2005) 

(Hamalainen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993) (Stam, Breakspear, Van Cappellen van Walsum, & 

Van Dijk, 2003) (Nakasatp, et al., 1994) (Van Der Meij, et al., 2001) (Paul L. Nunez, 2019). 

 

 

(a)       (b) 

Figure 8 Topographical map for the mean source activations of the alpha band (a) EEG (b) MEG 
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The possible reasons for the P-value to be so small even though the topographical maps are quite similar can be 

due to the following factors. Firstly, the number of channels of EEG and MEG are different (58 channels in EEG 

while about 240 channels in MEG). This difference in channels can have some effect on the spectra of the scalp 

signals. Secondly, the EEG and MEG signals are from different subjects as well as the data is not simultaneously 

recorded for EEG and MEG. This can result in individual differences. Thirdly, the preprocessing steps were also 

different because the data is from different datasets and different systems. There are some preprocessing aspects 

that can create a difference or expand the difference, for example, the different filters of EEG (band-pass filter, 

0.5-60 Hz) and MEG (high-pass and low-pass filtering (cutoff frequency 1.3 Hz and 150 Hz), notch filters (59-

61 Hz and 119-121 Hz)). Furthermore, the MEG data from HCP was only recorded in the resting state with the 

eyes open while the EEG data from Cuban dataset was recorded in the resting state, but with alternate conditions 

of open and closed eyes. However, we have chosen only the eyes open condition from the original dataset. All 

these different aspects may have some influence on the results. 

 Nevertheless, our research and results have stated that the source spectra of M/EEG are statistically different, 

it agrees with the recent paper by Christian Benar at el. They provided some initial evidence that MEG and EEG 

differ in terms of background activity (C . G. Bénar, 2019) and this leads to further analysis on the understanding 

of the physiological mechanism and activation state of M/EEG.  

5. Conclusion 
To the best of our knowledge, this is the first study to perform a statistical comparison between the sources of 

EEG and MEG rhythms, with a large number of healthy subjects in resting state, using a novel inverse solution 

of BC-VARETA. Furthermore, to deal with highly sparse source spectra generated by BC-VARETA, a novel 

dimensionality reduction method for sparse data named Zero Inflated Factor Analysis was applied before 

statistical testing. The P-values of Minimum Energy Norm test and Hotelling’s T-squared test were both very 

small (less than 0.05), which means that the sources responsible for MEG and EEG rhythmic activity are 

significantly different. This is a very important finding however, to achieve transferal of results between two 

modalities, the requirement is to underpin the contributions of different instrumental, physical or physiological 

factors, which demands further investigation. The possible future directions are: Comparing sources of 

simultaneous EEG and MEG rhythms and their connectivity and checking if the differences persist when other 

inverse methods are used. Moreover, exploring the found differences to find out possible causes whether these 

are due to the biophysical nature of the brain or due to different hardware aspects involved in signal acquisition. 
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