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Abstract 

In the resting state (closed or open eyes) the electroencephalogram (EEG) and the magnetoencephalogram (MEG) 

exhibit rhythmic brain activity is typically the 10 Hz alpha rhythm. It has a topographic frequency spectral 

distribution that is, quite similar for both modalities-- something not surprising since both EEG and MEG are 

generated by the same basic oscillations in thalamocortical circuitry. However, different physical aspects underpin 

the two types of signals. Does this difference lead to a different distribution of reconstructed sources for EEG and 

MEG rhythms? This question is important for the transferal of results from one modality to the other but has 

surprisingly received scant attention till now. We address this issue by comparing eyes open EEG source spectra 

recorded from 70 subjects from the Cuban Human Brain Mapping project with the MEG of 70 subjects from the 

Human Connectome Project. Source spectra for each voxel and frequencies between 0-50Hz with 100 frequency 

points were obtained via a novel sparse-covariance inverse method (BC-VARETA) based on individualized BEM 

head models with subject-specific regularization parameters (noise to signal ratio). We performed a univariate 

permutation-based rank test among sources of both modalities and found out no differences. To carry out an 

unbiased comparison we computed sources from eLORETA and LCMV, performed the same permutation-based 

comparison, and found the same results we got with BC-VARETA.  

Keywords: EEG, MEG, BC-VARETA, eLORETA, LCMV, Electrophysiological Source Imaging 

1. Introduction 
At resting state EEG and MEG readings show an evident rhythmic activity in frequency spectra, specifically 

alpha band. Postsynaptic potentials (PSP) are continuously happening even in resting state (both eyes open and 

closed). These PSPs are generated from the same cortical networks (thalamocortical, cortical-cortical, etc.) PSPs 

generate primary current densities (PCD) at the cortical surface and these PCDs are measured as electric potential 

or magnetic field by EEG electrodes and MEG magnetometers respectively. Since both phenomena are generated 

from the same cortical activity, there should not be any differences in these rhythms which seems evident at first 

sight. However, both modalities are physically different, so they suffer from different effects of volume 

conduction. Moreover, the measurement noise in the recorded signals might be different since the engineering 

and physics behind the signal and sensors that are used for acquiring those signals are different for both modalities. 

These biological and instrumental factors affect the M/EEG signals. However, it’s an ongoing discussion that 

whether the sources of the acquired rhythmic activities are the same or different. The term source localization is 
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used to define the process of reconstructing the cortical source spectra or to localize the cortical activity from the 

electromagnetic rhythms. While comparing source localization, there are different results based on a variety of 

experiments. Some claimed EEG source localization is better than MEG (Liu, Dale, & Belliveau, 2002), (Gavaret, 

Badier, Bartolomei, Bénar, & Chauvel, 2014) (Klamer, et al., 2014) others found in their experiments that MEG 

has better source localization accuracy (Cohen & Cuffin, 1991) (Cuffin, 1983), while others did not find 

significant differences (Hedrich, Pellegrino, Kobayashi, Lina, & Grova, 2017) (Waldert, et al., 2008) (Cuffin, 

1983) between two modalities performance on source localization. There is a significant amount of research that 

claims combining EEG and MEG outperforms individual modality in terms of source localization and spike 

detection (Lin, et al., 2003) (Knake, et al., 2006) (Sharon, Hämäläinen, Tootell, Halgren, & Belliveau, 2007) 

(Muthuraman, et al., 2014) (Plummer, et al., 2019).  

One major difference between EEG and MEG is the sensitivity to source orientation and source Signal-to-

Noise Ratios (SNR) at different brain areas. Evidence for the sensitivity of EEG to tangential and MEG to radial 

sources are found in many studies (Cuffin, 1983) (Haueisen, Funke, Güllmar, & Eichardt, 2012). However, there 

are results showing the opposite case and that opens the discussion of the sensitivity of EEG and MEG to different 

source orientation (Hunold, Funke, Eichardt, Stenroos, & Haueisen, 2016) (Rossi, Luria, Sommariva, & 

Sorrentino, 2017). The sensitivity of EEG and MEG to deep and superficial sources has been discussed in many 

studies claiming MEG is not able to give high SNRs for deep sources while EEG is successful in that (Hunold, 

Funke, Eichardt, Stenroos, & Haueisen, 2016).  

As mentioned earlier that volume conduction effect has an influence on the readings of both modalities. This 

is demonstrated in the experiments conducted by many researchers for different head models (Vorwerk, et al.) 

(Siems, Pape, Hipp, & Siegel, 2016). They also found that tissue anisotropy and the white matter has major 

conduction effect for EEG while MEG is only affected by white matter anisotropy (Haueisen, et al., 2002) (Siems, 

Pape, Hipp, & Siegel, 2016).  These two phenomena also affect source reconstruction accuracy where EEG is 

more susceptible to muscle artifacts and different head models while MEG is less prone to both factors (Wolters, 

et al., 2006). 

All of the comparative studies to date do not compare EEG and MEG statistical analysis of source spectra, 

which is the main highlight of this study Additionally, there are some notable shortcomings in almost all the 

current studies. For example; real head models were not used in most studies, the number of subjects was not 

significantly large, modern inverse solutions were not used to incorporate the effects of cortical activity as well 

as connectivity estimation techniques. To carry out a comprehensive and conclusive comparative study between 

two modalities, it is very important to consider all the above define aspects. This study has been carried out by 

comparing the resting state (eyes open) of 70 subjects from Cuban Human Brain Mapping project and MEG of 

70 Human Connectome Project. Figure 1. shows a flowchart for the methodology that has been used for statistical 

comparison of two modalities. We have used a novel inverse method BC-VARETA and compare the results 

achieved with other inverse methods e.g. eLORETA and LCMV. We perform statistical testing on the results of 

the inverse solutions by carrying out multiple comparisons using permutations test and found both modalities 

don’t have any differences. These results open a whole new field of conducting studies that were limited to only 

either of the modalities and also to carry out cross-modality source spectra transferal.  
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2. Materials and Methods 

2.1. Dataset  

To perform the analysis, an equal number of subjects were used from two big databases i.e. Cuban Human Brain 

Mapping (CHBM) project and Human Connectome Project (HCP). The EEG data from the Cuban Brain Mapping 

Project (Hernandez-Gonzalez, et al., 2011) was recorded using 58 channels, electrodes were placed according to 

the international 10/20 electrode system. This data was acquired from 70 healthy subjects (60 male and 10 

females, ages between 19 to 50 years old) in resting state with eyes open. The EEG amplifiers used while gathering 

this data have a transfer function similar to a bandpass filter of 0-50Hz. So, the EEG data gathered using these 

amolifiers was filtered at 0 - 50 Hz. In the end, Independent Component Analysis (ICA) (Comon, 1994) was 

applied to the time-series data to remove the artifacts. The sampling frequency was 200 Hz. Magnetic resonance 

imaging (MRI) was performed on (MAGNETOM Symphony Siemens, 1.5 Tesla) equipped with a 32-channel 

head coil.  

 

 

EEG data MEG data 

Pre-Processing Pre-Processing 

Head Modeling using 

T1w images 

Head Modeling using 

T1w images 

Estimating Lead Field 

Estimating brain sources( BC-

VARETA, LCMV and eLORETA) 

Estimating Lead Field 

Estimating brain sources( BC-

VARETA, LCMV and eLORETA) 

Univariate “rank” test for statisctical comparison 

Amplifier and global scale factor corrections 

Figure 1: Flow chart for methodology 
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The MEG data that has been studied in this work is from the Human Connectome Project (Van Essen, et al., 2011) 

(Behrens, et al., 2013)(Van Essen et al., 2011) (Behrens et al., 2013), led by Washington University, University 

of Minnesota, and Oxford University ( https://www.humanconnectome.org/ ) (Hileman, et al., 2013). The MEG 

data were acquired using 248 magnetometer channels and 23 reference channels of a whole head MAGNES 3600 

(4D Neuroimaging, San Diego, CA) system. The sampling frequency of the preprocessed data was 508 Hz. We 

analyzed 70 healthy subjects (37 males and 33 females, ages between 22 to 35 years old) with eyes open resting-

state condition. The MEG data were preprocessed by the Human Connectome Project teams using MEG 

Connectome pipeline (Van Essen, et al., 2011). MEG amplifiers have a transfer function equivalent to a band-

pass filter of 1.3-150 Hz and two additional notch filters of 59-61 Hz and 119-121 Hz. Moreover, ICA was used 

for artifact removal. MRI for the anatomical data was collected using a 3 Tesla (3T) Siemens Skyra scanner. 

2.2. Forward model 

To estimate the realistic head models and estimation of the lead field generation for each subject, a pipeline based 

on the Freesurfer toolbox, Ciftify (HCP) ( http://www.freesurfer.net/ ) (Dale, Fischl, & Sereno, 1999) (Fischl, 

2012) (Dale, Fischl, & Sereno, 1999) (Fischl, 2012) and Brainstorm Toolbox ( 

https://neuroimage.usc.edu/brainstorm/ ) (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011) was used (Fuchs, Kastner, Wagner, Hawes, & Ebersole, 2002). This pipeline 

is based on three major steps to generate a lead field from T1 raw images while performing some segmentation, 

denoising, normalization, co-registration of different brain and non-brain regions and electrodes, format 

transformation, and using some predefined surface registration and generation steps. In the first step, raw T1 MRI 

images were given as input to the Freesurfer toolbox to perform multiple corrections, segmentation, and 

reconstructions for cortical, sub-cortical, and non-brain tissues. This was done using the “recon_all” function of 

the Freesurfer toolbox. The output from the Freesurfer toolbox was given as input to the Ciftify toolbox to perform 

convert Freesurfer directory into the CIFITFY space or HCP format directory. The same “recon_all” function 

was used to get this standard output.  Later different functions from the Brainstorm tool were used to generate the 

lead field for 8002 sources. In the Brainstorm toolbox first step was to import non-brain and brain tissues 

separately and coregister them on each other to generate a complete head model. Later, EEG/MEG 

electrodes/sensors were imported and coregistered with head models automatically and later visual inspection 

was done to perform any manually corrections needed. In the end, the Boundary Element Method (BEM) 

implemented by the OpenMEEG toolbox embedded in the Brainstorm software was used to generate Lead Field.  

To compute the Lead Field of both EEG and MEG, we used a structural pipeline [10] based on the Human 

Connectome Project (HCP) structural processing [1,2] and Brainstorm (BS) [3]. The code is freely available in 

GitHub (https://github.com/CCC-members/BrainStorm_Protocol). Roughly the steps of this pipeline are: 1-

Segmentation of the brain using HCP structural pipeline, this provides MRI T1 images registered linearly to the 

MNI space, and the corresponding Gray Matter volumetric and superficial spaces used to define the MEG/EEG 

sources. These spaces are in one-to-one correspondence to the FSAverage volumetric and low resolution (64K) 

superficial canonical spaces, and therefore allow rapid mapping of the database results to FSAverage used to 

compare the results. The EEG database contained only MRI T1 images; therefore, we used the Ciftify [4] release 

of HCP pipelines based on T1 only. This pipeline produced the structural priors used by sSSBL that included 

cortical parcels, curvature, normal directions, and Laplacian. 2-The head tissue was modeled using FSL [5,6,7] 

and included scalp, inner skull, and outer skull that was used in BS to define the head model for MEG/EEG Lead 

Fields. These were extracted from the MRI T1 registered linearly to the MNI space. 3-Computation of the 

MEG/EEG lead field to a low-level programming pipeline based on BS functionalities such as head modeler, 

MEG overlapping spheres [8], and EEG OpenMEEG [9]. Several functionalities were included this such as 

processing specific HCP, Ciftify, and FSL outputs, optimization of processes to produce more accurate 

registration of the MEG/EEG layouts, open parametrization of the head modeler, and geometric quality control 

of head model and registration. The latter was used to classify the subjects suitable for MEG/EEG comparison 

and to perform manual corrections. 4-Moduli for registration of all the results to FSaverage structural space (64K 

canonical or user-defined) and normalization of solutions. 
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2.3. Source analysis 
Since source analysis was performed in the frequency domain, so the frequency spectra of EEG and MEG time-

series data was generated for this purpose. To get a complete picture of brain activity, source analysis was 

performed all frequencies between 0.1-50 Hz with a step size of 0.5 making it a total of 100 frequency points. 

This was performed the same for both EEG and MEG frequency spectra. The reason for performing source 

analysis between 0-50Hz was that EEG data was recorded between these frequency ranges (due to amplifier 

filtering effect). So, source analysis for MEG was also kept limited to these frequency ranges solely for this study. 

Brain Connectivity Variable Resolution Tomographic Analysis (BC-VARETA) (https://github.com/CCC-

members/BC-VARETA_Toolbox) was used to perform source localization. BC-VARETA is a toolbox for the 

study of MEG/EEG spectral activity and connectivity that, unlike other general MEG/EEG source analysis 

methods, is designed to minimize the distortions of specific statistical quantities by introducing priors directly on 

them (Gonzalez-Moreira et al. 2017). Conventional methods make use of a cost function to estimate –for 

instance— activations that assume certain spatial structure (priors) of the source vectors to regularize the ill-

conditioning in the estimation. Then, meaningful statistical quantities of source activity like the second-order 

statistical moment of the Fourier transform (Spectrum) are obtained as postprocessing of the formerly estimated 

time series of source activity. The flaw consists in that at the level of spatial distortion in the time-series expected 

for this type of regularization is not the same as that of the second-order moment –or the Fourier transform. 

Therefore, the only way to control distortions of the spectrum is by employing a cost function whose 

regularization term has been placed upon the spectrum and source activation. For this purpose, we used the 

module of BC-VARETA specifically designed to regularize the spectrum, denominated Spectral Structured 

Sparse Bayesian Learning (sSSBL) (https://github.com/CCC-members/BC-

VARETA_Toolbox/blob/master/functions/activation_level/sSSBLpp.m). The prefix Spectral refers to a 

modification of SSBL to directly obtain the Fourier coefficients of source activity with minimal distortions of the 

spectrum, via complex-valued group Elastic-Net (Gonzalez-Moreira et al. 2020).  Since BC-VARETA is a novel 

method, we performed source localization of frequency spectra with two other famous inverse solutions i.e. 

eLORETA, LCMV for the sake of confirmatory, comprehensive, and comparative analysis.    
 

2.3.1. LCMV beamformer 

 

A spatial filtering method for localizing sources of brain electrical activity from surface recordings 

is described and analyzed. The spatial filters are implemented as a weighted sum of the data 

recorded at different sites. The weights are chosen to minimize the filter output power subject to 

a linear constraint. The linear constraint forces the filter to pass brain electrical activity from a 

specified location, while the power minimization attenuates activity originating at other locations. 

The estimated output power as a function of location is normalized by the estimated noise power 

as a function of location to obtain a neural activity index map. Locations of source activity 

correspond to maxima in the neural activity index map. The method does not require any prior 

assumptions about the number of active sources of their geometry because it exploits the spatial 

covariance of the source electrical activity. 

LCMV defines a filter matrix A is employed in a linear transformation from the sensor level to the 

brain space. A filters the source activity (in a given frequency band or time window) at the ith 

voxel (grid point) with unit gain while suppressing contribution from the other voxels. The filter 

depends on the data by means of the covariance. 
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2.3.2. eLORETA 

The eLORETA method is a discrete, three-dimensional (3D) distributed, linear, weighted minimum 

norm inverse solution. It is also important to emphasize that eLORETA has no localization bias 

even in the presence of structured noise.  

It should be emphasized that the localization properties of any linear 3D inverse solution (i.e. 

tomography) can always be determined by the localization errors to test point sources. If such a 

tomography has zero localization error to such point sources located anywhere in the brain, then, 

except for low spatial resolution, the tomography will localize correctly any arbitrary 3D 

distribution. This is due to the principles of linearity and superposition. These principles do not 

apply to non-linear inverse solutions, nor do they apply to schemes that are seemingly linear but 

are not 3D inverse solutions (e.g. one-at-a-time best fitting dipoles). 

2.4. Amplifier and global factor corrections 

EEG and MEG were recorded in different settings and at different timelines, their amplifiers have different 

specifications and transfer function. MEG amplifiers have much flatter and wider transfer function (as mentioned 

in section 2.1) in comparison to EEG amplifiers. This amplifier effect should be corrected as it will affect the 

inverse solution too, so it will be safe to consider a global factor affecting each individual of all frequencies and 

all voxels. We will look into the factors affecting the inverse solution spectra.  

2.4.1.  Amplifiers 

A possible source for differences can be a different types of amplifiers form EEG and MEG. EEG and MEG 

have amplifiers that posses different transfer functions and both of them allow different frequencies to pass. 

EEG has an amplifier that possesses the property of a bandpass filter of 0-50 Hz. MEG on other hand has the 

property of a bandpass filter of 1.3-150 Hz and two notch filters of 59-61 Hz and 119-121 Hz. To have a fair 

comparison we need to correct for these amplifier differences. To do that, we performed the following 

empirical corrections on the source spectra of EEG and MEG.  

Let our original (unfiltered) EEG signal be 
( )ov 

 for frequency  . If the EEG amplifier response is 

( )vh 
 the filtered EEG response is 

   
( ) ( ) ( )vv v h  =

     (1.1) 

And therefore, the estimated spectrum of the EEG is  

   

( ) ( ) ( )

( ) ( ) ( )

0

0

2

log log 2log

v v v

v v v

s s h

s s h

  

  

=

= +
   (1.2) 

With a similar line of reasoning then one can consider for the MEG 

   
( ) ( ) ( )

0
log log 2logm m ms s h  = +

  (1.3) 
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Therefore, the log between EEG and MEG only due to differences in amplifiers is: 

( ) ( ) ( ) ( ) ( ) ( )( )
0 0

log log log log 2 log logv m v m v ms s s s h h     − = − + −
 (1.4) 

Thus, one can expect a constant difference 
( ) ( )( )2 log logv mh h −

 between spectra just due to 

the different amplifiers. One must adjust for this type of difference between modalities. This scale factor will 

affect the inverse solutions too So it would be safe to assume that there is a constant amplifier factor that will 

affect all individuals. For individual i , voxel x  , and frequency  : 

   
( ) ( ) ( ) ( )log , , log , , , ,v ms i x s i x a e i x   = + +

  (1.5) 

2.4.2. Global-scale factors for EEG (and possibly for MEG) 

We have shown previously [1] that EEGs are possibly multiplied by a global scale factor. This would imply 

an additional, additive, log nuisance parameter that would be constant for all frequencies and voxels over a 

given individual. Combining this with (1.5) we have: 

 
( ) ( ) ( ) ( ) ( )log , , log , , , ,v ms i x s i x a k i e i x   = + + +

 (1.6) 

These factors should be corrected before comparing EEG and MEG. It would be extremely easy with a GLM 

if we had corresponding EEG and MEG for each subject. So, we must look for an ad hoc correction. 

2.4.3. Corrective factors 
Since the simultaneous EEG and MEG data are not available for each subject, which rules out the possibility 

of GLM correction also the factors defined in Equation 1.6 are empirically not known. Here, an ad-hoc 

correction, was adopted to correct for all the above-defined factors. The first correction was made by 

correcting for any scale differences amongst individuals. This was carried out by defining a factor 
( )i

, 

that takes mean of log spectra for all voxel(sources) and frequencies. 
( )i

was subtracted from all voxels 

and all frequencies for within an individual and for all individuals. The second correction was made by 

defining another factor 
( ) 

 for each frequency of EEG/MEG. 
( ) 

 was computed by taking the mean 

for the log spectra of all subjects and all voxels(sources). Factors
( )i

 and 
( ) 

 were computed for both 

EEG and MEG. Once the factors were computed, they were subtracted from the log source spectra of EEG 

and MEG (to apply the corrections)as shown in Equation 1.7. 
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( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1
1

1
1

1
log , ,

1
log , ,

log , , log , ,

x

i

x

N
N

v

xx

N
N

v

ii x
x

v v

i s i x
N N

s i x
N N

s i x s i x i






 

  

    

=
=

=
=

=

=

= − −



  (1.7) 

Once the above-defined corrections were made in the log source spectra of EEG and MEG, it can be safely said both 

frequency spectra have been corrected for any possible differences and they can be compared statistically to look for 

the underlying physical differences between the modalities.  

2.5. Statistical Testing for Comparing Sources of M/EEG rhythmic activity 

After the necessary corrections were made, the next step was to carry out statistical analysis to find whether two 

modalities have any or no difference in terms of source spectra. For this purpose we have performed a univariate rank 

test with multiple permutations using the Flip package in R. We applied this test for all three inverse solutions with 

8002 generators/sources and 100 frequency points. Thus, for each subject/individual, we had 800200 variables. 

2.5.1. Hyposthesis for zero-inflated data 

In case of BC-VARETA, we have divided data into two groups: 𝐺1 is for EEG and 𝐺2 is for MEG. Each 

group has 800200 variables where each variable is some source s for a specific frequency 𝑓. When data is 

highly sparse due to a large number of unobserved values this is known as Zero Inflation. While dealing with 

source leakage and to minimizes the False Positive sources, BC- VARETA use Sparse Hermitian Sources 

Graphical Model (Paz-Linares, Gonzalez-Moreira, Martinez-Montes, & Valdes-Sosa, 2018). This generates 

a large number of zero activations. Thus, the resultant source spectra were highly sparse or Zero-Inflated. 

The histogram of source activations is shown in Figure 3. which demonstrates zero inflation in reconstructed 

source space. Thus, the dataset can be modeled as: 

 

0 (0)

( ) ( 0) 1

1,... , 1,2, 1,...800200;

j

ijk

ijk j

pr q
S

S x pr S q

jS Sijk nj ki

=  
=  

 = −  

= = ==

 (1.8) 

 

where: 𝑖  is subject, 𝑗  is the sample or group (EEG or MEG), 𝑘 is the observed variable, ( )S x  is the 

underlying distribution of the variables. The univariate null hypothesis to test the similarity between two 

samples would then be 

 
0q k1 k2

0S k1 k2

H  : q  = q  AND

H  : [S =S |(0,S > 0)]
  (1.9) 

  

 
1q k1 k2

1S k1 k2

H  : q   q  AND

H  : [S |(0,S > 0)]S




  (1.10) 
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here: 0qH
and 1qH

is the null and alternate hypothesis respectively for the observed zeros where probability 

1q
(for sample 1:EEG) should be equal to 2q

 (for sample 1:MEG) and k is the response variable. Since BC-

VARETA is a sparse inverse solution, there were many vectors with all zero values in both EEG and MEG. 

To optimize our process, before testing our hypothesis those variables/vectors were removed/omitted before 

performing any analysis.  

2.5.2. Hyposthesis for non-zero nflated data 

The above defined hypothesis are for the zero-inflated data. However, in case of non-zero inflated source 

data i.e. eLORETA and LCMV the handling of zero data was not required. Eventually our hypothesis are 

empirically reduced to: 

 0S k1 k2H  : [S =S |(0,S > 0)]   1.10 

  

 1S k1 k2H  : [S |(0,S > 0)]S   1.11 

Here, 0qH
and 1qH

 no longer exist as they were defining the hypothesis for zeros present in zero-inflated 

data. Rather, our hypothesis is defined by representing only non-zero data as shown in equations 1.10 and 

1.11. Rest of the process for dividing data into groups separately for EEG and MEG and later performing 

the statistical analysis will remain same. 

 

For above defined scenarios of zero-inflated and non-zero inflated data we have tested the defined hypothesis with 

univariate permutations based rank test using the FLIP package in R. Permutation or randomization test construct a 

sampling distribution which in called “permutation distribution” by rearranging and resampling the observed data. In 

other words, it shuffles or permutes the observed data without replacement and perform some kind of statistical test 

on each permutation. In this study, we specifically perform the rank test on our data, since our data is not normally 

distributed. The rank test in the FLIP package specifically uses the “Wilcoxon signed-rank test” since our data comes 

in the category of related samples. Multiple corrections need to be carried out to control for false discovery rate (FDR), 

which was performed using the method proposed in The control of the false discovery rate in multiple testing under 

dependency.  

3. Results  
From the above define experiments, 800200 p-values were obtained for eLORETA, LCMV ,and BC-VARETA. Later 

these p-values were corrected for False Discovery Rate (FDR). For a conclusive and comprehensive analysis of 

corrected p-values, we plotted the histograms of these p-values for sources computed from all three inverse methods. 

shown in (Figure - 2, 3 & 4). It can be seen that all p-values are greater than 0.01 for histograms of p-values computed 

for eLORETA, LCMV, and BC-VARETA. For the rejection of the null hypothesis, we set the significance level at 

.01. We can see all p-values are greater than 0.01 with BC-VARETA having minimum p-value at 0.0414, eLORETA 

at 0.362, and LCMV at 0.2477. Looking at these p-values it can be safelty said that the null hypothesis (both modalities 

are the same) is accepted as all p-values are greater than the significance level. 
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Figure 3:Histogram of adjusted p-values for eLORETA 

 

 

Figure 4:stogram of adjusted p-values for LCMV 
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Figure 5: Histogram of adjusted p-values for BC-VARETA 

4. Discussion 
Since, EEG and MEG are capturing cortical activity in form of electric field and magnetic field generated by currents 

induced by same post-synaptic potentials (PSPs). So based on this underlying truth that both modalities are computing 

same activity, the sources computed from the inverse solutions should be same or not very much different. That is 

what we have analysed in this study by comparing EEG and MEG sources computed from two different datasets i.e. 

HCP-MEG and CHBM-EEG. We have analysed using permutation based rank test to see for any evidence that there 

are some differences in sources captured from both modalities. However, our results show that we don’t have any 

evidence to show any statistical differences between sources from two modalities. These finidings can have very 

innovative and optimistic implications in the field on neuroscience. Firstly, it counters the ideas that promotes to 

perform simultaneous EEG and MEG studies to have a better picture of cortical activity. Since there are not much 

differences in sources computed from both modalities, it can be safely said that studies performed based on either 

EEG or MEG will still give us detailed information of all underlying sources in cortex. Since EEG is easily portable 

and MEG is still under process of being transformed into a portable scanning setup. So studies in remote areas and 

also for underdeveloped or poor countries who cant afford expensive setup required for MEG can be carried out using 

EEG.  Secondly, using sophisticated inverse solutions like we used in this studi, we can extract similar underlying 

cortical avtivity from EEG that is extracted from MEG.  

In this study, we have compared anatomically the same sources, which means that EEG and MEG are capturing the 

same cortical activity i.e. scanning resting-state cortical activity in humans. Additionally, before making any 

comparisons we have corrected our source spectra for any possible sources of differences due to the engineering and 

physics of recording machines. Due to these reasons, the sources computed from inverse solutions should be the same 

or should have a close correlation between them. That is exactly what we have observed in our results once we 

compared the sources computed from BC-VARETA. The results have shown that when a permutation-based 

univariate rank test was carried out to make a comparison between EEG and MEG sources computed from the BC-

VAERTA for 140 subjects showed no differences for any source or frequency points. There could have been some 

source of possible differences between the two modalities because of differences in frequency response, engineering, 

and design of amplifiers. To counter these differences we corrected sources spectra for amplifier differences before 
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performing permutation tests. Another correction for global scale differences was required to be made for each subject 

to correct for any possible subject-based differences. A comparison would be fair once it is made after all the above-

defined corrections. We have made all the corrections and found out no differences in both modalities. P-values 

computed from univariate permutation analysis were corrected for False Discovery Rate (FDR). The corrected p-

values showed that our null hypothesis i.e. there are no differences between EEG and MEG is accepted with a 

confidence interval of 99%. To compare the findings of our study and make the analysis more concrete, we performed 

all the above-defined operations to EEG and MEG using state of the art inverse solutions i.e. eLORETA and LCMV. 

Our findings from these two methods were no different from those we found in BC-VARETA i.e. the rhythmic activity 

among sources of EEG and MEG are statistically similar.  

Our research and results have stated that the source spectra of M/EEG are statistically the same, it contradict with the 

recent paper by Christian Benar at el. They provided some initial evidence that MEG and EEG differ in terms of 

background activity (C . G. Bénar, 2019). The results of our study lead to further analysis for the understanding of the 

physiological mechanism and activation state of M/EEG. However, the findings of our study give clear evidence that 

EEG, if performed an analyzed properly can give a detailed picture of cortical activity similar to MEG and vice versa. 

Results of this study imply that the conventions that are made from many studies that sources captured from EEG and 

MEG are different and some sources are better detected using one modality are wrong. EEG can be used to record 

sources if properly used. 

5. Conclusion 
To the best of our knowledge, this is the first study to perform a statistical comparison between the sources of 

EEG and MEG rhythms, with a large number of healthy subjects in resting state, using a novel inverse solution 

of BC-VARETA. This study also compares the results of BC-VARETA with state of the art inverse methods 

eLORETA and LCMV. Furthermore, to make an extensive and concrete comparison we have computed sources 

for complete spectra of EEG (0-50Hz) and similar frequency range for MEG. Before performing statistical 

comparison we have corrected source spectra of EEG and MEG for amplifier differences and global scale 

differences among individuals. For statistical comparison, a univariate permutation test was performed with 

additional FDR correction on each source and each frequency point variable of both modalities. Upon looking at 

the corrected p-values we have concluded that sources computed for both modalities using all three inverse 

solutions described are the same with a significance level of 0.01. This is a very important finding can help 

conducting further studies not only focused on simultaneous modalitiy studies. In fact cortial activity captured 

from either EEG or MEG can give detailed knowledge of underlying cortical activity given that condition that 

sophisticated and modern inverse solutions are applied. The possible future directions are: Comparing sources of 

simultaneous EEG and MEG rhythms and their connectivity and checking if we can get more stable statistical 

similarities.  
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