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Abstract 

Telomeres shorten in replicating somatic cells and with age; in human leukocytes, telomere length 

(TL) is associated with a host of aging-related diseases1,2. To date, 16 genome-wide association studies 

(GWAS) have identified twenty-three loci associated with leukocyte TL3-18, but prior studies were 

primarily in individuals of European and Asian ancestry and relied on laboratory assays including 

Southern Blot and qPCR to quantify TL. Here, we estimated TL bioinformatically, leveraging whole 

genome sequencing (WGS) of whole blood from n=75,176 subjects in the Trans-Omics for Precision 

Medicine (TOPMed) Program. We performed the largest multi-ethnic and only WGS-based genome-wide 

association analysis of TL to date. We identified 22 associated loci (p-value <5x10-8), including 10 novel 

loci. Three of the novel loci map to genes involved in telomere maintenance and/or DNA damage repair: 

TERF2, RFWD3, and SAMHD1. Many of the 99 pathways identified in gene set enrichment analysis for 

the 22 loci (multiple-testing corrected false discovery rate (FDR) <0.05) pertain to telomere biology, 

including the top five (FDR<1x10-9). Importantly, several loci, including the recently identified TINF2 

and ATM6 loci, showed strong ancestry-specific associations. 

Results 

High throughput sequencing with decreasing sequencing cost per sample has enabled the generation of 

WGS data at an unprecedented scale, and the National Heart, Lung and Blood Institute’s TOPMed 

Program offers the opportunity to address both sample size and population diversity limitations of prior 

TL GWAS. To optimize the computational task of estimating TL on the full set of TOPMed WGS 

samples, we compared two estimation methods, TelSeq 19 and Computel 20, on a subset of samples for 

which we had prior laboratory-based telomere length measurements from Southern blot. TelSeq and 

Computel estimates were highly correlated (Pearson correlation r=0.98, Supplementary Figure S1A) and 

had similar correlation with Southern blot data (Pearson correlation r=0.57 and 0.55 for TelSeq and 

Computel, respectively, Supplementary Figure S1B); this is similar to what has been reported previously 

21. We selected TelSeq due to its computational efficiency (Supplementary Figure S1C). Given the 
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sample heterogeneity and complexity of generating WGS across the large number of cohorts in the 

TOPMed program 22 (Nature, submitted, 2019), not unexpectedly, we observed cross-study and cross-

sequencing center effects (Supplementary Figures S2A and S2B), and we chose a statistical approach to 

minimize them (see Materials and Methods and Supplementary Figures S2C and S2D). The final 

sample set analyzed included 38,193 European ancestry, 21,179 African ancestry, 9,808 Hispanic/Latino, 

4,754 Asian ancestry, and 1,242 Samoan individuals.  42% of participants were male and age ranged from 

<1 to 98, median 55 years (Supplementary Tables S1A and S1B). 

 

Genome-wide tests for association across 93M variants (genotype calling pipeline, sample selection and 

sequencing details described under Materials and Methods) were performed in multiple stages, reflecting 

different WGS freezes and the final analysis included a discovery set (n=46,458), a replication set 

(n=28,718), and a meta-analysis of both sets (n=75,176). We identified 22 loci reaching a meta-analysis 

p-value <5x10-8 (Figures 1 and 2, Table 1), of which 12 loci met the threshold of 5x10-9 recently 

suggested for WGS-based GWAS analyses 23. Of the 23 prior loci discovered through GWAS of TL 

assessed with laboratory assays, we confirmed twelve (TERC, TERT, NAF1, RTEL1, OBFC1, DCAF4, 

ZNF676, ACYP2, and the recently identified TERF1, TINF2, POT1 and ATM loci) at a significance 

threshold of p-value <5x10-8 (Table 1, Supplementary Tables S2A and S2B). Nominal evidence (p-value 

< 0.05/23) was noted for an additional 5 prior known loci at the specific reported variants (PARP1, 

NKX2-3, MPHOSPH6, TYMS, and ZNF208; see Supplementary Table S3).  

 

Among the 22 loci reaching traditional GWAS thresholds in the multi-ethnic TOPMed samples, we also 

identified 10 novel loci (Table 1, Supplementary Tables S2A and S2B), three of which include genes 

encoding proteins that have plausible roles in telomere biology (the index gene definition for each locus is 

described in Table 1). RFWD324 plays a key role in DNA damage repair; TERF2 is a component of the 

telomere shelterin complex; and depletion of SAMHD1, which has reported roles in DNA resection and 

homology-directed repair, has been shown to lead to telomere breakage events in cells deprived of the 
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shelterin component TERF125, a recently reported GWAS locus that we also identify as a Tier 1 locus. 

Gene set enrichment analysis 26,27 including the index gene(s) for each of the 22 loci resulted in 99 sets 

with an FDR < 0.05 (Supplementary Table S4). The top 5 gene sets, all with an FDR <1x10-9, were: 

regulation of telomere maintenance via telomere lengthening (GO:1904356), regulation of telomere 

maintenance (GO:0032204), negative regulation of telomere maintenance (GO:0032205), telomere 

maintenance (GO:0000723), and telomere organization (GO:0032200).  

 

Each peak variant at a locus, henceforth referred to as the sentinel variant for that locus, accounts for a 

small proportion of phenotypic variation (Table 1), consistent with prior GWAS of telomere length. Prior 

GWAS SNPs cumulatively account for 2% - 3% of trait variance 28, with allelic effects ranging from ~ 

49-117 base pairs. In the TOPMed data, effect sizes for common variants (minor allele frequency, MAF 

³5%) range from 22-71 bp/allele. Rare and low frequency variants (MAF <5%) show larger effects (152-

631 bp/allele). Cumulatively, the 22 sentinel variants from the TOPMed WGS-based GWAS account for 

~1.5% of phenotypic variance. Individually, TERC, TERT and OBFC1 each account for the largest 

phenotypic variance (~0.2%) and have similar effect sizes (~60-70bp/allele).  

 

In an attempt to look beyond the single variant approaches, gene-based tests identified five protein coding 

genes with deleterious rare and low frequency (MAF <5%, including singletons) coding variants 

associated with telomere length in the discovery samples (see Materials and Methods and 

Supplementary Figure S3A, Supplementary Table S5A): RTEL1, RTEL1-TNFRSF6B, ATM, KDELC2, 

and NAF1. For each of these genes, a leave-one-out approach iterating over each deleterious variant 

identified one to three driver variants accounting for the association signal at the gene (Supplementary 

Figures S3B-S3F). Testing for evidence at these specific driver variants in the independent replication 

sample provides confirmation for RTEL1, RTEL1-TNFRSF6B and NAF1 (Supplementary Table S5B), 

with the same shared variants for RTEL1 and RTEL1-TNFRSF6B. All three genes are noted to be index 

genes from the GWAS loci identified (Table 1). Linkage disequilibrium with the peak sentinel variant 
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supports overlap between the gene-based and single variant signals. Importantly, while the KDELC2 

driver variant was not replicated (while showing a consistent direction of effect between the discovery 

and replication), the minor allele (rs74911261/A) of the driver variant from the discovery sample has 

previously been shown to be associated with decreased risk of breast cancer 29 and increased risk of renal 

cell carcinoma 30 in European ancestry individuals. Notably, the A allele is associated with lower telomere 

length (-80.4 bp/allele) and supports the prior observation that shorter telomere length is strongly 

associated with increased risk for renal cancers 31.       

 

An evaluation of the 22 loci by race/ethnicity demonstrates that many of these loci are associated with TL 

in multiple groups. As illustrated in Figure 3 (see also Supplementary Figures S4A – S4V, 

Supplementary Table S2B) the previously reported TERC, TERT, RTEL1, TERF1, TINF2 and OBFC1 

loci have p-values <10-5 among non-European populations. Among the novel loci identified, RFWD3 and 

TERF2 and have p-values < 10-5 in non-European groups. Not surprisingly, most of the 22 loci had strong 

evidence of association in the European ancestry sample, which also had the largest sample size. In fact, 

there were several loci (ATM,CHKB-AS1/MAPK8IP2, LINC01592/LOC100505739, OPRK1/ATP6V1H, 

RPN1 and YY1P2,LRP1B) where association was limited to the European ancestry sample (p-values<10-

5); no variant mapping to these loci reached a p-value < 0.0023 (0.05/22 for the total of 22 loci evaluated) 

in any other population. One notable exception was the TINF2 locus, where the sentinel variant is highly 

differentiated between ancestral populations. The TINF2 association was not observed in the European 

population, where the allele frequency for the alternate allele is extremely low (AAF=0.05%, p-

value=0.04), as compared to the Asian (AAF=9%, p-value=1.3x10-5), African (AAF=1%, p-

value=2.6x10-5) and Samoan (AAF=23%, p-value=1.3x10-7) samples (Supplementary Table S2B).  

 

Leukocyte telomere length (LTL) is associated with mortality and aging-related diseases such as cancer32, 

and genetic variants associated with LTL previously have been associated with risk of cancers as well as 

other non-neoplastic disease of aging33. We analyzed 1403 international classification of disease (ICD)-
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based phenotypes in ~402,000 Europeans from the UK Biobank (Supplementary Table S6, 

Supplementary Figures S5A-S5C), and we noted that the sentinel variants at TERT and TERC each had 

multiple phenome-wide disease associations (PheWAS), including myeloproliferative neoplasms, cancers 

of skin and brain, and leiomyoma/benign neoplasms of the uterus (all p-values<1.8x10-6). The 

associations with uterine leiomyomata are consistent with recently published GWAS which found that 

several telomere length-associated genes and variants (TERT, TERC, OBFC1, ATM) have genome-wide 

significant associations with uterine fibroids 34. Notably, several of our TOPMed sentinel variants (NAF1, 

TERF1, ZNF729, POT1, CHKB-AS1) had uterine fibroid p-values in the range of 0.008 to 0.07 in our UK 

Biobank PheWAS analysis. Additionally, several of the sentinel telomere length variants or their proxies 

(TERT, TERC, RFWD3, TCL1A, RPN1) were associated with quantitative hematologic traits or 

myeloproliferative disorders and malignancies either in the UK Biobank or in recently published GWAS 

30,35,36. As a follow up to assess functional relevance, we used a set of 31,684 blood samples from 

eQTLGen 37 and found that 17 out of the 18 of our sentinel variants present in the data set were eQTLs for 

at least one local eGene. For many of these, the top eGene is the index gene we identified at the locus 

(Supplementary Table S7), but we recognize the limitation in the use of whole blood from adult samples 

as the sole tissue interrogated. 

 

Leveraging WGS available through NHLBI's TOPMed program, we have illustrated the feasibility of 

generating high quality TL from WGS data. We were able to take advantage of the well-powered sample 

size and multi-ethnic nature of the sample to confirm known GWAS loci and identify an additional set of 

novel loci that map to genes with plausible biological validity. We also explored loci across populations 

of diverse ancestry. The ability to implement this phenotype assessment of TL in large, multi-ethnic 

datasets with pre-existing WGS creates opportunities beyond the genetics of TL; it will expand our ability 

to evaluate of the role of TL and genes determining TL in health and human disease.  
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Table 1: Sentinel SNPs from the 22 loci identified from the multi-ethnic TOPMed analysis of telomere 
length. All loci had a peak p-value <5x10-8 in the combined meta-analysis (n=46,458 in the discovery and 
n=28,718 in replication dataset, total n=75,176), and are classified into three Tiers based on their evidence 
in the discovery dataset: Tier 1 includes loci that were genome-wide significant in the discovery samples 
(p<5x10-8); Tier 2 includes loci that were suggestive in the discovery analysis (1x10-5<p<5x10-8); and 
Tier 3 includes those loci that were nominal in the discovery analysis with 1x10-3<p<1x10-5). Effect size 
in base pairs is with respect to the alternate (Alt) allele. 
 

 
 
Note: In bold are genes documented to play a role in telomere length or DNA damage repair. For the 
Tier 1 loci (p-value <5x10-8 in discovery sample), replication was evaluated in the TOPMed replication 
sample, and loci that have significant replication (see Supplementary Table S2A) with SNPs within the 
locus having p<0.0027 (0.05/22) in the replication sample are indicated by *. Loci are labeled as Novel if 
they have not been a statistically significant locus in a prior GWAS.  Index genes for each locus were 
selected based on (i) prior GWAS study definition for known loci, (ii) the gene to which the variant maps 
per annotation in Supplementary Table S2A for novel loci, and (iii) the exception of the OBFC1 and 
ATM loci: For the OBFC1 locus three index genes were selected SH3PXD2A, OBFC1(STN1), and SLK as 
all three had strong SNV signal not in LD with the sentinel variant (Supplementary Figure S4D); and for 
ATM, the sentinel variant mapped to NPAT, but was a peak eQTL for ATM (Supplementary Figure 
S4U). 
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Figure 1: Multiethnic genome-wide tests for association using 93M sequence identified variants on 
n=75,176 samples with sequence generated telomere length from TOPMed. All loci had a peak p<5x10-8 
in the combined meta-analysis, and are classified into three Tiers based on their evidence in the discovery 
dataset (n=46,458 samples): Tier 1 includes loci that were genome-wide significant in the discovery 
samples (p<5x10-8); Tier 2 includes loci that were suggestive in the discovery analysis (1x10-5< p <5x10-

8); and Tier 3 includes those loci that were nominal in the discovery analysis (1x10-3 < p <1x10-5).   
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Figure 2: LocusZoom plots of the 22 loci identified from the TOPMed meta-analysis. SNPs with 
p<0.1 are plotted for all Tier 1, Tier 2 and Tier 3 loci. Linkage disequilibrium (LD) is with respect to the 
peak variant in the multi-ethnic analysis, and LD is calculated using the specific set of samples used in the 
analysis thereby reflecting LD patterns specific to the TOPMed samples. Supplementary Figures S4A-
S4V has corresponding plots by race/ethnicity, with sample specific LD. 
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Figure 3: Ancestry specific signal at each variant with a p-value <1x10-5 in the meta-analysis mapping to 
the 22 loci.  Locus names are colored by their Tier, i.e., statistical significance in the discovery sample. 
Supplementary Figures S4A-S4V show these variants in ancestry-specific LocusZoom plots. The results 
are based on 38,193 European ancestry, 21,179 African ancestry, 9,808 Hispanic/Latino, 4,754 Asian 
ancestry, and 1,242 Samoan individuals. 
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Supplementary Information is linked to the online version of the paper. 
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Online Methods 
 
TOPMed study populations: To perform this multi-ethnic genome-wide association study of telomere 

length, we leveraged the whole genome sequence samples available through the NHLBI’s Trans Omics 

for Precision Medicine (TOPMed) 22 (Taliun, Nature, Submitted, 2019) program. The program currently 

consists of more than 80 participating studies 38 across a range of study designs as described in Taliun et 

al 22 (Nature, submitted, 2019). These participants are mainly U.S. residents with diverse ancestry and 

ethnicity (European, African, Hispanic/Latino, Asian, and other). Details on the specific samples included 

for telomere length analysis are outlined below, summarized in Supplementary Tables S1A and S1B, and 

described by TOPMed 38.  

 

TOPMed whole genome sequencing (WGS): WGS was performed to an average depth of 38X using 

DNA isolated from blood, PCR-free library construction, and Illumina HiSeq X technology. Details for 

variant calling and quality control are described in Taliun et al. 22 (Nature, submitted, 2019). Briefly, 

variant discovery and genotype calling was performed jointly, across all the available TOPMed Freeze 5b 

(September 2017) and Freeze 6a studies (August 2018), using the GotCloud 39 pipeline resulting in a 

single, multi-study, genotype call set.  

 

Estimating telomere length for whole-genome sequencing (WGS) samples: A variety of 

computational tools exist that leverage WGS data to generate an estimate of telomere length 40. Here, we 

performed a thorough comparison of two leading methods for estimating telomere length from WGS data 

to choose the preferred scalable method for performing the estimation on all available samples from 

TOPMed. The first method, TelSeq 19, calculates an estimate of individual telomere length using counts 

of sequencing reads containing a fixed number of repeats of the telomeric nucleotide motif TTAGGG. 

Given that 98% of our data was sequenced using read lengths of 151 or 152 (as confirmed from the SEQ 

field in the analyzed CRAM files), we chose to use a repeat number of 12. These read counts are then 

normalized according to the number of reads in the individual WGS  data set with between 48% and 52% 
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GC content, to adjust for potential technical artifacts related to GC content. The second method, 

Computel 20 uses an alignment-based method to realign all sequenced reads from an individual to a 

“telomeric reference sequence”. Reads aligning to this reference sequence are considered to be telomeric 

and are included in the estimate of telomere length. Because Computel performs a complete realignment, 

additional computational steps are involved compared to those needed for TelSeq. 

 

To compare the results and scalability from these two methods, we first directly compared estimates 

obtained from TelSeq and Computel on 3362 samples from the Jackson Heart Study (JHS) and found 

them to be highly correlated with one another (Pearson correlation r=0.98, Supplementary Figure S1A). 

We also compared computational time to generate the telomere length estimates on these samples and 

show that Computel is an order of magnitude more time-consuming (Supplementary Figure S1C). This is 

in part due to the fact that Computel requires CRAM-formatted files (as the WGS data are currently 

stored) to first be converted back to Fastq format (while TelSeq requires a CRAM to BAM conversion), 

but also due to the computationally expensive step of realignment to the telomeric reference genome that 

the Computel algorithm employs. 

 

As a further comparison to orthogonally measured telomere length values, we used data from 2429 

samples from JHS with Southern blot41 telomere length estimates 42. For these samples, the Southern blot 

assay was performed on the same source DNA sample that was used to generate the WGS in TOPMed. 

The Pearson correlation values between the TelSeq and Computel estimates and the Southern blot 

estimates did not differ (r=0.57 and 0.55 for TelSeq and Computel, respectively, Supplementary Figure 

S1B). We do note some technical sources of variability in our data, both within a study (colors in 

Supplementary Figures S1A and S1B indicate grouping by shared 96-well plate for shipment to 

sequencing center for these JHS samples) and across studies (Supplementary Figures S2A and S2B). 

Cross-study differences are accounted for in our modeling process (see Supplementary Figures S2C and 

S2D, and Single variant tests for association, below). 
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Based on our observation that both Computel and TelSeq showed similar correlation to the Southern blot 

estimates and high correlation with each other, and that TelSeq was an order of magnitude more 

computationally efficient, we chose to use TelSeq to perform telomere length estimation on our data.  

 

Final telomere length estimation was performed on a set of 93,219 samples whose CRAM-files were 

available for analysis at the TOPMed IRC at the time of analysis.  

 

Samples included in genetic analysis: Samples with telomere length estimated from the WGS data from 

the TOPMed Studies described above were included in either a discovery or replication dataset 

(Supplementary Table S1A and S1B) based primarily on their release as part of the TOPMed WGS data 

processing “Freezes” (Taliun, Nature, Submitted, 2019) 22. The discovery dataset (n=46,458, 

Supplementary Table S1A) is comprised of samples that were included in the TOPMed freeze5b data set 

(Taliun, Nature, Submitted, 2019) 22, released in September 2017, passing sample-level quality control 

(QC) checks as determined by the TOPMed Data Coordinating Center (DCC) (e.g. concordance of 

annotated and genetic sex, comparisons of genetically inferred and pedigree reported relatedness, and 

concordance of WGS genotype calls with prior array data), and with consent groups that allowed for 

genetic analysis of telomere length. Only samples with sequencing read lengths of 151 or 152 basepairs 

and having age at blood draw and reported race/ethnicity data available were included. For the set of 

samples that were part of a duplicate pair (either part of the intended duplicates designed by TOPMed, or 

a duplicate identified across the studies through sample QC) only one sample from each duplicated 

pair/group was retained. Relying on the same set of criteria, samples were included in the replication 

dataset (n=28,718, Supplementary Table S1B) if they were available as additional samples in the 

freeze6a TOPMed data release available in August 2018.   
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Race/ethnicity classifications as presented in Supplementary Table S1 were harmonized by the TOPMed 

DCC across studies based on study-specific self-reported questionnaire data. We included samples 

belonging to the following five race/ethnicity categories for our analysis: African ancestry, Asian 

ancestry, European ancestry, Hispanic/Latino and Samoan. For inclusion within the final set of samples 

described above, the minimum sample size for any study-race-sequencing center stratum had to be n=50. 

Samples belonging to a smaller stratum were not included in any analyses. 

 

Single variant tests for association: The genome-wide tests for association were performed on the 

Analysis Commons43. Variants with minor allele count (MAC) of at least 5 and passing IRC quality filters 

were included for single variant analyses. Individual genotype calls with a read depth less than 10 at a 

particular variant were considered “missing” and were imputed using the sample allele frequency.  

 

A two stage procedure8 was performed to test for association genome-wide in the discovery dataset; the 

steps were as follows: 

1. Telomere length was regressed on age and sex separately within each study-race/ethnicity-

sequencing center stratum for the n=46,458 discovery samples. Within each stratum, the 

regression residuals were then inverse-normal transformed and subsequently scaled by their 

original variances. This rescaling returns the within-stratum variance back to its original value, 

allowing for clearer interpretation of estimated genotype effect sizes (see Supplementary Figure 

S6). These inverse-normalized and scaled residuals were then combined across all strata for the 

discovery dataset, and tests for association were performed as follows.  

2. Given the large sample size of the discovery dataset, a mega-analysis including all n=46,458 

samples was performed in two steps: 

a. All genetic loci were tested for association with the inverse-normalized residuals using a 

standard additive linear model again adjusting for age, sex, and study. 
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b. All loci with p-values for association between genotype and outcome < 0.01 from this 

standard additive linear model were then re-analyzed using a linear-mixed model 

(described below) that included a genetic relationship matrix (GRM) estimated using 

MMAP 44 to account for ancestry differences as well as within and between study 

relatedness among individuals, included age, sex, and study as model covariates, and 

allowed for heterogeneous residual variances across sample groups defined by study.  

c. The final reported p-value for association is the value from b, if available, and is 

otherwise the value from a. 

 

A two stage procedure similar to that used for the discovery dataset described above was performed to 

test for association genome-wide in the replication dataset: 

1. Residuals from a linear model of telomere length regressed on age, sex, and 11 principal 

components (PCs) of ancestry were calculated within each study-race/ethnicity-sequencing center 

stratum for the n=28,718 replication samples. Within each stratum, the residuals were then 

inverse-normal transformed, and subsequently scaled by their original variances to return the 

within-stratum variance back to its original value.  

2. A mega-analysis including all n=28,718 samples was performed using a linear-mixed model 

(described below) that included an empirical kinship matrix to account for all relatedness among 

individuals, included sex, age, 11 PCs of ancestry, and study as model covariates, and allowed for 

heterogeneous residual variances across sample groups defined by study.  

 

Implementation of the Linear Mixed Model used for association tests: The tests for association were 

conducted using linear mixed models as implemented in the GENESIS [ “Genetic association testing 

using the GENESIS R/Bioconductor package”, Gogarten et al., Bioinformatics, in press] application on 

the Analysis Commons. For both the discovery and replication analyses, the genesis_nullmodel app 

(versions v0.3 for discovery and v1.0.5 for replication) was used to fit the linear mixed model under the 
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null hypothesis of no genetic association (i.e. without any individual genotype terms in the model), where 

the transformed residuals from step 1 above were used as the outcome, and the model was specified as 

described above. The output from the null model analysis was then used to perform single variant score 

tests of association with the genesis_tests app (versions genesis_dscan_single for discovery, 

genesis_tests_v.1.3.2 for replication). In the discovery analysis, the GRM used to account for both 

individual ancestry differences and relatedness was computed using MMAP 44.  In the replication 

analysis, ancestry-representative PCs generated using PC-AiR 45 were included in the two steps of 

analysis to adjust for individual ancestry differences, and an empirical kinship matrix generated using PC-

Relate 46  was used in step 2 to account for relatedness among individuals. The switch from a GRM to a 

kinship matrix for the TOPMed wide sample set on the Analysis Commons was done to accommodate the 

increased sample size in freeze 6a relative to freeze5b.  

 

Meta-analysis: Meta-analysis was performed genome-wide combining the Discovery and Replication 

association results using the sample size weighted approach implemented in METAL (version 2018-08-

28) 47.  

 

Assessing significance and defining genetic loci: All variants with meta-analysis p-value < 5x10-8 were 

considered as significant in the meta-analysis. All variants passing this threshold were examined in 

BRAVO 48 to assess quality, and a set of 154 variants were filtered out due to variant call quality issues. 

Using the remaining significant variants, we determined which belonged to a “locus” (and were not just 

one-off singleton variants) by taking each peak variant and identifying if there were additional variants 

with a linkage disequilibrium (LD) r2 > 0.5 with this variant (across all samples) that also achieved a level 

of significance < 5x10-8 in the meta-analysis. From each set of variants at a locus, the sentinel variant was 

determined by selecting the position which was present in both the discovery and replication analysis (i.e., 

had minor allele count > 5 in both data sets) and which showed the smallest meta-analysis p-value of any 

variants falling in that locus. Index genes for each locus were selected based on (i) prior GWAS study 
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definition for known loci, (ii) the specific gene annotation for each variant mapping directly to a gene in 

Supplementary Table S2A for novel loci, and (iii) the exception of the OBFC1 and ATM loci: For the 

OBFC1 locus three index genes were selected SH3PXD2A, OBFC1(STN1), SLK as all three had strong 

SNV signal not in LD with the sentinel variant (Supplementary Figure S4D); and for ATM, the sentinel 

variant mapped to NPAT, but was a peak eQTL for ATM (Supplementary Figure S4U). 

 

Estimation of ancestry-specific p-values: Single variant tests for association were performed as 

described above for each of the five race/ethnicity subgroups within the discovery and replication data 

sets, splitting the samples after the first step (i.e., after calculating, inverse-normal transforming and 

rescaling residuals). Meta-analysis to combine the discovery and replication results within a race/ethnicity 

group was also performed as described above. 

 

 

Estimation of effect sizes and percent of variance explained: To estimate the effect size and percent 

variance explained for individual variants, we performed the same two stage procedure as described for 

association testing with the replication dataset, but with two differences: we used the full set of 75,176 

samples, and we only computed score test statistics for the 22 associated variants identified through the 

meta-analysis. Estimates of the additive effect size per copy of the alternate allele for each variant were 

approximated from the score test statistics using the approach illustrated in Zhou et al. 49 (i.e. 𝛽" = 𝑈%/𝑉%, 

where 𝑈% is the covariate-adjusted score for testing the variant, and 𝑉% is its variance). Despite using 

inverse-normalized residuals as the outcome variable, we expect these effect size estimates to be 

approximately on the original trait scale (i.e. number of basepairs) because the distribution of residuals 

pre-inverse-normalization was not too far from Normal (Supplementary Figure S6), and we re-scaled the 

variance back to its original value50. To estimate the percent of phenotypic variance explained (PVE) by 

each individual variant, we used the formula 𝑃𝑉𝐸	 = 	1	–	𝑅𝑆𝑆//𝑅𝑆𝑆0, where RSS0 and RSS1 are the 
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residual sums of squares computed from the null model, and the model including the variant of interest, 

respectively. Following the idea of Zhou et al., we derived a similar approximation for PVE using only 

estimates from the null model: 𝑃𝑉𝐸1 = 𝑈%
2/(𝑅𝑆𝑆0𝑉%). 

 

Gene-based coding variant tests - Variant annotation: For their use in the gene-based tests for 

association, variant annotation was performed using WGSA751 and dbNSFP 52. Variants were annotated 

as exonic, splicing, ncRNA, UTR5, UTR3, intronic, upstream, downstream, or intergenic. Exonic variants 

were further annotated as frameshift insertion, frameshift deletion, frameshift block substitution, stopgain, 

stoploss, nonframeshift insertion, nonframeshift deletion, nonframeshift block substitution, 

nonsynonymous variant, synonymous variant, or unknown. Additional scores available included REVEL 

53, MCAP 54 or CADD 55 effect prediction algorithms. 

 

Gene-based coding variant tests - Tests for association: Gene-based analysis was performed on the 

discovery samples only (n=46,458). To improve the power of identifying rare variant associations in 

coding regions, we aggregated deleterious rare coding variants in 19,387 protein-coding genes and then 

tested for association with telomere length. To enrich for functional variants, only variants with a 

“deleterious” consequence for its corresponding gene or genes 56, were included. For each protein-coding 

gene, a set of rare coding variants (MAF < 0.05, including singletons where MAC=1) was constructed, 

which was composed of all stop-gain, stop-loss, and frameshift variants, as well as the exonic missense 

variants that fulfilled one of these criteria:  1) REVEL score > 0.5, 2) M_CAP score was “Deleterious”, or 

3) CADD score > 20. We applied the Sequence Kernel Association Test (SKAT) 57 as implemented in 

GENESIS, using the genesis_tests app on the Analysis Commons, with minor allele frequency based 

variant weights given by a beta-distribution with parameters of 1 and 25, as proposed by Wu et al 57, using 

the same null model products/objects used in single variant analysis. Significance was evaluated after a 

Bonferroni correction for multiple testing (0.05 / 19387 = 2.58x10-6). 
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Next, we sought to determine which rare deleterious variants in each significant gene were driving the 

association signal. We iterated through the variants, removing one variant at a time (Leave-one-out 

approach, LOO) 58,  and repeated the SKAT analysis. If a variant made a large contribution to the original 

association signal, one would expect the signal to be significantly weakened with the removal of the 

variant from the set.   

 

Mining association analysis results.  The “Omics Analysis, Search and Information System” (OASIS) 59 

is a web-based application for transforming the massive volumes of association results, such as those 

generated by investigators in the Trans-Omics for Precision Medicine program (TOPMed) Telomere 

Length Working Group, into biological discovery. OASIS is a one-of-a-kind application that enables fast, 

efficient data mining integrated with a broad spectrum of functional annotation, online resources (e.g. 

dbSNP60, gnomAD [Genome Aggregation Database (gnomAD) 61],  GTEx 62, Open Targets Genetics63, 

UK Biobank64 and user-provided “known loci” lists to facilitate identification of novel genetic 

discoveries. Real-time analysis tools include linkage disequilibrium (LD) calculations, on-demand 

visualizations (e.g. boxplots, bar charts, histograms, Haploview 65 and LocusZoom 66 plots) and direct 

integration of selected variants with the UCSC Genome Browser 67 to visualize their proximity to 

functional regions (e.g. binding sites, Dnase hypersensitivity sites, enhancer/promoter regions).  For the 

telomere length research, OASIS provided customized LD calculations based on genotypes for the actual 

TOPMed subjects with telomere length phenotypes and for multiple ancestry-based subsets. OASIS 

automatically fed the customized LD calculations directly to LocusZoom and thus provided an efficient 

method for producing multiple LocusZoom visualizations for inspection and comparison. 

 

Gene-set enrichment analysis: Gene set enrichment for indexed gene(s) mapping to the 22 GWAS loci 

was performed using PANTHER 26,27 . Gene set over-representation was evaluated against the GO 

Ontology Database for all genes in the Homo sapiens database using the FISHER test and all sets with an 
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FDR <0.05 are listed. Input genes were: TERT, TERC, RTEL1, SH3PXD2A, OBFC1(STN1), SLK,  

RFWD3, NAF1, ACYP2, TERF1, LINC01592, LOC100505739, TINF2, SAMHD1, TERF2, ZNF676, 

ZNF729, TCL1A, YY1P2, OPRK1, LRP1B, LINC01429, ATP6V1H, RPN1, DCAF4, POT1, ATM, CHKB-

AS1, MAPK8IP2. There were six unmapped IDs: TERC, LINC01592, LOC100505739, YY1P2, 

LINC01429 and CHKB-AS1. Index genes were selected based on (i) prior GWAS study definition for 

known loci, (ii) annotation for each variant mapping directly to a gene in Supplementary Table S2A for 

novel loci, and (iii) the exception of the OBFC1 and ATM locus: For the OBFC1 locus three index genes 

were selected (SH3PXD2A, OBFC1(STN1) and SLK) as all three had strong SNV signal not in LD with 

the sentinel variant (Supplementary Figure S4D); and for ATM, the sentinel variant mapped to NPAT, but 

was a peak eQTL for ATM  (Supplementary Figure S4U). 

 

Phenome-wide association tests (PheWAS):  We queried United Kingdom Biobank (UKBB) GWAS 

results using the University of Michigan PheWeb web interface (http://pheweb.sph.umich.edu/SAIGE-

UKB/). The UKBB PheWeb interface contains results from a SAIGE 68  genetic analysis of 1403 ICD-

based traits of 408,961 UKBB participants of European ancestry. PheWeb is a publicly accessible 

database that allows querying genome-wide association results for 28 million imputed genetic variants. 20 

out of our 22 sentinel variants were present in PheWeb. We report all hits passing a Bonferroni correction 

for the number of tests performed (0.05/(20*1403) = 1.8x10-6). 

 

Expression quantitative trait locus (eQTL) analysis using eQTLGen:  The sentinel variants from the 

meta-analysis results were assessed for their role as eQTLs using the eQTLGen 37 data set, which includes 

eQTLs found in blood from a set of n=31,684 individuals. For all sentinel variants which were present in 

eQTLGen, we report all eGenes associated with these variants, as well as the most significant eGene and 

its FDR-corrected eQTL p-value.  
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