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ABSTRACT 

Telomeres shorten in replicating somatic cells, and telomere length (TL) is associated with age-related 

diseases 1,2. To date, 17 genome-wide association studies (GWAS) have identified 25 loci for leukocyte 

TL 3-19, but were limited to European and Asian ancestry individuals and relied on laboratory assays of 

TL. In this study from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we used 

whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic 

estimation of TL in n=109,122 trans-ethnic (European, African, Asian and Hispanic/Latino) individuals. 

We identified 59 sentinel variants (p-value <5x10-9) from 36 loci (20 novel, 13 replicated in external 

datasets). There was little evidence of effect heterogeneity across populations, and 10 loci had >1 

independent signal. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type 

specific eQTLs for OBFC1 (STN1). We further identified two novel genes, DCLRE1B (SNM1B) and 

PARN, using a multi-variant gene-based approach. 

 

RESULTS 

The decreasing costs of high throughput sequencing have enabled WGS data generation at an 

unprecedented scale, and TOPMed data offer the opportunity to address sample size, population diversity, 

rare variant evaluation, and fine mapping limitations of prior TL GWAS. We selected TelSeq 20 to 

bioinformatically determine TL due to its computational efficiency and high correlation with Southern 

blot 21 and flowFISH 22   measurements (Materials and Methods. Figures S1a-c). We developed a novel 

principal components-based approach to remove technical artifacts arising from the sequencing process 

that affected TL estimation, which improved accuracy (Materials and Methods, Figures S1d-e). Pooled 

trans-ethnic association analysis was performed with n=109,122 subjects (including 51,654 of European 

ancestry, 29,260 of African ancestry, 18,019 Hispanic/Latinos, 5,683 of Asian ancestry, and 4,506 of 
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other, mixed, or uncertain ancestries, as determined by HARE 23, Materials and Methods); 44% were 

male and age ranged from <1 to 98 years old (Table S1). 

 

Genome-wide tests for association were performed across 163M variants. Using a series of single variant 

tests for association (primary to identify loci, iterative conditional by chromosome to identify additional 

independent variants, and joint tests including all independent variants to summarize effect sizes; see 

Materials and Methods), we identified 59 independently associated variants mapping to 36 loci, each 

reaching a p-value <5x10-9 (Figure 1, Table 1, Table S2); 16 known and 20 novel, as further described 

below.  

 

Of 25 previously known loci, we identified 16 (PARP1, ACYP2, TERC, NAF1, TERT, POT1, TERF1, 

OBFC1, ATM, TINF2, DCAF4, TERF2, RFWD3, MPHOSPH6, ZNF208/ZNF257/ZNF676, and RTEL1) 

with a variant at a p-value <5x10-9 (Table 1, Table S3). Directionally consistent and nominal evidence for 

replication was noted for CTC1 (rs3027234, p-value = 7.97x10-5) and SENP7 (rs55749605, p-value = 

0.023). A signal previously attributed to PRRC2A is located less than 200kb from our novel signal for 

HSPA1A but may be distinct given low linkage disequilibrium (r2=0.26). We found no evidence of 

replication (all variants with p-value >0.05) for the remaining previously reported TL loci (CXCR4, PXK, 

MOB1B, DKK2/PAPSS1, CARMIL1 and CSNK2A2, Table S3). Our comprehensive conditional analyses 

revealed that there was more than one independent sentinel variant at nine of the sixteen previously 

reported loci (Table 1, Figure 2a). The resolution possible with our trans-ethnic WGS data identified a 

sentinel variant different from the one previously reported by tagging-based GWAS for 11 of the 16 

known loci. At known loci RTEL1, RFWD3, POT1, ACYP2, and PARP1, our WGS-based sentinels 

included a coding missense variant in genes RTEL1, RFWD3, POT1, TSPYL6, and PARP1, respectively. 

For the remaining known TL loci, many of the non-coding sentinel variants are annotated as having 

regulatory evidence (RegulomeDB score < 7, Table 1), as illustrated further for OBFC1 below.  
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Our 20 novel loci (Table 1) had a total of 22 independent sentinel variants, and we tested for replication at 

the 19 variants available in two prior published GWAS with non-overlapping subjects 18,19  (Figure 3a). 

Variants at ten of these loci (BCL2L15, CXXC5, HSPA1A, NOC3L, NKX2-3, ATP8B4, CLEC18C, TYMS, 

SAMHD1, and TYMP) had a Bonferroni-corrected p<0.05/19=0.0026, and an additional three had variants 

with p<0.05 (TNP03, KBTBD7, and BANP), as did a second variant at TYMS. The variant at SAMHD1 

was previously reported at an FDR < 0.05 (p-value = 1.41x10-7)19 but here has genome-wide significance 

(p-value = 1.58x10-19). While qPCR and TelSeq quantify TL in different units (see Materials and 

Methods), there is high consistency in the effects at variants shared between our study and these prior 

studies (Figure 3b-c). Pearson correlations of effect sizes for all 19 shared variants were 0.83 (p-value = 

7.0x10-5) for our study compared to Dorajoo et al. (n=23,096 Singaporean Chinese) and 0.73 (p-value = 

3.7x10-4) for our study compared to Li et al. (n=78,592 European). The correlations were stronger (0.93 

and 0.84, respectively) when restricted to variants with at least nominal significance in the prior studies 

(Figure 3d-e). The proteins encoded by two of these novel genes have strong biological connections to 

TL: CXXC5, which physically interacts with ATM and transcriptionally regulates p53 levels 24, two 

proteins implicated in telomere length regulation; and BANP (aka SMAR1) which forms a complex with 

p53 and functions as a tumor suppressor 25. 

 

Each of the 59 sentinel variants individually accounted for a small percentage of phenotypic variation 

(Table 1), consistent with prior GWAS of TL, but cumulatively accounted for 4.35% of TL variance, 

compared to 2-3% from prior GWAS 3. The 37 variants mapping to 16 known loci explained 3.38% of TL 

variability, with an additional 0.96% explained by the 22 variants mapping to our 20 novel loci; a sizable 

gain in explained variability for TL in this trans-ethnic sample. Prior GWAS report allelic effects ranging 

from ~ 49-120 base pairs 3,4,11,13. In the TOPMed data, effect sizes for common variants (minor allele 

frequency, MAF t5%) ranged from 2-59 base pairs per allele. Rare and low frequency variants (MAF 

<5%) showed larger effects (40-1,063 base pairs per allele).  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2020. ; https://doi.org/10.1101/749010doi: bioRxiv preprint 

https://doi.org/10.1101/749010


   
 

   
 

9 

Stratified association analyses were performed in population groups with at least 5,000 samples to 

evaluate effect heterogeneity of the 59 variants (Table S4).  Reduced sample sizes, coupled with variation 

in allele frequency, often limited our power to detect population-specific associations at GWAS 

thresholds in individual strata (Table S4); no additional loci were identified. A major advantage of our 

analysis was the ability to rely on the individual-level WGS data for the iterative conditional approach to 

identify the final set of independent sentinel variants at each trans-ethnic-identified locus. Our sentinel 

variants, identified without relying on tagging through linkage to measured marker variants like prior 

GWAS, reveal little evidence for heterogeneity across populations (Table 1). All Cochran's Q26  p-values 

(Table 1) were above a Bonferroni correction threshold (p-value>0.001), and the five with nominal 

significance (0.001<p-value<0.05) appear to be primarily driven by differences in the (smallest) Asian 

stratum. An interesting illustration of a locus with strong allele frequency differences between groups is 

TINF2; the evidence at the peak variant (rs28372734) in the trans-ethnic analysis was driven by the 

smaller Hispanic/Latino and Asian groups (group-specific p-values 4.6x10-9 and 7.3x10-10, respectively), 

and the secondary peak (rs8016076) was driven by the African group (group-specific p-value 1.7x10-10, 

Table 1, Figure 2b). No association is noted in the European group, where these variants are nearly 

monomorphic (Figure 2c).  

 

Gene-based tests in the pooled trans-ethnic sample identified eight protein coding genes with deleterious 

rare and low frequency (MAF <1%, including singletons) variants associated with TL (p-value <1.8x10-6, 

see Materials and Methods, Figure S2). Six of these genes support a role for rare variants in previously 

identified GWAS loci (POT1, TERT, RTEL1, CTC1, SAMHD1, and ATM). The two novel genes have 

strong biological plausibility: both DCLRE1B and PARN have been implicated in short telomere 

syndrome (STS) patients 27-29. DCLRE1B protein localizes to the telomere via interaction with the protein 

of another previously implicated GWAS gene, TERF2, and contributes to telomere protection from DNA 

repair pathways 30,31. Notably, two PARN loss-of-function variants included in our gene-based test were 

previously identified in STS patients 27. Both rs878853260 and rs876661305 produce frame-shift 
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mutations; rs876661305 produces an early termination codon, truncating most of the nuclease domain 32. 

For each of these eight genes, a leave-one-out approach iterating over each variant included in the 

aggregate test showed there were no detectible main driver variants and indicated that these gene-based 

association signals arise from cumulative signal across multiple rare deleterious variants (Figure S2), 

with the possible exception of ATM. When conditioned on the 59 sentinel variants, all genes, except 

POT1, maintained or increased statistical significance (Figure S2). For POT1, while the removal of the 

single variant identified in Table 1 (rs202187871) and conditioning on all 59 sentinels resulted in a 

decrease in significance from 1.52x10-24 to 5.53x10-18, it nonetheless remained strongly significant, 

meeting Bonferroni thresholds.  

 

The identification of multiple independent sentinel variants for several loci offers the unique opportunity 

to evaluate the potential for distinct regulatory mechanisms (Figure 2a, Figure S3). OBFC1 is part of a 

complex that binds single-stranded telomeric DNA 33 and is expressed across multiple tissues in GTEx 34 

and in whole blood studies meta-analyzed in eQTLGen 35. All four signals at the OBFC1 locus are in the 

promoter and early introns of OBFC1 (Figure 4a-b). Evidence for eQTL colocalization was detected at 

the primary, tertiary, and quaternary signals in various tissues (Materials and Methods). While all three 

signals colocalized with OBFC1 eQTLs, the strongest colocalization evidence in each case was in a 

distinct tissue: sun exposed skin from the lower leg (posterior probability of shared signal, PPH4 = 

98.0%) for the primary, skeletal muscle (PPH4 = 84.4%) for the tertiary, and whole blood (GTEx PPH4 = 

75.5%, eQTLGen PPH4 = 75.5%) for the quaternary signal (Figure 4c-e, Figure S4e, Table S5).  Data 

from the Roadmap Epigenomics Consortium36 indicate that all four signals are consistent with promoter 

or enhancer regions across blood cells and skeletal muscle tissue (Figure 4b). We were unable to perform 

colocalization analysis on the secondary signal with data from either GTEx or eQTLGen as it is driven by 

rare variants only in the Hispanic/Latino and Asian individuals (rs111447985, Table S4). 
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Using individual level data within the Vanderbilt University biobank BioVU, we performed a PheWAS 

(Table S6) using 49 available sentinel variants individually. European and African specific effect sizes 

from the joint analysis from Table 1 were also combined to create separate polygenic trait scores (PTS) 

for each population group to conduct PheWAS. PTS values were significantly higher in BioVU African 

Americans (AAs, mean=-217bp, sd=96bp) compared to European Americans (EAs, mean=-279bp, 

sd=96bp, p-value<0.05, Welch’s two-sample t-test, Figure 5a), offering evidence that previously 

observed differences in TL by ancestry (longer TL in individuals of African ancestry1) may be explained 

in part by TL genetics. The largest cumulative effect of the sentinel variants, as evidenced from the PTS, 

is for the category of neoplasms in the EAs, with higher PTS associated with increased risk to the 

individual phenotypes (11 of 14 significant results, Figure 5b, Table S6); associations were only nominal 

in the BioVU AAs, likely due to lower power from the smaller sample size. Single variant PheWAS 

(Table S6) in the BioVU EAs are largely replicated within the UK Biobank (UKBB, Table S7), showing 

strong associations with neoplasms, and in general, demonstrating the alleles that increased TL also 

increased risk for these cancer related phenotypes. Additionally, both the UKBB and BioVU data 

revealed a strong association between the novel HSPA1A locus (rs1008438) and type I diabetes related 

endocrine/metabolism phenotypes; here the allele decreasing TL increased risk for these phenotypes. This 

agrees with prior associations between shorter TL and increased risk of type 1 diabetes 37, and between 

the protein product of HSPA1A (Hsp72) and diabetic ketoacidosis 38.  

 

Leveraging WGS available through the NHLBI TOPMed program, we have illustrated the value of a 

large, trans-ethnic WGS study to generate a harmonized phenotype of broad interest (i.e. 

bioinformatically called TL), to confirm known TL GWAS loci, and to identify an additional set of novel 

loci that map to genes with strong biological plausibility for TL association. The well-powered study 

enabled identification of rare deleterious variants at known and novel loci with estimated effects larger 

than those of common variants. Utilizing WGS allowed us the unique opportunity to hone in on causal 

variants using fine-mapping approaches, and begin to identify tissue-specific genetic effects. We were 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2020. ; https://doi.org/10.1101/749010doi: bioRxiv preprint 

https://doi.org/10.1101/749010


   
 

   
 

12 

also able to establish that for most population groups, effects are highly consistent at sentinel variants, 

despite differences in association strength at loci like TINF2 and OBFC1, where allele frequencies varied 

among populations. The ability to implement this phenotype assessment of TL in a large, trans-ethnic 

dataset with pre-existing WGS creates opportunities beyond the genetics of TL. It will expand our ability 

to evaluate the role of TL and genes determining TL in health and human disease as illustrated by the 

PheWAS in large biobanks where we document identifiable effects that differ between sentinel variants 

and the cumulative score across all loci, and start to dissect the genetic basis to TL differences across 

populations.  
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ALL TABLE LEGENDS 
 
Table 1: 59 independently associated variants mapping to 36 loci from the whole genome sequencing of 
n=109,122 TOPMed individuals. Loci are labeled as novel if none of the sentinel variants in the locus was 
in LD (r2 < 0.7) with any previously documented GWAS signal for telomere length. There are 5 variants 
marked with an * where the primary analysis did not meet our threshold of p<5x10-9, however they 
reached significance after conditioning on significant variants mapping to the chromosome (detailed in 
Table S2). Variants marked with ** are direct matches to prior reported sentinel variants. Percent of trait 
variation explained by each variant is provided from single-variant association tests. P-values and effect 
sizes (in base pairs) are reported from a joint model including all variants. P-values for effect 
heterogeneity across population groups were generated using Cochran’s Q statistic. MAC is the minor 
allele count from the full combined sample. For all exonic variants, detailed annotation is provided, while 
for all non-coding variants the RegulomeDB score is given. See also Tables S2, S4. 
 
Table S1, Related to TOPMed study populations, Materials and Methods: Sample demographics 
summarized by each set of analysis performed: pooled trans-ethnic and four non-overlapping population 
groups (defined with HARE, using reported race/ethnicity and genetically inferred ancestry in 
combination; “Other/Uncertain” includes individuals with maximum stratum probability from HARE < 
0.7, as well as Brazilians and Samoans who were excluded from the HARE analysis).  
 
Table S2, Related to Table 1 and Figure 2: Results of the iterative conditional analysis using individual 
level data. Results are presented by chromosome providing a detailed overview of the conditional step at 
which each variant was identified as the peak signal. (Note that some variants had p-value>5x10-9 in the 
primary analysis, but p-value<5x10-9 in a conditional step). Within each chromosome, variants are 
ordered not on position, but in the sequence of identification through the conditional analysis showing the 
iterative process used: Primary and Rounds 1-6 of conditioning. Chromosomes varied in the number of 
analyses needed until no additional variants were included (maximum steps = 7 on chromosome 5). 
 
Table S3, Related to Assessing novelty of identified loci and variants, Materials and Methods: 
TOPMed results from the primary pooled trans-ethnic analysis for all prior telomere length GWAS 
sentinel variants with reported p-value <5x10-8 in prior published studies.  
 
Table S4, Related to Table 1: Association results for the single variant association analysis for each of 
the 59 sentinel variants from Table 1. Single variant results are shown for the pooled trans-ethnic 
analysis, and each population group. Variants with a minor allele count <5 were not included in the 
analysis and are listed as "-".   
 
Table S5, Related to Figure 4: Iterative conditional analysis was repeated on chromosome 10 focusing 
exclusively on the OBFC1 locus, defined as a 2Mb window around the original top sentinel, rs9420907. 
The sentinel for each signal was consistent with the iterative conditional analysis performed on the 
entirety of chromosome 10 (Table S2). The summary statistics from each iterative conditional analysis 
were used to perform colocalization analysis on the non-primary signals. Colocalization analysis was 
performed using coloc with all significant gene-tissue pairs in GTEx and with all genes in a 2Mb window 
around rs9420907 in eQTLGen. All results with PPH4 > 0.7 for each signal are reported. 
  
Table S6, Related to Figure 5: Results of the PheWAS performed on 49 available sentinel variants and a 
polygenic trait score across these 49 sentinel variants using BioVU self-identified African Americans 
(AA, n=15,174) and BioVU self-identified European Americans (EA, n=70,439). The cumulative TL risk 
score for the BioVU AA and EA samples was derived from the African and European specific effects 
sizes from Table 1, respectively. Results were evaluated at a Bonferroni threshold corrected for the 
number of informative phecodes for each variant. 
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Table S7, Related to Figure 5: Results of the PheWAS conducted using SAIGE, a method employing 
generalized linear mixed models and allowing for imbalance between case and control counts, adjusting 
for genetic relatedness, sex, birth year and the first 4 principal components of ancestry, on approximately 
400,000 UK Biobank (UKBB) participants. Results were downloaded from files provided by the 
University of Michigan PheWeb server (http://pheweb.sph.umich.edu/SAIGE-UKB/about) on 47 
available sentinel variants. Results were evaluated at a Bonferroni threshold corrected for the number of 
phecodes available for each variant (N=1,403). 
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ALL FIGURE LEGENDS 
 
Figure 1: Genome-wide Manhattan plot. Trans-ethnic genome-wide tests for association using 163M 
sequence identified variants on n=109,122 samples with sequence generated telomere length from 
TOPMed. All loci had a peak p<5x10-9 in the pooled trans-ethnic analysis. Prior known loci are indicated 
in red, and novel loci are indicated in blue.    
 
Figure 2: LocusZoom plots for multi-hit loci and TINF2. [a] LocusZoom plots for all loci with >1 
sentinel variant. Linkage disequilibrium (LD) was calculated from the set of samples used in the analysis 
with respect to the peak variant in the pooled trans-ethnic primary analysis, thereby reflecting LD patterns 
specific to the TOPMed samples. For each figure, the peak sentinel variant from the pooled trans-ethnic 
analysis is indexed and labeled in purple, and all independent variants identified through the iterative 
conditional approach are labeled in green and highlighted with green dotted lines. [b] LocusZoom plots 
for four population groups for the TINF2 locus. [c] Forest plots displaying effect sizes and standard 
errors, as well as minor allele frequencies, by population group for the three sentinel variants in TINF2. 
See also Table S2. 
 
Figure 3: Replication by two prior studies. [a] Replication results for the 20 novel TOPMed loci, 
including 22 variants, pulled from two non-overlapping, prior published GWAS on telomere length using 
qPCR data. Threshold indicates the stronger level of significance between the two replication studies 
(Bonferroni significant: p <0.0026; nominally significant: p <0.05; non-significant: p >0.05). [b-e] 
Correlation between the estimated effect sizes for all novel loci (b-c) and replicated novel loci (d-e, 
p<0.05 in each dataset) between the present TOPMed pooled trans-ethnic analysis and two prior 
published GWAS studies.  
 
Figure 4:  Fine-mapping of multiple OBFC1 signals. [a] LocusZoom plot of the OBFC1 locus where 
green dotted lines indicate each independent signal, as in Figure 2. [b] Roadmap Epigenomics 
Consortium data in hg19 coordinates for skeletal muscle tissue, Primary T CD4+ memory cells from 
peripheral blood, and Primary T CD8+ naïve cells from peripheral blood (Roadmap samples E108, E037, 
and E047 respectively; data was not available for sun exposed skin).  ChromHMM state model is shown 
for the 18-state auxiliary model. The state model suggests the primary (rs9420907), secondary 
(rs111447985), and tertiary (rs112163720) signals are in the promoter region, while the quaternary signal 
(rs10883948) is in an enhancer region in all Roadmap blood cell types but is transcriptional for peripheral 
blood monocytes and CD19+ B-cells. [c-e] GWAS and eQTL results for the primary, tertiary and 
quaternary signals. Top panels are the GWAS summary statistics from the primary, and iterative 
conditional analyses which were used to perform colocalization analysis (secondary signal was rare, and 
not available for colocalization). Bottom panels are eQTLs for OBFC1 in the indicated tissue from GTEx. 
The GTEx eQTLs for these tissues do not colocalize with one another (PPH4 < 4.4x10-7) and each signal 
did not significantly colocalize in the other tissues. LD was calculated from the pooled trans-ethnic 
samples with respect to the sentinel (black diamond). See also Figures S3, S4, Table S5. 
 
Figure 5: PheWAS results from Vanderbilt BioVU. Polygenic trait score (PTS) analysis across 49 
available sentinel variants in BioVU. [a] Smoothed distributions of PTS values for European Americans 
(n=70,439) and African Americans (n=15,174) from BioVU biobank. [b] Overview of the PheWAS in the 
BioVU European Americans. ▲ = higher PTS is associated with the phenotype. ▼ = higher PTS is 
protective against the phenotype. See also Tables S6, S7. 
 
Figure S1, Related to Estimating telomere length for whole-genome sequencing (WGS) samples and 
Batch adjustment to correct for technical confounders, Materials and Methods: For 2,389 samples 
from the Jackson Heart Study (JHS), [a] scatter plot with Pearson correlation between TelSeq and 
Computel length estimates; [b] Comparison of computational times for TelSeq and Computel; [c] scatter 
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plots with Pearson correlations between TelSeq (left) and Computel (right) and Southern blot TL 
estimates; [d] scatter plot with Pearson correlation between TelSeq and Southern blot TL estimates after 
adjustment for the final set of 200 batch principal components (bPCs) used in our full analysis. Colors 
indicate on which plate samples were shipped to the sequencing center, in Panels A, C and D; and [e] 
scatter plot with Pearson correlation between bPC-adjusted TelSeq and flowFISH data on 19 samples 
from the GeneSTAR study.  
 
Figure S2, Related to Gene-based coding variant tests - Tests for association, Materials and 
Methods: Eight genes were identified as passing the Bonferroni threshold based on number of genes 
tested (p-value < 0.05/27,558 = 1.8x10-6). For each gene, a leave-one-out analysis was performed iterating 
the SMMAT test and leaving one variant out at a time. The plots show the change in SMMAT p-value for 
each variant (orange line with marker) relative to the variant's allele frequency (blue bar), the overall 
gene-based test including all variants (dotted red line) and the single variant results for all variants with an 
MAC≥5 that were included in single variant tests for association (brown and green diamonds). For each 
gene, the number of rare and deleterious variants included in SMMAT is indicated. For any variant with a 
MAC≥5, a single variant test was also performed as part of the primary analysis. The count of these 
variants is indicated. In addition the SMMAT p-value for these genes when conditioning on the 59 
sentinel variants is also given.  
 
Figure S3, Related to Figure 4: [a] LocusZoom plots for four population groups for the OBFC1 locus. 
Linkage disequilibrium (LD) was calculated from the set of samples used in the analysis with respect to 
the peak variant in the pooled trans-ethnic primary analysis, thereby reflecting LD patterns specific to the 
TOPMed samples. For each figure, the peak sentinel variant from the pooled trans-ethnic analysis is 
indexed and labeled in purple, and all independent variants identified through the iterative conditional 
approach are labeled in green and highlighted with green dotted lines. [b] Forest plots displaying effect 
sizes and standard errors, as well as minor allele frequencies, by population group for the four sentinel 
variants in OBFC1. 
 
Figure S4, Related to Figure 4: [a-d] Credible set analysis and colocalization analysis in eQTLGen. 
Manhattan plots for each OBFC1 signal are shown where p-values were taken from the appropriate 
conditional analysis output and LD was calculated with respect to the sentinel variant. Credible set 
variants are indicated with black diamonds; the sentinel variant is indicated as a black diamond with red 
outline. [e] Manhattan plot for colocalization analysis of the OBFC1 quaternary signal with an OBFC1 
eQTL in eQTLGen. PPH3 and PPH4 for colocalization are indicated in the top right corner of the eQTL 
plot. LD was calculated with respect to the sentinel, indicated with a black diamond on each graph, and 
with pooled trans-ethnic analysis samples. 
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Chr Position Locus SNP Novelty Annotation MAC P-value
Percent 

variation 
explained

Trans-
ethnic

European African Hispanic/ 
Latino

Asian Trans-
ethnic

European African Hispanic/ 
Latino

Asian

1 35259602 ZMYM4 rs11581846 Novel 7 87500 3.04E-10 0.036% 1.74E-11 7.99E-05 8.80E-03 3.37E-06 4.13E-01 -19.9 -21.1 -15.0 -24.6 -8.7 0.44
1 113881455 BCL2L15 rs2296176 Novel 7 33274 2.84E-10 0.036% 1.52E-10 6.57E-08 2.38E-03 3.16E-01 2.07E-02 -19.5 -22.4 -22.0 -7.3 -26.9 0.28
1 226367601 PARP1 rs1136410 missense 36395 9.32E-20 0.076% 9.14E-22 6.10E-09 1.02E-02 7.51E-07 2.04E-04 -29.3 -26.0 -23.7 -29.5 -32.5 0.87
2 54255416 rs17189743 missense 3741 7.18E-12 0.043% 4.24E-11 2.70E-06 2.52E-01 5.20E-06 1.94E-01 -55.4 -50.7 -30.4 -82.4 -46.8 0.34
2 54263623 rs144980386 deletion 28773 1.32E-17 0.067% 1.99E-17 7.78E-13 7.32E-04 1.45E-04 6.78E-01 27.5 33.6 21.2 30.5 4.8 0.08
3 117584223 LINC00901 rs961617801 Novel 6 12 1.25E-11 0.042% 4.81E-11 2.82E-10 - - - 1009.6 1038.5 - - - -
3 169769649 rs12637184 4 47452 1.30E-96 0.399% 1.58E-103 1.02E-50 1.84E-15 7.32E-30 2.33E-11 -59.8 -57.0 -65.8 -66.1 -57.3 0.51
3 169772313 rs9826466 N/A 4066 3.25E-17 0.065% 3.66E-21 2.04E-01 7.28E-19 2.96E-03 - -77.0 253.9 -77.6 -77.8 - 0.25
3 190053412 P3H2 rs10937417 Novel 7 80209 6.89E-10 0.035% 1.89E-10 9.04E-05 1.65E-05 2.33E-03 6.30E-01 14.6 13.5 17.9 17.1 -4.4 0.16
4 9928595 SLC2A2 rs4235345 Novel 6 44302 3.82E-09 0.032% 1.88E-09 3.24E-07 4.39E-02 1.86E-02 5.70E-02 16.8 19.8 12.8 13.2 47.1 0.41
4 163126692 rs60735607 * 6 57418 0.00396382 0.008% 4.43E-12 4.45E-07 7.20E-03 5.33E-04 9.94E-01 -18.5 -20.0 -12.9 -22.4 -0.1 0.43
4 163144568 rs113580095 7 290 4.72E-18 0.069% 1.63E-16 2.57E-08 7.12E-02 3.40E-07 - -254.7 -231.9 -287.8 -257.9 - 0.89
4 163155406 rs1351222 7 50104 3.27E-26 0.103% 1.60E-32 9.04E-16 1.50E-07 6.80E-11 6.58E-03 32.7 32.7 28.9 41.2 28.9 0.49
5 1272383 rs192999400 5 2470 3.10E-15 0.057% 8.21E-23 2.15E-01 3.90E-17 3.42E-03 6.19E-02 101.3 88.7 97.4 96.9 108.4 1.00
5 1280823 rs6897196 5 102081 1.87E-83 0.344% 6.04E-13 7.24E-04 7.90E-08 1.87E-02 1.46E-01 20.8 16.2 25.2 16.8 23.4 0.55
5 1285859 rs7705526 ** 7 64162 1.64E-92 0.382% 2.01E-18 1.16E-11 7.73E-04 1.46E-03 6.47E-02 30.0 35.5 22.5 27.1 34.1 0.47
5 1287079 rs2853677 ** 5 80905 8.17E-65 0.265% 1.25E-19 9.27E-07 8.88E-10 1.33E-05 8.34E-02 -23.9 -17.7 -33.9 -28.9 -22.0 0.08
5 1292331 rs34052286 3a 6173 1.50E-12 0.046% 5.47E-22 3.86E-01 1.09E-14 2.39E-05 - -66.0 -59.3 -61.6 -74.3 - 0.80
5 1292843 rs114616103 * 7 4527 2.39E-07 0.024% 2.03E-13 1.44E-09 2.09E-02 1.72E-02 4.93E-01 -57.2 -59.2 -37.9 -57.6 -71.9 0.73
5 139637905 CXXC5 rs75903170 Novel 2b 11895 5.69E-10 0.035% 7.01E-10 2.83E-04 2.58E-06 8.14E-02 4.31E-01 29.6 25.5 46.7 22.3 12.6 0.19
6 31815431 HSPA1A rs1008438 Novel 2b 106908 3.42E-17 0.065% 6.64E-19 3.61E-09 1.40E-04 4.10E-07 1.71E-02 -20.3 -19.7 -18.4 -25.7 -20.5 0.73
7 124812616 rs720613 7 62325 1.27E-26 0.105% 1.37E-27 2.59E-18 5.87E-06 3.63E-05 2.51E-02 -26.3 -31.3 -20.4 -24.6 -21.0 0.26
7 124858989 rs202187871 missense 27 4.89E-12 0.044% 6.72E-13 6.42E-12 - - - 738.3 719.6 - - - -
7 129041243 TNP03 rs7783384 Novel 5 92528 2.34E-12 0.045% 6.10E-12 1.22E-07 1.47E-03 2.54E-02 2.04E-02 -15.2 -17.8 -13.3 -11.4 -19.8 0.64
8 73004218 rs183633026 7 1132 1.59E-10 0.038% 1.45E-10 3.48E-02 7.67E-01 1.51E-09 - 99.4 75.4 -22.0 109.6 - 0.18
8 73033303 rs73687065 5 1676 3.10E-12 0.045% 8.10E-12 7.74E-01 2.76E-10 5.71E-03 - 85.3 24.9 87.4 97.0 - 0.74
8 73046483 rs10112752 7 78968 4.59E-13 0.048% 9.83E-12 5.13E-09 5.69E-03 4.16E-02 2.83E-02 -15.8 -19.2 -12.6 -11.2 -26.2 0.40

10 94344908 NOC3L rs3758526 Novel missense 32511 6.80E-12 0.043% 5.77E-13 1.63E-05 2.70E-05 1.38E-02 1.42E-02 -22.0 -21.1 -22.6 -19.8 -23.1 0.99
10 99514276 NKX2-3 rs10883359 Novel 7 54905 3.60E-12 0.044% 9.34E-11 5.46E-05 5.14E-06 3.46E-02 1.70E-01 -16.5 -14.5 -28.1 -11.9 -11.9 0.19
10 103907794 rs10883948 7 94489 2.04E-34 0.137% 3.97E-12 1.20E-05 3.99E-04 2.18E-02 6.42E-04 -18.8 -15.7 -24.2 -13.9 -46.8 0.11
10 103915847 rs112163720 * 4 15559 0.44000458 0.001% 4.86E-16 9.57E-07 4.34E-07 3.69E-04 9.38E-04 37.1 48.1 39.1 35.3 54.9 0.66
10 103916707 rs9420907 ** 3a 54838 3.90E-83 0.342% 6.80E-54 3.65E-18 6.94E-19 6.79E-13 9.41E-01 -49.2 -44.3 -52.4 -53.8 -2.4 0.30
10 103918153 rs111447985 2a 2391 2.29E-24 0.095% 3.03E-35 4.94E-03 2.24E-02 5.44E-22 2.81E-10 131.9 120.7 98.1 143.4 137.2 0.77
11 108158382 ATM rs61380955 7 105969 2.47E-17 0.066% 1.11E-18 5.79E-14 2.97E-04 2.47E-03 9.19E-02 -19.6 -24.8 -15.6 -15.7 -14.6 0.24
13 41150640 KBTBD7 rs1411041 Novel 6 85572 6.29E-14 0.052% 6.65E-15 1.46E-08 6.04E-04 1.13E-03 1.77E-02 22.4 25.5 20.5 20.2 20.8 0.87
14 24242592 rs28372734 4 2648 1.74E-27 0.108% 1.27E-30 4.91E-02 3.42E-06 4.59E-09 7.26E-10 112.6 120.9 103.9 132.1 94.8 0.59
14 24243052 rs8016076 2b 1977 1.80E-11 0.041% 4.46E-13 1.01E-01 1.70E-10 6.73E-03 - 83.8 374.8 80.9 87.5 - 0.43
14 24254544 rs41293824 5 1543 1.31E-09 0.034% 1.87E-10 7.43E-01 1.83E-07 2.58E-04 - 83.1 40.9 76.5 125.7 - 0.40
14 72959582 DCAF4 rs2572 5 20731 5.14E-12 0.044% 6.70E-14 2.00E-07 1.07E-04 3.42E-03 1.75E-03 28.0 27.7 36.5 25.5 33.8 0.80
15 50065546 ATP8B4 rs7172615 Novel 4 41027 4.31E-09 0.032% 3.53E-10 1.14E-07 3.77E-03 1.96E-01 1.90E-01 -17.8 -20.3 -21.4 -8.7 -12.0 0.41
16 69357811 TERF2 rs9925619 7 66224 3.01E-14 0.053% 7.84E-15 3.03E-04 1.01E-07 1.02E-06 5.10E-01 18.6 13.1 22.5 27.9 8.9 0.10
16 70193527 CLEC18C rs62049363 Novel 7 61724 4.09E-10 0.036% 3.25E-11 5.24E-07 1.44E-01 4.80E-04 3.52E-01 -16.8 -16.7 -11.2 -19.4 -8.5 0.69
16 74630845 RFWD3 rs7193541 missense 93079 1.47E-16 0.063% 3.18E-17 3.39E-12 5.63E-05 1.66E-03 5.21E-01 -18.7 -22.9 -16.8 -16.9 -5.6 0.24
16 82166498 MPHOSPH6 rs2967355 6 34993 3.96E-19 0.073% 2.04E-20 2.69E-11 1.58E-04 4.86E-07 9.91E-01 -28.2 -26.2 -33.8 -36.8 -0.1 0.05
16 87961594 BANP rs12934497 Novel 5 77109 9.15E-10 0.034% 8.16E-10 1.53E-05 1.62E-03 5.66E-03 1.15E-01 14.6 14.1 15.2 15.2 31.8 0.86
18 650764 rs150119891 * 5 1320 2.27E-07 0.025% 1.92E-11 3.69E-10 2.80E-01 2.89E-03 - -98.8 -104.9 -52.3 -160.9 - 0.32
18 666625 rs8088781 5 25774 2.49E-15 0.057% 8.91E-32 2.78E-15 1.75E-08 8.74E-09 8.66E-02 -50.6 -56.0 -40.8 -59.3 -160.9 0.21
18 676473 rs2612101 * 5 56194 0.40769627 0.001% 6.29E-16 7.76E-07 2.11E-04 5.13E-08 3.89E-02 26.0 29.4 18.4 35.1 171.4 0.05
18 44666476 SETBP1 rs2852770 Novel 7 46513 1.00E-11 0.042% 1.15E-12 2.32E-09 4.37E-02 1.23E-04 7.01E-01 -19.0 -25.1 -9.4 -24.3 -4.1 0.03
19 22032639 ZNF257/ZNF676 rs8105767 ** 6 76591 3.59E-18 0.069% 1.52E-18 6.32E-09 1.14E-07 5.00E-03 5.14E-03 20.3 20.8 22.2 15.0 25.5 0.68
20 36922795 SAMHD1 rs2342113 Novel 6 51830 4.62E-18 0.069% 1.58E-19 2.50E-13 4.00E-04 1.34E-06 3.67E-01 -23.7 -33.8 -16.1 -27.4 -7.7 0.01
20 63661765 rs41308088 5 14105 1.58E-10 0.038% 8.42E-16 6.46E-15 6.24E-02 4.61E-02 2.05E-01 37.1 45.3 25.1 20.1 58.1 0.12
20 63676585 rs79981941 6 21592 1.46E-23 0.092% 1.37E-12 5.06E-06 4.73E-03 5.48E-06 9.09E-02 -26.7 -26.4 -18.6 -39.1 -47.5 0.25
20 63678201 rs41309367 ** 5 71377 2.52E-33 0.133% 1.01E-42 5.92E-23 1.49E-15 9.58E-09 6.05E-01 -34.1 -37.0 -38.0 -33.0 -5.1 0.02
20 63689775 rs35640778 missense 2354 2.31E-28 0.112% 1.47E-38 3.77E-29 2.06E-07 1.11E-04 9.25E-01 -140.5 -141.8 -176.3 -116.7 13.8 0.42
20 63695521 rs181080831 synonymous 675 6.40E-17 0.064% 7.53E-19 8.00E-18 8.50E-01 1.39E-02 - 180.5 199.5 15.5 133.0 - 0.07
22 50532618 TYMP rs361725 Novel 3a 101750 1.36E-10 0.038% 8.26E-12 3.97E-11 2.32E-01 4.11E-02 2.39E-02 -15.6 -22.1 -5.4 -10.6 -21.2 0.02
X 66015290 VSIG4 rs12394264 Novel 4 50912 9.67E-16 0.059% 5.36E-17 1.57E-07 1.94E-05 4.13E-05 7.28E-01 19.0 19.2 15.7 20.6 13.3 0.85
X 154720412 GAB3 rs2728723 Novel 5 63517 1.21E-12 0.046% 3.47E-12 4.45E-08 8.67E-02 7.96E-04 4.55E-02 13.2 15.7 6.0 14.4 17.0 0.17

Novel

ACYP2

Cochran's Q 
(p-value)

Table 1: 59 independently associated variants mapping to 36 loci from the whole genome sequencing of n=109,122 TOPMed individuals. 
Loci are labeled as novel if none of the sentinel variants in the locus was in LD (r2 < 0.7) with any previously documented GWAS signal for 
telomere length. There are 5 variants marked with an * where the primary analysis did not meet our threshold of p<5x10-9, however they 
reached significance after conditioning on significant variants mapping to the chromosome (detailed in Table S2 ). Variants marked with ** 
are direct matches to prior reported sentinel variants. Percent of trait variation explained by each variant is provided from single-variant 
association tests. P-values and effect sizes (in base pairs) are reported from a joint model including all variants. P-values for effect 
heterogeneity across population groups were generated using Cochran’s Q statistic. MAC is the minor allele count from the full combined 
sample. For all exonic variants, detailed annotation is provided, while for all non-coding variants the RegulomeDB score is given. See also 
Tables S2, S4 .
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Figure 1: Genome-wide Manhattan plot. Trans-ethnic genome-wide tests for association using 
163M sequence identified variants on n=109,122 samples with sequence generated telomere length 
from TOPMed. All loci had a peak p<5x10-9 in the pooled trans-ethnic analysis. Prior known loci 
are indicated in red, and novel loci are indicated in blue.   
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Figure 2: LocusZoom plots for multi-hit loci and TINF2. [a] LocusZoom plots for all loci with >1 
sentinel variant. Linkage disequilibrium (LD) was calculated from the set of samples used in the analysis 
with respect to the peak variant in the pooled trans-ethnic primary analysis, thereby reflecting LD patterns 
specific to the TOPMed samples. For each figure, the peak sentinel variant from the pooled trans-ethnic 
analysis is indexed and labeled in purple, and all independent variants identified through the iterative 
conditional approach are labeled in green and highlighted with green dotted lines. [b] LocusZoom plots for 
four population groups for the TINF2 locus. [c] Forest plots displaying effect sizes and standard errors, as 
well as minor allele frequencies, by population group for the three sentinel variants in TINF2. See also 
Table S2.

rs28372734 14:24242592:C:G TINF2
Ancestry
Pooled
European
African
Hispanic/Latino
Asian
Cochran's Q p−value: 0.59

Est (bp)
112.6
120.9
103.9
132.1
 94.8

AAF
 1.2%
 0.1%
 0.9%
 1.3%
 8.2%

50 100 150 200

rs8016076 14:24243052:T:C TINF2
Ancestry
Pooled
European
African
Hispanic/Latino
Asian
Cochran's Q p−value: 0.43

Est (bp)
 83.8
374.8
 80.9
 87.5

AAF
 0.9%
<0.1%
 2.8%
 0.6%

0 200 400 600 800

rs41293824 14:24254544:C:A TINF2
Ancestry
Pooled
European
African
Hispanic/Latino
Asian
Cochran's Q p−value: 0.4

Est (bp)
 83.1
 40.9
 76.5
125.7

AAF
 0.7%
<0.1%
 2.1%
 0.5%

−200 −100 0 100 200

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2020. ; https://doi.org/10.1101/749010doi: bioRxiv preprint 

Margaret Taub
23

https://doi.org/10.1101/749010


Figure 3: Replication by two prior studies. [a] Replication results for the 20 novel TOPMed loci, 
including 22 variants, pulled from two non-overlapping, prior published GWAS on telomere length using 
qPCR data. Threshold indicates the stronger level of significance between the two replication studies 
(Bonferroni significant: p <0.0026; nominally significant: p <0.05; non-significant: p >0.05). [b-e]
Correlation between the estimated effect sizes for all novel loci (b,c) and replicated novel loci (d,e, p<0.05 
in each dataset) between the present TOPMed pooled trans-ethnic analysis and two prior published GWAS 
studies. 
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1 113881455 BCL2L15 rs2296176 -19.5 1.69E-04 -0.02 0.01 6.86E-05 -0.05 0.01 <0.0026
3 117584223 LINC00901 rs961617801 1009.6 - - - - - - -
3 190053412 P3H2 rs10937417 14.6 2.49E-01 0.01 0.01 6.80E-01 0.00 0.01 >0.05
4 9928595 SLC2A2 rs4235345 16.8 5.62E-02 0.01 0.01 9.13E-01 0.00 0.03 >0.05
5 139637905 CXXC5 rs75903170 29.6 3.15E-05 0.05 0.01 3.40E-04 0.06 0.02 <0.0026
6 31815431 HSPA1A rs1008438 -20.3 9.38E-05 -0.02 0.01 4.47E-03 -0.03 0.01 <0.0026
7 129041243 TNP03 rs7783384 -15.2 8.29E-03 -0.01 0.01 2.80E-02 -0.02 0.01 <0.05

10 94344908 NOC3L rs3758526 -22.0 6.31E-05 -0.03 0.01 1.68E-02 -0.02 0.01 <0.0026
10 99514276 NKX2-3 rs10883359 -16.5 1.50E-03 -0.02 0.01 2.18E-07 -0.05 0.01 <0.0026
13 41150640 KBTBD7 rs1411041 22.4 6.38E-03 0.02 0.01 5.85E-03 0.03 0.01 <0.05
15 50065546 ATP8B4 rs7172615 -17.8 2.88E-07 -0.03 0.01 2.10E-03 -0.03 0.01 <0.0026
16 70193527 CLEC18C rs62049363 -16.8 4.87E-04 -0.03 0.01 1.38E-03 -0.03 0.01 <0.0026
16 87961594 BANP rs12934497 14.6 3.84E-02 0.01 0.00 5.10E-01 0.02 0.02 <0.05
18 650764 rs150119891 -98.8 2.81E-01 -0.03 0.03 - - - >0.05
18 666625 rs8088781 -50.6 2.41E-07 -0.04 0.01 - - - <0.0026
18 676473 rs2612101 26.0 3.16E-02 -0.01 0.01 - - - <0.05
18 44666476 SETBP1 rs2852770 -19.0 1.87E-01 -0.01 0.01 7.41E-01 0.00 0.01 >0.05
20 36922795 SAMHD1 rs2342113 -23.7 2.78E-05 -0.04 0.01 1.57E-02 -0.02 0.01 <0.0026
22 50532618 TYMP rs361725 -15.6 1.72E-03 -0.02 0.01 5.41E-05 -0.04 0.01 <0.0026
X 66015290 VSIG4 rs12394264 19.0 - - - - - - -
X 154720412 GAB3 rs2728723 13.2 - - - - - - -
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Figure 4:  Fine-mapping of multiple OBFC1 signals. [a] LocusZoom plot of the OBFC1 locus where 
green dotted lines indicate each independent signal, as in Figure 2. [b] Roadmap Epigenomics Consortium 
data in hg19 coordinates for skeletal muscle tissue, Primary T CD4+ memory cells from peripheral blood, 
and Primary T CD8+ naïve cells from peripheral blood (Roadmap samples E108, E037, and E047 
respectively; data was not available for sun exposed skin).  ChromHMM state model is shown for the 18-
state auxiliary model. The state model suggests the primary (rs9420907), secondary (rs111447985), and 
tertiary (rs112163720) signals are in the promoter region, while the quaternary signal (rs10883948) is in an 
enhancer region in all Roadmap blood cell types but is transcriptional for peripheral blood monocytes and 
CD19+ B-cells. [c-e] GWAS and eQTL results for the primary, tertiary and quaternary signals. Top panels 
are the GWAS summary statistics from the primary, and iterative conditional analyses which were used to 
perform colocalization analysis (secondary signal was rare, and not available for colocalization). Bottom 
panels are eQTLs for OBFC1 in the indicated tissue from GTEx. The GTEx eQTLs for these tissues do not 
colocalize with one another (PPH4 < 4.4x10-7) and each signal did not significantly colocalize in the other 
tissues. LD was calculated from the pooled trans-ethnic samples with respect to the sentinel (black 
diamond). See also Figures S3,S4, Table S5.
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Figure 5: PheWAS results from Vanderbilt BioVU. Polygenic trait score (PTS) 
analysis across 49 available sentinel variants in BioVU. [a] Smoothed distributions of 
PTS values for European Americans (n=70,439) and African Americans (n=15,174) from 
BioVU biobank. [b] Overview of the PheWAS in the BioVU European Americans. ▲ = 
higher PTS is associated with the phenotype. ▼ = higher PTS is protective against the 
phenotype. See also Tables S6, S7.
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MATERIALS AND METHODS 1 
 2 
TOPMed study populations: To perform this trans-ethnic genome-wide association study of telomere 3 

length, we leveraged the whole genome sequence samples available through the NHLBI Trans Omics for 4 

Precision Medicine (TOPMed) program. The program currently consists of more than 80 participating 5 

studies 1 ,with a range of study designs as described in Taliun et al 2 (Nature, submitted, 2019). 6 

Participants are mainly U.S. residents with diverse ancestry, race, and ethnicity (European, African, 7 

Hispanic/Latino, Asian, and Other). Smaller representation comes from non-US populations including 8 

Samoan, Brazilian, and Asian studies. Details on the specific samples included for telomere length 9 

analysis are outlined below, summarized in Table S1, and described by TOPMed 1.  10 

 11 

TOPMed whole genome sequencing (WGS): WGS was performed to an average depth of 38X using 12 

DNA isolated from blood, PCR-free library construction, and Illumina HiSeq X technology. Details for 13 

variant calling and quality control are described in Taliun et al. 2 (Nature, submitted, 2019). Briefly, 14 

variant discovery and genotype calling was performed jointly, across all the available TOPMed Freeze 8 15 

studies, using the GotCloud 3 pipeline resulting in a single multi-study genotype call set.  16 

 17 

Estimating telomere length for whole-genome sequencing (WGS) samples: A variety of 18 

computational tools exist that leverage WGS data to generate an estimate of telomere length 4. Here, we 19 

performed a thorough comparison of two leading methods for estimating telomere length from WGS data 20 

to choose the preferred scalable method for performing the estimation on all available samples from 21 

TOPMed. The first method, TelSeq 5, calculates an estimate of individual telomere length using counts of 22 

sequencing reads containing a fixed number of repeats of the telomeric nucleotide motif TTAGGG. Given 23 

that 98% of our data was sequenced using read lengths of 151 or 152 (as confirmed from the SEQ field in 24 

the analyzed CRAM files), we chose to use a repeat number of 12. These read counts are then normalized 25 

according to the number of reads in the individual WGS data set with between 48% and 52% GC content 26 

to adjust for potential technical artifacts related to GC content. The second method, Computel 6 uses an 27 
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alignment-based method to realign all sequenced reads from an individual to a “telomeric reference 28 

sequence”. Reads aligning to this reference sequence are considered to be telomeric and are included in 29 

the estimate of telomere length. Because Computel performs a complete realignment, additional 30 

computational steps are involved compared to those needed for TelSeq. 31 

 32 

To compare the results and scalability from these two methods, we first directly compared estimates 33 

obtained from TelSeq and Computel on 2,389 samples from the Jackson Heart Study (JHS) and found 34 

them to be highly correlated with one another (Pearson correlation r=0.98, Figure S1a). We also 35 

compared computational time to generate the telomere length estimates on these samples and show that 36 

Computel is around ten times more time-consuming (Figure S1b). This is in part due to the fact that 37 

Computel requires CRAM-formatted files (as the WGS data are currently stored) to first be converted 38 

back to Fastq format (while TelSeq requires a CRAM to BAM conversion), but also due to the 39 

computationally expensive step of realignment to the telomeric reference genome that the Computel 40 

algorithm employs. 41 

 42 

Telseq generates an estimate of TL in bp similar to laboratory assays such as Southern blot 7 and 43 

flowFISH 8; in contrast qPCR approaches are represented as T/S ratios9,10. As a further comparison to 44 

orthogonally measured telomere length values, we used data on the same 2,389 samples from JHS with 45 

Southern blot7 telomere length estimates 11. For these samples, the Southern blot assay was performed on 46 

the same source DNA sample that was used to generate the WGS in TOPMed. The Pearson correlation 47 

values between the TelSeq and Computel estimates and the Southern blot estimates did not differ (r=0.58 48 

and 0.56 for TelSeq and Computel, respectively, Figure S1c). Based on our observation that both 49 

Computel and TelSeq showed similar correlation to the Southern blot estimates and high correlation with 50 

each other, and that TelSeq was an order of magnitude more computationally efficient, we chose to use 51 

TelSeq to perform telomere length estimation on our data. Final telomere length estimation was 52 
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performed on a set of 128,901 samples whose CRAM-files were available for analysis at the TOPMed 53 

IRC at the time of analysis.  54 

 55 

Batch adjustment to correct for technical confounders: To account for technical sources of variability 56 

in our telomere length estimates, both within a study (see, for example, colors in Figures S1a and S1b 57 

which indicate grouping by shared 96-well plate for shipment to the sequencing center) and across 58 

studies, we developed a method to estimate components of technical variability in our samples. We 59 

estimated these covariates using the sequencing data itself, similar to methods developed for other 60 

multivariate genomics data types (SVA or PEER factors 12,13), using aligned sequencing reads and relying 61 

on the fact that genomic coverage patterns of aligned reads can reflect technical variation. 62 

 63 

We computed average sequencing depth for every 1,000 bp genomic region (“bin”) genome-wide using 64 

mosdepth 14. We removed bins known to be problematic: those containing repetitive DNA sequence with 65 

difficulty mapping (mappability<1.0 using 50bp k-mers in GEMTools v1.759 15) or that overlap the list of 66 

known problematic SVs 16 or overlap known CNVs in the Database of Genomic Variants. To avoid 67 

overcorrecting for sex, bins were limited to autosomes. After normalizing the approximately 150,000 68 

remaining bin counts within sample, we performed Randomized Singular Value Decomposition 17 69 

(rSVD), a scalable alternative to principal components analysis, to generate batch principal components 70 

(bPCs). We included increasing numbers of bPCs in a linear regression model predicting TelSeq TL, and 71 

computed the correlation of the resulting residuals with external data measurements, including Southern 72 

blot measurements for JHS (n=2,389) and the Women’s Health Initiative (WHI; n=596) and age at blood 73 

draw (JHS n=3,294; WHI n=10,708). Based on the observed correlation, the final decision was to include 74 

the first 200 bPCs across all samples. Using the n=2,389 JHS samples described above, we compared TL 75 

estimates before and after batch correction. The percent of variance in TL explained by sequencing plate 76 

reduced from 21.9% (baseline) to 10.5% (200 bPCs), and the variance explained by age increased from 77 

8.0% (baseline) to 10.3% (200 bPCs), evidence that the signal-to-noise ratio was improved. Overall, the 78 
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correlation between the bPC corrected TL and Southern blot data improved from r=0.58 to 0.68 (Figure 79 

S1d) in the JHS data and from r=0.54 to 0.72 for the WHI data. Further, we compared TelSeq estimates of 80 

19 samples within a single sequencing batch from the GeneSTAR study to the clinical gold standard of 81 

flowFISH 8 (Figure S1e) and observed a correlation of 0.80  in both granulocytes and lymphocytes. 82 

Therefore, our data show that we are able to reduce the sequencing artifacts stemming from batch 83 

variability to attain correlation of TelSeq to Southern blot similar to the correlation of TelSeq to 84 

flowFISH.  85 

 86 

Samples included in genetic analysis:  All samples with telomere length estimated from the WGS data 87 

from TOPMed Freeze 8 were considered for inclusion, provided they had consent that allowed for genetic 88 

analysis of telomere length. Only samples with sequencing read lengths of 151 or 152 base pairs and 89 

having age at blood draw data available were included. For the set of samples that were part of a duplicate 90 

pair/group (either part of the intended duplicates designed by TOPMed, or a duplicate identified across 91 

the studies through sample QC) only one sample from each duplicated pair/group was retained. The final 92 

counts and demographic summary statistics for subjects grouped by TOPMed study for all 54 studies 93 

included in our analysis are shown in Table S1.  94 

 95 

While reported race/ethnicity data are available in TOPMed, these data have limitations for analysis that 96 

include individuals with missing information or non-specific responses (e.g., ‘other’ or ‘multiple’) and 97 

high variability in genetically inferred measures of ancestry among individuals with the same reported 98 

race/ethnicity. To overcome these limitations, we used a computational method called HARE 99 

(harmonized ancestry and race/ethnicity), a newly developed machine learning approach for jointly 100 

leveraging reported and genetic data in the definition of population strata for GWAS 18. HARE uses 101 

provided race/ethnicity labels and genetic ancestry principal component (PC) values to compute 102 

probability estimates for each individual’s membership in each race/ethnicity stratum. For our HARE 103 

analysis, we used provided race (Asian, Black, White) or Hispanic ethnicity group (Central American, 104 
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Costa Rican, Cuban, Dominican, Mexican, Puerto Rican, South American) as input labels to define 105 

population strata, and we used 11 PCs computed with PC-AiR using 638,486 LD-pruned (r2 < 0.1) 106 

autosomal variants with minor allele frequency > 1% to represent genetic ancestry. Genetic outliers for 107 

population strata were identified as individuals for whom their maximum stratum probability was more 108 

than 5 times greater than their reported stratum probability. Stratum values for genetic outliers and 109 

individuals with missing or non-specific race/ethnicity were imputed as the stratum for which they had 110 

the highest membership probability.  111 

 112 

Our primary analysis allowed for heterogeneous residual variance (see Primary single variant tests for 113 

association for details) among groups defined jointly by study and HARE-based population stratum 114 

assignment, with minor study-specific modifications to account for small strata. We required at least 30 115 

individuals within a study-HARE grouping and collapsed individuals into merged HARE groups within a 116 

study as necessary to retain everyone for analysis.  For our population-specific analyses, we used HARE 117 

assignment to stratify individuals into the following population groups: African (corresponding to the 118 

Black HARE stratum), Asian (Asian), European (White), and Hispanic/Latino (Central American, Costa 119 

Rican, Cuban, Dominican, Mexican, Puerto Rican, and South American). To better preserve genetic 120 

ancestry similarity among individuals in population-specific stratified analyses, we restricted to 121 

individuals for whom their HARE population stratum membership probability was at least 0.7; the 122 

population stratum counts in Table S1 reflect the counts in the stratified analyses, where individuals not 123 

meeting this criterion are labeled as “Other/Uncertain”. 124 

 125 

Samoan individuals from the Samoan Adiposity Study and Brazilian individuals from the Reds-III Brazil 126 

study were excluded from the HARE analyses due to their unique ancestry in the TOPMed dataset; these 127 

studies were treated as their own population groups for analyses.  128 

 129 

Primary single variant tests for association:  130 
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Genome-wide tests for association were performed using the R Bioconductor package GENESIS 19.  The 131 

primary analysis included all available trans-ethnic TOPMed samples (n=109,122). A secondary analysis 132 

was performed for all population groups with n>5,000, which included European (n=51,654), African 133 

(n=29,260), Hispanic/Latino (n=18,019) and Asian (n=5,683) groups as defined above using HARE. Prior 134 

to genetic modeling, we generated residuals from a linear regression model on all 109,122 samples with 135 

200 batch principal components (bPCs), as described above; for clarity we call these residuals !"#$%  136 

below. For the pooled trans-ethnic analysis, we used a fully-adjusted two-stage model, as described in the 137 

next two bullets20. For each population-specific analysis, the same approach was used, limited to samples 138 

within that population group.  139 

§ Stage 1:  We fit a linear mixed model (LMM) on n=109,122 samples, using !"#$%  as the outcome; 140 

adjusting for age, sex, study, sequencing center, and 11 PC-AiR 21 PCs of ancestry as fixed effect 141 

covariates; including a random effect with covariance matrix proportional to a sparse empirical 142 

kinship matrix computed with PC-Relate22 to account for genetic relatedness among samples; and 143 

allowing for heteroskedasticity of residual variance across study-HARE groups as defined above. The 144 

marginal residuals from this Stage 1 model were then inverse-normalized and rescaled by their 145 

original standard deviation. This rescaling restores values to the original trait scale, providing more 146 

meaningful effect size estimates from subsequent association tests 23.   147 

§ Stage 2: We fit a second LMM on all n=109,122 samples, using the inverse-normalized and rescaled 148 

residuals from Stage 1 as the outcome; all other aspects of the model including fixed effects 149 

adjustment, random effects, and residual variance structure were identical to the model in Stage 1. 150 

This two-stage covariate adjustment has been shown to be most effective at controlling for false-151 

positives and increasing statistical power in this setting20. The output of this Stage 2 model was then 152 

used to perform both single variant and gene-based tests for association.  153 

 154 
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Single variant tests for association: We used the output of the two-stage LMM to perform score tests of 155 

association for each variant with minor allele count (MAC) ³ 5 that passed TOPMed Informatics 156 

Research Center (IRC) at the University of Michigan quality filters 2 and which had <10% of samples 157 

with read depth <10. Genotype effect size estimates and percent of variability explained (PVE) were 158 

approximated from the score test results 24.  159 

 160 

Assessing significance, performing conditional analysis to identify independent variants, and 161 

defining genetic loci: A p-value cutoff of 5x10-9 was used to determine genome-wide significance in the 162 

primary trans-ethnic analysis. We identified our set of independent significant variants (as reported in 163 

Table 1) through an iterative conditioning process within each chromosome. For a given chromosome, if 164 

at least one variant from the primary analysis crossed the genome-wide significance cutoff, this peak 165 

variant was included as an additional fixed-effect covariate in a new two-stage LMM (see Stages 1 and 2 166 

described above), and score test results were examined to see if any remaining variants crossed the 5x10-9 167 

threshold. If so, we performed a second round of conditioning, including both the original peak variant 168 

and the new conditional peak variant as fixed-effect covariates in another two-stage LMM; and so on, 169 

adding conditional peak variants for additional rounds (Table S2). For each chromosome, the 170 

conditioning procedure was completed when no additional variants crossed the genome-wide threshold (p 171 

< 5x10-9) on that chromosome. At each step, all variants passing the p < 5x10-9 threshold were examined 172 

in BRAVO 25 to assess quality, and 334 variants were filtered out due to variant call quality issues. In the 173 

case where a current peak variant was flagged for quality, the next most significant variant, provided its 174 

p-value was below the 5x10-9 cutoff, was considered the peak variant instead. Variants were grouped into 175 

loci based on physical distance and an examination of linkage disequilibrium (LD) patterns, and locus 176 

names were determined using a combination of previous literature, known telomere biology, and physical 177 

location.    178 

 179 
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Cumulative Percent of Variability Explained (PVE) 180 

Through the iterative conditional approach, we identified a total of 59 variants (Table 1) that met our 181 

genome-wide significance threshold of p < 5x10-9. The cumulative PVE values for this full set of 59 182 

variants (4.35%), the set of 37 variants mapping to known loci (3.38%), and the set of 22 variants 183 

mapping to novel loci (0.96%, see Assessing novelty of identified loci and variants below for definition 184 

of novel variants) were each estimated jointly using approximations from multi-parameter score tests. 185 

This joint PVE approximation is similar to the single variant PVE approximation described above, except 186 

that the set of variants is tested jointly, accounting for covariance among the genotypes. This approach 187 

avoids inadvertently double counting any partially shared signal among the set of identified variants. 188 

 189 

Joint tests for association and testing for heterogeneity across population groups. We then performed 190 

joint association analyses for the full multi-ethnic sample (n=109,122), as well as each of the four 191 

population groups with n>5000, to determine effect sizes and p-values when all 59 variants were 192 

considered together. Using the inverse-normalized and rescaled residuals from the primary analysis Stage 193 

1 LMM as the outcome, we fit a new Stage 2 LMM that was the same as described above, except with the 194 

additional inclusion of the genotypes for these 59 variants as additive genetic fixed effects. Given this 195 

joint modeling framework, the variant effect size estimates are all adjusted for one another. These 196 

estimates were used as input for calculation of a polygenic trait score used for the PheWAS described 197 

below. Finally, we tested for heterogeneity of effect sizes from these analyses among the population 198 

groups by adapting Cochran’s Q statistic and its p-value 26, commonly used to test for effect heterogeneity 199 

in meta-analysis (Table 1). For each variant, the effect size estimates and standard errors from each 200 

population group analysis were used to calculate Q, and a Bonferroni threshold of 0.001 (0.05/59) was 201 

used to assess significance. 202 

 203 

Assessing novelty of identified loci and variants. For each of the 59 variants identified, we examined 204 

the linkage disequilibrium (LD) with previously reported sentinel variants from 17 published GWAS. 205 
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Only sentinel variants with p < 5x10-8 in their published study were considered, which included a total of 206 

56 variants (Table S3). If one of our variants had LD≥0.7 with a published variant, it was labeled as a 207 

known variant/part of a known locus; otherwise it was labeled as novel in Table 1. Within a locus, we 208 

then compared each independent variant to the prior GWAS reported sentinel variant. If they were 209 

identical, the variant was labeled as a known sentinel variant in Table 1. Additionally, locus names for the 210 

final set of independent variants were selected based on (i) prior GWAS study definition for known loci, 211 

and (ii) the specific gene annotation for each variant mapping directly to a gene for novel loci.  212 

 213 

Replication of novel results with published GWAS: To determine whether our novel results are 214 

supported by findings from prior studies, we considered the two largest most recent studies of telomere 215 

genetics in European 27 (Li et al., n=78,592) and Asian 28 (Dorajoo et al., n=26,875) ancestry individuals. 216 

These studies both used telomere length as measured by qPCR. For all novel variants in Table 1, we 217 

pulled the effect size estimates, standard errors, and p-values, where available (Figure 3a). These results 218 

were available in at least one of the two studies for 19 of our 22 novel variants, so we considered a p-219 

value cutoff of 0.05/19 = 0.0026 to be replicated, after multiple testing correction. We also labeled 220 

variants where at least one study reported p<0.05 as suggestive. 221 

 222 

Gene-based coding variant tests - Variant annotation: For its use in gene-based tests for association, 223 

annotation based variant filtering and GENCODE v28 gene model-based 29 aggregation was performed 224 

using the TOPMed freeze 8 WGSA Google BigQuery-based variant annotation database on the BioData 225 

Catalyst powered by Seven Bridges platform (http://doi.org/10.5281/zenodo.3822858). The annotation 226 

database was built using variant annotations for TOPMed freeze 8 variants gathered by Whole Genome 227 

Sequence Annotator (WGSA) version v0.830 and formatted by WGSAParsr version 6.3.8 228 

(https://github.com/UW-GAC/wgsaparsr). Variants were annotated as exonic, splicing, transcript 229 

ablation/amplification, ncRNA, UTR5, UTR3, intronic, upstream, downstream, or intergenic using 230 

Ensembl Variant effect predictor (VEP) 31. Exonic variants were further annotated as frameshift insertion, 231 
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frameshift deletion, frameshift block substitution, stop-gain, stop-loss, start-loss, non-frameshift insertion, 232 

non-frameshift deletion, non-frameshift block substitution, nonsynonymous variant, synonymous variant, 233 

or unknown. Additional scores used included REVEL 32, MCAP 33 or CADD 34 effect prediction 234 

algorithms. 235 

 236 

Gene-based coding variant tests - Tests for association: Gene-based association testing was performed 237 

on the pooled trans-ethnic dataset (n=109,122). To improve the power to identify rare variant associations 238 

in coding regions, we aggregated deleterious rare coding variants in all protein-coding genes and then 239 

tested for association with telomere length. To enrich for likely functional variants, only variants with a 240 

“deleterious” consequence for its corresponding gene or genes 35, were included. For each protein-coding 241 

gene, a set of rare coding variants (MAF < 0.01, including singletons where MAC=1, restricted to 242 

variants which passed IRC quality filters 2 and which had <10% of samples with read depth <10) was 243 

constructed, which was composed of all stop-gain, stop-loss, start-loss, transcript ablation, transcript 244 

amplification, splice acceptor variants, splice donor variants and frameshift variants, as well as the exonic 245 

missense variants that fulfilled one of these criteria: 1) REVEL score > 0.5, 2) predicted M_CAP value 246 

was “Damaging”, or 3) CADD PHRED-scaled score > 30. We applied the variant Set Mixed Model 247 

Association Test (SMMAT) 36 as implemented in GENESIS, using the genesis_tests app on the Analysis 248 

Commons 37, with MAF based variant weights given by a beta-distribution with parameters of 1 and 25, 249 

as proposed by Wu et al. 38, and using the same two-stage LMM output as used in the primary single 250 

variant analysis. Only genes with a cumulative MAC ≥ 5 over all variants were evaluated, leaving a total 251 

of 27,558 genes, and significance was evaluated after a Bonferroni correction for multiple testing (p < 252 

0.05 / 27,558 = 1.815x10-6) (Figure S2). 253 

 254 

Next, we sought to determine the influence of each rare deleterious variant in each significant gene on the 255 

association signal. We iterated through the variants, removing one variant at a time (leave-one-out 256 

approach) 39, and repeated the SMMAT analysis. If a variant made a large contribution to the original 257 
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association signal, one would expect the signal to be significantly weakened with the removal of the 258 

variant from the set (Figure S2).   259 

 260 

Finally, we further tested for independence of the gene-based and single variant signals by performing a 261 

conditional SMMAT analysis that included the 59 genome-wide significant variants from our primary 262 

analysis as fixed-effect covariates in the two-stage LMM. These 59 variants were also removed from the 263 

aggregated set of rare variants for a gene if they had been previously included (e.g. rs202187871 in 264 

POT1). All other analysis parameters were the same as described above (Figure S2). 265 

 266 

Colocalization analysis of OBFC1 signals using GTEx 40 and eQTLGen41: Iterative conditional 267 

analysis was repeated for chromosome 10 focusing on a 2Mb window centered on the primary signal near 268 

OBFC1 (rs10883948). The original pooled GWAS results (n = 109,122) were used for colocalization 269 

analysis with the primary signal while the appropriate round of conditional analysis was used for each 270 

subsequent signal (e.g., the output of the second round of conditional analysis was used for colocalization 271 

analysis with the tertiary signal). Credible set analysis was performed using CAVIAR on primary signal 272 

data and the output of each conditional analysis each with a single assumed causal variant 42. For each 273 

independent OBFC1 signal, the credible set contained the top sentinel variant (Figure S4a-d). 274 

Colocalization analysis was performed using coloc, a Bayesian posterior probability method that 275 

estimates the probability of shared signal across testing modalities at each variant 43. We report the 276 

posterior probability that the two signals are independent (PPH3) and the posterior probability that the 277 

two signals overlap (PPH4). The sentinel variants from each signal were assayed as expression 278 

quantitative trait loci (eQTLs) in both GTEx40 and eQTLGen 41 datasets. For each sentinel, significant 279 

gene-tissue pairs for that sentinel were identified from GTEx v8 (FDR < 0.05) and assayed for 280 

colocalization comparing the beta and standard error of the beta from our GWAS results and the eQTL 281 

results. For colocalization analysis in the eQTLGen dataset, all eGenes within a 2Mb window of the 282 

sentinel were identified and assayed for colocalization comparing the MAF, p-value, and number of 283 
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observations. MAF was estimated for eQTLGen data using the TOPMed MAF. Colocalization analysis 284 

was not possible for the OBFC1 secondary signal as that variant is absent in both datasets and a 285 

representative proxy variant was not available. Roadmap 44 data was accessed July, 2020 using the hg19 286 

(February, 2009 release) UCSC genome browser45 track data hubs 46,47. 287 

 288 

Phenome-wide association tests (PheWAS):  Using individual level data within the Vanderbilt 289 

University biobank BioVU, PheWAS 48 (tests for association between genotype and phenotype) were 290 

performed using the 49 (of 59) sentinel variants available in the multi-ethnic genotyping array (MEGA) 291 

chip results imputed to the Haplotype Reference Consortium 49. Single variant tests using SNP dosage 292 

values were performed for all available phecodes (number of cases at least 20), including the covariates 293 

age, sex, genotype batch and the first ten ancestry principal components. Analysis was performed 294 

separately in BioVU self-identified African Americans (AA, n=15,174) and BioVU self-identified 295 

European Americans (EA, n=70,439). In addition, European and African specific effect sizes from the 296 

joint analysis from Table 1 were combined to create separate polygenic trait scores (PTS) for each 297 

population group which were then tested for association with available phecodes, again including the 298 

covariates age, sex, genotype batch and the first ten ancestry principal components. Results were 299 

evaluated at a Bonferroni threshold corrected for the number of informative phecodes for each variant 300 

(range n=1,114-1,361) or the PTS (n=1,704) (Table S6). Analysis was performed using the PheWAS R 301 

package 50. 302 

 303 

We queried United Kingdom Biobank (UKBB) GWAS results using the University of Michigan PheWeb 304 

web interface (http://pheweb.sph.umich.edu/SAIGE-UKB/). The UKBB PheWeb interface contains 305 

results from a SAIGE 51  genetic analysis of 1,403 ICD-based traits of 408,961 UKBB participants of 306 

European ancestry. PheWeb is a publicly accessible database that allows querying genome-wide 307 

association results for 28 million imputed genetic variants. 47 out of our 59 sentinel variants were present 308 
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in PheWeb. We report all hits passing a Bonferroni correction for the number of tests performed for each 309 

variant (0.05/1403 = 3.6x10-5, Table S7).  310 

 311 

 312 
  313 
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