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ABSTRACT 23 
 24 
Objective: Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, 25 
insulin resistance, and disruption of blood glucose levels. Genome wide association studies (GWAS) 26 
have identified >400 independent signals that encode genetic predisposition. More than 90% of the 27 
associated single nucleotide polymorphisms (SNPs) localize to non-coding regions and are enriched in 28 
chromatin-defined islet enhancer elements, indicating a strong transcriptional regulatory component to 29 
disease susceptibility. Pancreatic islets are a mixture of cell types that express distinct hormonal 30 
programs, and so each cell type may contribute differentially to the underlying regulatory processes that 31 
modulate T2D-associated transcriptional circuits. Existing chromatin profiling methods such as ATAC-32 
seq and DNase-seq, applied to islets in bulk, produce aggregate profiles that mask important cellular 33 
and regulatory heterogeneity. 34 
 35 
Methods: We present genome-wide single cell chromatin accessibility profiles in >1,600 cells derived 36 
from a human pancreatic islet sample using single-cell-combinatorial-indexing ATAC-seq (sci-ATAC-37 
seq). We also developed a deep learning model based on the U-Net architecture to accurately predict 38 
open chromatin peak calls in rare cell populations.  39 
 40 
Results: We show that sci-ATAC-seq profiles allow us to deconvolve alpha, beta, and delta cell 41 
populations and identify cell-type-specific regulatory signatures underlying T2D. Particularly, we find 42 
that T2D GWAS SNPs are significantly enriched in beta cell-specific and cross cell-type shared islet 43 
open chromatin, but not in alpha or delta cell-specific open chromatin. We also demonstrate, using less 44 
abundant delta cells, that deep-learning models can improve signal recovery and feature reconstruction 45 
of rarer cell populations. Finally, we use co-accessibility measures to nominate the cell-specific target 46 
genes at 104 non-coding T2D GWAS signals. 47 
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 48 
Conclusions: Collectively, we identify the islet cell type of action across genetic signals of T2D 49 
predisposition and provide higher-resolution mechanistic insights into genetically encoded risk 50 
pathways. 51 
 52 
Keywords: Islet; Epigenomics; Deep Learning; Single cell; Chromatin; Type 2 diabetes 53 
 54 
Abbreviations: Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq), Genome wide 55 
association study (GWAS), Expression quantitative trait loci (eQTL), Glucagon (GCG), Insulin (INS), 56 
Somatostatin (SST). 57 
 58 
1. INTRODUCTION 59 
Pancreatic islets consist of a cluster of at least five different endocrine cell-types (alpha, beta, delta, 60 
gamma, and epsilon), each producing a unique hormone in a distinct but coordinated manner [1]. 61 
Collectively, these clusters of cells work together to maintain insulin production and glucose 62 
homeostasis. Disruption of the complex interplay between the cell types, their organization, and their 63 
underlying regulatory interaction is known to be associated with type-2-diabetes (T2D) pathophysiology 64 
[2]. However, the exact cellular mechanisms through which different risk factors contribute to the 65 
disease risk are not completely understood. Using GWAS and eQTL mapping approaches, recent 66 
studies have discovered >400 independent signals (>240 loci) associated with T2D and T2D-67 
associated traits [3], although remarkably, more than 90% of them localize to non-protein-coding 68 
regions of the genome [4]. Growing evidence suggests that many of these variants likely influence the 69 
RNA expression and cellular function of human pancreatic islets by altering transcription factor binding, 70 
critical components of a cellular regulatory network [5–9]. 71 
 72 
High-throughput epigenomic profiling methods such as ATAC-seq [10] and DNase-seq [11] have 73 
enabled profiling of chromatin accessibility across samples in a tissue-wide manner, providing the 74 
opportunity to identify millions of context-specific regulatory elements. However, these bulk-75 
measurements of chromatin accessibility limit the precise understanding of how tissue heterogeneity 76 
and multiple cell-types in the population contribute to overall disease etiology [12]. Recent advances in 77 
single-cell transcriptomic and epigenomic profiling methods have enabled an unbiased identification of 78 
cell-type populations and regulatory elements in a heterogeneous biological sample. By mapping the 79 
chromatin-regulatory landscape at a single-cell resolution, recent single-nuclei studies have 80 
demonstrated the potential to discover complex cell populations, link regulatory elements to their target 81 
genes, and map regulatory dynamics during complex cellular differentiation processes [13–16]. The 82 
pancreatic islet gene expression landscape has been investigated at single-cell resolution in existing 83 
studies [17,18], but chromatin accessibility studies have been limited to fluorescence-activated cell 84 
sorting (FACS) methods for obtaining cell-type populations [19,20]. FACS based methods will miss 85 
identification of unknown or rarer cell-populations and are unable to produce pure cell-type populations 86 
due to reliance on the specificity of cell-surface markers [21,22]. 87 
 88 
Here, we present a genome-wide map of chromatin accessibility in >1,600 nuclei derived from a human 89 
pancreatic islet sample using single-nucleus-combinatorial-indexing ATAC-seq (sci-ATAC-seq) [23]. 90 
sci-ATAC-seq enables us to deconvolve cell populations and identify cell-type-specific regulatory 91 
signatures underlying T2D. Notably, we find that T2D GWAS SNPs are significantly enriched in beta 92 
cell-specific and cross cell-type shared islet open chromatin, but not in alpha or delta cell-specific open 93 
chromatin. We also demonstrate, using the less represented delta cell population (< 5% of total islet 94 
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population), that deep learning can improve signal recovery and feature reconstruction for less 95 
abundant cell-populations using concepts borrowed from image upscaling methods. We anticipate that 96 
our deep learning method will enable analysis of heterogeneous tissues that may be harder to obtain in 97 
large numbers or contain rare sub-populations. Collectively, these results identify the islet cell-type of 98 
action across genetic signals of T2D predisposition and provide higher-resolution mechanistic insights 99 
into genetically encoded pathophysiology.  100 
 101 
2. MATERIALS AND METHODS 102 
2.1 Bulk Islet ATAC-seq 103 
Sample processing. The human pancreatic islet samples were procured and processed as described 104 
by Varshney et al [8]. Briefly, the islets were obtained from the National Disease Research Interchange 105 
(NDRI) and processed according to the NHGRI institutional review board-approved protocols. The islet 106 
was shipped overnight from the distribution center. Upon receipt, we pre-warmed the islet to 37 degree 107 
in shipping media for 1-2h before harvest. ~50-100 islet equivalents (IEQs) were harvested and 108 
transposed in triplicate following the methods in Buenrostro et al [10]. The ATAC-seq library was 109 
barcoded and sequenced 2 x 125bp on a HiSeq 2000.  110 
 111 
ATAC-seq analysis. Sequencing adapters were trimmed using cta (v0.1.2) [24] and aligned to hg19 112 
reference genome using BWA-MEM (v0.7.15-r1140, options: -I 200,200,5000) [25]. Picard 113 
MarkDuplicates (v2.18.27) was used for duplicate removal and samtools [26] was used to filter for 114 
autosomal, properly-paired and mapped read pairs with mapping quality >= 30 (v1.9, options: -f 3 -F 115 
3340 -q 30). Replicates across each sample were merged into a single file using samtools merge. For 116 
peak calling, each sample was downsampled to 25 million (M) reads and converted to BED file. We 117 
then used MACS2 [27] to call broad peaks (v2.1.1.20160309; options: --nomodel --broad --shift -100 --118 
extsize 200 --keep-dup all --SPMR) and removed those with FDR >0.05 and overlapping with ENCODE 119 
hg19 blacklists [28]. ATAC-seq coverage tracks were displayed using UCSC Genome Browser and 120 
Integrative Genomics Viewer (IGV). Summary statistics were calculated using Ataqv (v1.0) [29] and are 121 
available in interactive and downloadable format online (Table S7). For comparative purposes, we 122 
performed the same read trimming, alignment, filtering, downsampling, and peak calling steps on 123 
publicly available ATAC-seq data (Table S1). Peaks from each sample were merged to create a master 124 
peak set and Spearman correlation was computed on the RPKM normalized read-count matrix. 125 
 126 
Determination of high-confidence peaks. We randomly sampled 2.5 M reads from each sample using 127 
samtools view and pooled them into one file so that each sample is equally represented. Peaks were 128 
called on the pooled file as discussed in the previous paragraph. We then determined the number of 129 
samples overlapping with each master peak using peaks called on individual samples. 130 
 131 
Overlap of reads with chromHMM states. We tested for enrichment of ATAC-seq peaks across 13 islet-132 
specific chromatin states using Genomic Association Tester (GAT) [30]. We ran GAT (v1.3.5, options: --133 
number-samples 10,000) and filtered chromatin states with no significant enrichment (Bonferroni 134 
adjusted p-value < 0.05) of peaks in them. The log2 fold enrichment values across chromatin states 135 
were clustered using hierarchical clustering of the correlation matrix. 136 
 137 
2.2. sci-ATAC-seq analysis 138 
Sample processing. We used the combinatorial cellular indexing method to generate single-nuclei 139 
chromatin accessibility data as previously described in Cusanovich et al [23]. Briefly, a suspension of 140 
islet cells were obtained and pelleted 5 min at 4°C 500 x g. The media was aspirated and the cells were 141 
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washed once in 1 ml PBS. The cells were pelleted again for 5 min at 4 °C 500 x g and then 142 
resuspended in 1 ml of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% 143 
IGEPAL CA-630, supplemented with 1X protease inhibitors (Sigma P8340)). Nuclei were maintained on 144 
ice whenever possible after this point. 10 μl of 300 μM DAPI stain was added to 1 ml of lysed nuclei for 145 
sorting. To prepare for sorting, 19 μl of Freezing Buffer (50 mM Tris at pH 8.0, 25% glycerol, 5 mM 146 
MgOAc2, 0.1 mM EDTA, supplemented with 5 mM DTT and 1X protease inhibitors (Sigma P8340)) was 147 
aliquot into each well of a 96-well Lo-Bind plate. 2,500 DAPI+ nuclei (single cell sensitivity) were sorted 148 
into each well of the plate containing Freezing Buffer. The plate was sealed with a foil plate sealer and 149 
then snap frozen by placing in liquid nitrogen. The frozen plate was then transferred directly to a -80 °C 150 
freezer. Subsequently, the sample was shipped from NIH to UW overnight on dry ice. The plate was 151 
then thawed on ice and supplemented with 19 μl of Illumina TD buffer and 1 μl of custom indexed Tn5 152 
(each well received a different Tn5 barcode). The nuclei were tagmented by incubating at 55 °C for 30 153 
min. The reaction was then quenched in 20 mM EDTA and 1 mM spermidine for 15 min at 37 °C. The 154 
nuclei were then pooled and stained with DAPI again. 25 DAPI+ nuclei were then sorted into each well 155 
of a 96-well Lo-bind plate containing 11.5 μl Qiagen EB buffer, 800 μg/μl BSA, and 0.04% SDS. 2.5 μl 156 
of 10 μM P7 primers were added to each sample and the plate was incubated at 55 °C for 15 min. 7.5 157 
μl of NPM was then added to each well. Finally, 2.5 μl of 10 μM P5 primers were added to each well 158 
and the samples were PCR amplified with following cycles: 72 °C 3min, 98 °C 30s, then 20 cycles of 98 159 
°C for 10 s, 63 °C for 30 s, 72 °C for 1 min. The exact number of cycles was determined by first doing a 160 
test run on 8 samples on a real-time cycler with SYBR green (0.5X final concentration). PCR products 161 
were then pooled and cleaned on Zymo Clean&Concentrator-5 columns (the plate was split across 4 162 
columns) eluting in 25 μl Qiagen EB buffer and then all 4 fractions were combined and cleaned using a 163 
1X Ampure bead cleanup before eluting in 25 μl Qiagen EB buffer again. The molar concentration of 164 
the library was then quantified on a Bioanalyzer 7500 chip (including only fragments in the 200-1000 bp 165 
range) and sequenced on an Illumina NextSeq at 1.5 pM concentration. 166 
 167 
QC and pre-processing. 168 
 169 
Step 1. Barcode correction and filtering. Each barcode consists of four 8-bp long indexes (i5, i7, p5, and 170 
p7). Reads with barcode combinations containing more than 3 edit distance for any index were 171 
removed. If a barcode was within 3 edits of an expected barcode and the next best matching barcode 172 
was at least 2 edits further away, we corrected the barcode to its best match. Otherwise, the barcode 173 
was classified as ambiguous or unknown. 174 
 175 
Step 2. Adapter trimming and alignment. Adapters were removed using Trimmomatic [31] with 176 
NexteraPE adapters as input (ILLUMINACLIP:NexteraPE.fa:2:30:10:1:true TRAILING:3 177 
SLIDINGWINDOW:4:10 MINLEN:20) and aligned to hg19 reference using BWA-MEM (v0.7.15-r1140, 178 
options: -I 200,200,5000) [25]. The final alignment was filtered using samtools to remove unmapped 179 
reads and reads mapping with quality < 10 (-f3 -F3340 -q10) as well as reads that were associated with 180 
ambiguous or unknown barcodes. 181 
 182 
Step 3. Deduplication and nuclei detection. Duplicates from the pruned file were removed using a 183 
custom Python script on a per-nucleus basis. Using the distribution of reads per barcode, we applied bi-184 
culstering, as implemented in the mclust [32] R package, to differentiate between background barcodes 185 
and barcodes that correspond to a nucleus. Using the list of non-background barcodes, we split the 186 
aggregate bam file into constituent bam files corresponding to each barcode representing a single 187 
nucleus using a custom Python script. 188 
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 189 
Step 4. Quality assessment of each single nucleus. For each single nucleus, we computed ATAC-seq 190 
quality metrics such as fragment length distribution, transcription start site (TSS) enrichment, short-to-191 
mononucleosomal reads ratio, total autosomal reads, and fraction of reads overlapping peaks. We 192 
removed nuclei with a) total reads outside 5% to 95% range [34578, 226755] of all the nuclei, and b) 193 
TSS enrichment of <2.7 (5%-tile) from further downstream analysis. 194 
 195 
Step 5. Aggregate sci-ATAC-seq peaks. We pooled reads from filtered barcodes from the previous 196 
steps to create an aggregate bam file. Peaks were called and filtered as described previously in the 197 
Bulk Islet ATAC-seq analysis section. 198 
 199 
2.3. Cluster analysis 200 
Feature selection and clustering. We generated a list of TSS distal peaks (>5 kb away from the nearest 201 
TSS based on RefSeq genes [33]) from the aggregate sci-ATAC-seq data. For each nucleus, we 202 
counted the number of reads overlapping the peaks using the Rsubread package [34]. We then 203 
adopted a logistic regression approach to remove peaks where binarized accessibility across nuclei 204 
was significantly associated (Bonferroni corrected p-value < 0.05) with sequencing depth. This 205 
approach should help to reduce the bias associated with sequencing depth, as the remaining peaks are 206 
no longer associated with this technical factor, a strategy that has been successfully implemented in 207 
single cell RNA-seq data analysis [35]. The resulting count matrix was RPKM-normalized and 208 
reweighted using the term-frequency and inverse-document-frequency (TF-IDF) method [13]. To do 209 
this, we first weighted all the sites for individual nuclei by the total number of sites accessible in that cell 210 
(‘‘term frequency’’). We then multiplied these weighted values by log(1 + the inverse frequency of each 211 
site across all cells), the “inverse document frequency.” The TF-IDF transformed matrix was then 212 
reduced to 30 principal components using Principal Component Analysis (PCA) and used as input to 213 
generate a two-dimensional embedding using the Uniform Manifold Approximation Method (UMAP, 214 
n_neighbors = 20) [36]. We identified clusters in the two-dimensional embedding in an unsupervised 215 
manner using a density-based clustering method (hdbscan, minPts = 20) as implemented in dbscan R 216 
package [37]. 217 
 218 
Cell identity assignment. The cell identities were assigned based on de-facto cell-type-specific hormone 219 
markers: INS-IGF2 (beta), GCG (alpha), SST (delta) etc. A marker gene was said to be present in a 220 
nuclei if a read mapped within 5 kb of the GENCODE (v19) gene body annotation [38]. For additional 221 
verification of cell-identity, we computed RPKM normalized aggregate ATAC-seq signal across cell-type 222 
marker genes reported in an islet scRNA-seq study [17]. Finally, we evaluated the enrichment of cells 223 
from each cell-type cluster relative to their expected population proportion using two-sided binomial test 224 
across ten bins of sequencing depth (~145 cells/bin). 225 
 226 
2.4. Deep learning signal and peak upscaling 227 
Model. The U-Net model [39] takes input sequences and outputs prediction sequences. The goal of 228 
model training is to reduce the error between the prediction output and a representation of ground truth. 229 
For signal upscaling, the input sequence is base-wise scores of BAM pileups (read-depth) 230 
corresponding to a subsample of n cells (randomly sampled from 600 cells) and the output sequence is 231 
base-wise scores of BAM pileups using reads from all 600 cells. Peak upscaling not only uses the 232 
subsampled BAM pileup scores as inputs, but it also uses the binary base-wise values from calling 233 
peaks with MACS2 on the subsampled BAM alignments. Output sequences for peak upscaling are the 234 
binary base-wise values from calling peaks with MACS2 on the data. We created two models, each 235 
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separately on data from alpha and beta cells. Because both had different number of constituent single-236 
nuclei, we matched the size of output dataset by randomly sampling 600 cells from each cell-type 237 
cluster. The input datasets were created by sampling n cells from the set of 600 cells such that the total 238 
number of reads is similar across both models. 239 
 240 
The network architecture of the U-Net used in this study is illustrated in Fig. S2A. It consists of a 241 
contracting, convolutional path (left side) and an expansive, deconvolutional path (right side). The 242 
contracting path consists of repeated applications of two kernel size 11 convolutions (unpadded 243 
convolutions) with rectified linear unit (ReLU) activation, and a kernel size 2 max pooling operation with 244 
stride 2 for downsampling. Each downsampling step halves the length of the activation sequence while 245 
doubling the number of feature channels. Every step in the expansive path consists of a kernel size 2 246 
deconvolution layer with a linear activation function that halves the number of feature channels, a 247 
concatenation with the correspondingly cropped feature map from the contracting path, and two kernel 248 
size 11 convolution layers with ReLU activations. The cropping is necessary due to the loss of border 249 
sequence steps in non-padded convolution. At the final layer a kernel size 1 convolution with either an 250 
ReLU (for signal upscaling) or sigmoid (for peak upscaling) activation function generates the sequence 251 
of predictions. Due to the use of unpadded convolutions, the prediction sequence is shorter than the 252 
input sequence by a constant border width. Although the U-Net can accept arbitrary length input 253 
sequences, we fix all training samples to be of length 6700, which results in output prediction 254 
sequences of length 4820. In total, the network has five steps each in the contracting and expansive 255 
paths for a total of 27 convolutional layers and 8,998,529 training parameters. The model was 256 
implemented using Keras [40] with the Tensorflow [41] backend, and experiments were run using Titan 257 
Xp and GTX 1080 Ti GPUs.  258 
 259 
To reduce overfitting, we split chromosomes into training, validation, and testing sets. The model was fit 260 
using the ADAM optimizer [42] with a learning rate of 1e-5 and a batch size of 128 for 50 epochs. 261 
Separate loss functions, and hence models, were used to solve signal and peak upscaling. For signal 262 
upscaling, we used the mean squared error base-wise loss function. For peak upscaling, the loss 263 
function was the sum of the cross-entropy base-wise loss and the Dice-coefficient loss, also known as 264 
F1 score. We used mean average precision, a common evaluator for object detection, and Pearson 265 
correlation as the output evaluation metrics for peak and signal upscaling, respectively. This 266 
downscaling and model training were repeated for n=5, 10, 28, 50, 100, 200, 300, 400, and 500 cells.  267 
 268 
Generating upscaled peaks. In order to select a subset of high-confidence peaks from the predicted 269 
model output, we adopted a post-hoc approach where we compared the number of cell-type-specific 270 
peaks for alpha, beta, and delta cells, and chose a threshold where they had a similar number. For 271 
predicted delta cell peaks, we combined the results from alpha and beta models at the same threshold 272 
using bedtools [43] intersect (v.2.27.1) after filtering for the chosen threshold. 273 
 274 
2.5. Cell-type-specific peaks analysis 275 
Cell-type-specific peaks. Peaks specific to each cell-type were obtained by comparing peaks in one 276 
cell-type with all other cell-types using bedtools. 277 
 278 
T2D GWAS SNPs enrichment. Enrichment of T2D associated GWAS SNPs from DIAMANTE [3] was 279 
tested using GREGOR (v1.3.1) [44]. Specifically, we used the following parameters: r2 threshold (for 280 
inclusion of SNPs in LD with the diabetes associated GWAS SNPs) = 0.80, LD window size = 1 Mb, 281 
and minimum neighbor number = 500. P-values were adjusted according to Bonferroni threshold for 282 
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multiple testing burden. 283 
 284 
fGWAS analysis. We used fGWAS [45] to model shared properties of loci affecting a trait. We ran 285 
fGWAS (v0.3.6) with DIAMANTE T2D GWAS summary data and cell-type ATAC-seq peaks from three 286 
cell types as input annotations. For each individual annotation, the output model provided maximum 287 
likelihood enrichment parameters and annotations were considered as significantly enriched if the 288 
parameter estimates and 95% confidence interval (CI) did not overlap zero. We then used fGWAS to 289 
run a conditional analysis in a pair-wise manner where enrichment of one model was evaluated 290 
conditional on the output models from other annotations. 291 
 292 
2.6 Cicero co-accessibility analysis 293 
In order to link TSS distal ATAC-seq peaks with target genes, we used Cicero [46], which identifies co-294 
accessible pairs of DNA elements using single-cell chromatin accessibility data. We used these results 295 
to infer connections between regulatory elements and their target genes. We ran Cicero (v1.0.15, 296 
default parameters) with cells from the alpha and beta cell clusters separately. To do this, we first called 297 
peaks on each cluster and counted the number of reads per nuclei overlapping the peaks. The resulting 298 
count matrix was used as input to Cicero along with the UMAP projection for each cluster. Finally, in 299 
order to decide a threshold for filtering co-accessible peak pairs, we computed Fisher odds ratio for 300 
enrichment of co-accessible peaks versus distance matched non co-accessible peaks (co-accessibility 301 
< 0) with three different three-dimensional chromatin looping data sets: islet Hi-C [47], islet promoter 302 
capture Hi-C (pcHi-C) [48], and EndoC Pol2 ChIA-PET anchors [49]. For overlap, we checked if both 303 
the ends of the Cicero loops intersected with both the anchors from the experimental chromatin looping 304 
data. Public epigenome browser session links have been included in Table S7. 305 
 306 
T2D GWAS SNP overlap analysis. In order to link T2D GWAS SNPs with the target genes, we utilized 307 
380 independent GWAS signals from DIAMANTE that were genetically fine-mapped to 99% credible 308 
set. We filtered SNPs within each set to have >0.05 posterior probability of association (PPAg). We 309 
then checked for each GWAS signal whether SNPs passing the criteria mapped within 1 kb of cell-type-310 
specific ATAC-seq peaks. To obtain Cicero target genes, we checked if an ATAC-seq peak was a) 311 
within 1 kb of a variant, b) outside 1 kb range of a RefSeq TSS, and (c) linked to an ATAC-seq peaks 312 
that was within 1 kb of a RefSeq TSS. The binary overlap matrix was clustered using hierarchical 313 
clustering with binary distance method. 314 
 315 
3. RESULTS 316 
3.1. sci-ATAC-seq captures tissue relevant characteristics similar to bulk ATAC-seq 317 
Pancreatic islets represent approximately 1-2% (by mass) of total pancreatic tissue [1] and therefore 318 
requires specialized approaches to isolate in a manner that maintains viability. We obtained a highly 319 
pure (>95% purity and >92% viability) sample of human pancreatic islet tissue from one individual 320 
(cadaveric donor, female, 43 years old, and non-diabetic) and profiled chromatin-accessibility using sci-321 
ATAC-seq protocol [23] as described previously (Fig. 1A, Table S2). In total, we obtained 1,690 single-322 
cell ATAC-seq datasets with depth ranging from 17,667 to 415,237 (median: 79,482) reads per 323 
nucleus, and TSS enrichment from 0.77 to 9.80 (median: 3.91) after removing background barcodes 324 
(Fig. S1A). For quality assessment of each single nucleus, we reasoned that total reads and TSS 325 
enrichment values are more suitable metrics for identifying nuclei with poor signal-to-noise ratio than 326 
using fraction of reads in peaks as the latter may bias counts for under-represented cell-type 327 
populations in the analysis (Fig. S1B-C). Based on these criteria, we obtained high-quality sci-ATAC-328 
seq data for 1,456 single-nuclei. In addition to sci-ATAC-seq data, we generated high-quality bulk 329 
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ATAC-seq data for ten islet samples with >47 M reads and >4.4 TSS enrichment per sample (Table 330 
S3). Using our approach to identify high-confidence (master) peak calls across samples (see methods), 331 
we obtained 106,460 bulk islet accessible chromatin peaks. 332 

We then compared the aggregate islet sci-ATAC-seq data with bulk ATAC-seq samples from islets and 333 
other tissues. For this, we called 156,311 peaks on the aggregate sci-ATAC-seq. We found that 334 
aggregate sci-ATAC-seq profiles were concordant and clustered together with the other bulk islet 335 
samples indicating that aggregate sci-ATAC-seq can capture chromatin accessibility in a manner 336 
equivalent to bulk ATAC-seq assays (Fig. 1B-C, S1D-E). Further, to understand if the aggregate sci-337 
ATAC-seq peaks capture islet-specific regulatory features, we compared the distribution of peaks 338 
across chromHMM chromatin state maps in eight tissues, including islets and the EndoC human beta 339 
cell line [8]. We found that islet sci-ATAC-seq peaks overlap active TSS and active enhancer 340 
segmentations in islet and EndoC (a beta cell line) chromatin state maps to a larger extent compared to 341 
other tissues (Fig. 1D). Because chromHMM enhancer states are driven by H3K27ac marks and are 342 
known to be associated with tissue-specific enhancer activity [5,50], our results indicate that sci-ATAC-343 
seq data capture the underlying islet-specific chromatin architecture similarly to bulk islet ATAC-seq 344 
assays. Overall, these results indicate that our aggregate islet sci-ATAC-seq data are of high quality 345 
and suggests that the underlying individual nuclei could reveal valuable cell-specific patterns of the 346 
constituent cell-types. 347 

3.2. sci-ATAC-seq reveals constituent cell-types in pancreatic islets 348 
The aggregate sci-ATAC-seq profile of the islet is constituted of signal from distinct cell-types. For 349 
identifying these cell-types, we leveraged the observation that TSS distal regions capture cell-type-350 
specific accessibility patterns and are effective at classifying constituent cell-types [51]. We adopted a 351 
multi-step process to robustly detect and identify islet subpopulations (see methods, Table S4). This 352 
approach produced four distinct clusters (Fig. 2A). In order to assign a cell-type identity to the clusters, 353 
we merged nuclei in each cluster to create aggregate chromatin accessibility profiles and systematically 354 
examined the patterns of accessibility at multiple cell-type marker loci. We found three clusters to have 355 
distinct chromatin-accessibility patterns at GCG, INS-IGF2, and SST loci corresponding to three major 356 
islet cell-types: alpha, beta, and delta cells (Fig. 2B). The fourth cluster (95 nuclei, ~7% of all nuclei) 357 
showed a “mixed” cell-type appearance as shown by signal at multiple cell-specific markers. We 358 
reasoned that these are likely to be nuclei doublets resulting from barcode collisions inherent to the 359 
combinatorial indexing protocol, and thus should have skewed ATAC-seq read coverage. Indeed, we 360 
observed that nuclei assigned to the mixed cell cluster were significantly (nominal P-value = 7.3e-7, 361 
binomial test) enriched in the high sequencing depth bin relative to nuclei from other clusters (Fig. 2C). 362 
As such, these nuclei were removed from further analyses yielding a total of 1,361 nuclei with 51%, 363 
47%, and 2% assigned to beta, alpha, and delta cell-type respectively. These estimates agree with the 364 
existing estimates of pancreatic islet cell-type proportions observed in confocal microscopy or single-365 
cell transcriptomics experiments [17,52–54]. As additional validation of our cell-type assignments, we 366 
used cell-type signature genes from a published islet scRNA-seq study [17] and observed cluster-367 
specific chromatin accessibility consistent with our assigned cell identities (Fig. 2D-E). 368 

We then analyzed the chromatin accessibility profile for each cell-type cluster. For this, we aggregated 369 
nuclei within each cluster and identified peaks using MACS2. We identified 129,046 sites for alpha and 370 
120,116 sites for beta cells. However, because the delta cluster had only 28 cells (corresponding to ~2 371 
M reads), we reasoned that MACS2 would not perform ideally on data with such low depth. Indeed, we 372 
only identified 49,293 peaks using MACS2 on the delta cell aggregate reads. 373 
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3.3. Deep learning enables robust peak calls on less abundant delta cells 374 
To solve the challenge of learning cell-type-specific features from the sparse signal in low count delta 375 
cell cluster, we used a deep learning approach based on U-Net architecture (Fig. S2A). U-Net was first 376 
developed for biomedical image segmentation but has since been applied to many other problems 377 
including audio and image super resolution. Its use in the super resolution problem served as the main 378 
impetus for our choice of model to upscale genomic signals. We formulated our approach as a 379 
classification problem where we use sparse signal and corresponding peak calls (equivalent to a low-380 
resolution image) to predict dense and high-quality peak calls (equivalent to a high-resolution image). In 381 
order to avoid overfitting, we adopted a rigorous training scheme. We divided the chromosomes into 382 
training, validation, and testing sets (Fig. 3A, S2B), and tested the performance of models within the 383 
same cell-type and across different cell-types. We reasoned that our islet sci-ATAC-seq data is an ideal 384 
fit for this problem as all the nuclei come from the same individual and processing batch and should, 385 
therefore, contain no genetic or technical biases that would influence within or across cell-type 386 
predictions. Since we had high-quality data from two cell-types, we trained two models: one model was 387 
trained using 28-cell and 600-cell data from alpha cells (alpha trained model), while the second model 388 
was trained similarly on data from beta cells (beta trained model). We then compared peak predictions 389 
from both models to corresponding MACS2 peaks from the 600-cell data. We found that results from 390 
cross cell-type predictions of both models outperformed MACS2 peak results as measured by mean 391 
average precision (Fig. 3B), suggesting that the U-Net was able to reconstruct peak calls from sparse 392 
signal independent of the specific cell-type it was trained on. We highlight several examples where the 393 
model was able to successfully predict peaks that were absent in sparse 28-cell data but present in 394 
600-cell data of a cell-type (Fig. 3C). These predictions could not have transferred or “copied over” 395 
from the training data because the training cell-type had no signal or peak call at the given locus. Based 396 
on these results, we decided to use the U-Net models to predict peaks for the low-count delta cell 397 
cluster. Since the U-net model provides a posterior probability score for each peak call prediction, we 398 
sought to create a high-confidence set of predicted peak calls for each cell-type. We used a threshold 399 
of 0.625 to filter predicted peaks for each cell-type. The choice of threshold was used to control for 400 
potential false positives and final number of predicted cell-type peaks (Fig S2C-D).  401 
 402 
Further, considering that delta peak predictions from both alpha and beta model were highly concordant 403 
(Jaccard index of 0.85), we used the intersection of the results as the final predicted outcome. Now with 404 
representative peak calls from each cluster, we compared them to bulk islet ATAC-seq master peak 405 
calls (Table S5). We found that master peaks derived from bulk islets were highly reproducible across 406 
samples, with >70% of peaks occurring in five or more of the ten samples (Fig. 3D). Predictably, we 407 
also observed that the chromatin states corresponding to “Active TSS” and “Active Enhancer” showed 408 
enrichment with increasing reproducibility of master peaks. Likewise, chromatin states such as 409 
“Repressed polycomb”, “Weak transcription”, “Quiescent/low signal” showed a depletion with increasing 410 
islet ATAC-seq peak reproducibility (Fig. 3E). Similarly, when we compared cell-type peaks to the 411 
master peaks, we found that the proportion of peaks from each cell-type increased with the increasing 412 
reproducibility of bulk peaks, suggesting that highly reproducible peaks are driven by all constituent 413 
cell-types while peaks that occur in fewer samples might originate from underlying cell-population 414 
variability (Fig. 3F).  415 
 416 
While the primary model of our interest was trained using data from 28 cells to predict 600-cell 417 
equivalent peaks, we asked if the model would perform similarly for a varying resolution of input data. 418 
For this, we subsampled cells from alpha and beta cell clusters to sets of different cell counts, starting 419 
with as few as five cells to 500 cells. We found that the performance of the model increased with the 420 
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increasing number of cells used in the input training data (Fig. S2E). There was up to five-fold gain in 421 
coverage of T2D GWAS SNPs in beta predicted peaks compared to MACS2 peaks (Fig. S2F) even 422 
when fewer cells were used as input training data (Fig. S2G). These results suggest that the deep-423 
learning strategy is applicable to a range of input data typically seen in single-cell sequencing 424 
experiments. 425 
 426 
Overall, our results show that deep-learning driven feature prediction can help us recover tissue and 427 
cell-type relevant chromatin accessibility patterns from sparse and noisy data. Using this approach can 428 
enhance biological discoveries, which is challenging with rare cell populations. 429 
 430 
3.4. T2D GWAS enrichment at cell-type-specific chromatin signatures 431 
We computed the overlap enrichment of T2D GWAS loci in cell-type peak annotations from alpha, beta, 432 
and delta cells using a Bayesian hierarchical model, as implemented in fGWAS [45]. fGWAS allows 433 
calculation of marginal enrichment associations for one cell type conditioned on another by using not 434 
only the subset of genome-wide significant loci but also the full genome-wide association summary 435 
statistics. We observed that annotations from all three cell types were highly enriched for T2D GWAS 436 
loci, with beta-cell annotations having the highest enrichment values. (Fig. 4A). However, when we 437 
accounted for marginal associations using a joint model, we found that beta cells are the only cell type 438 
to remain enriched after adjusting for the other two cell types. This result suggests that shared or beta 439 
cell-specific chromatin accessibility peaks drive the association with T2D GWAS. More broadly, these 440 
findings illustrate how single cell chromatin profiling results, when coupled with conditional statistical 441 
enrichment analyses, can dissect specific cell types that drive enrichment in bulk tissue samples. 442 
 443 
We next partitioned the peaks into exclusive sets based on the cell-types shared by each peak. 444 
Because the delta cell cluster has fewer reads compared to alpha and beta cells, we did not utilize read 445 
count-based approaches to determine cell-type-specific peaks. Instead, we used peak level metrics to 446 
identify peaks exclusive to a combination of cell types. We found that a majority of peaks (47,209) were 447 
shared across all cell-types and that each cell type had a set of unique accessible sites (29,884 beta, 448 
39,353 alpha, 31,330 delta) (Fig. 4B). Consistent with our expectations, TSS-proximal shared peaks 449 
mostly overlapped active TSS chromatin states compared to cell-type-specific peaks which had a larger 450 
proportion of peaks in active enhancer states (Fig. S3A). We then used a complementary enrichment 451 
approach with the GREGOR tool [44] to determine if T2D GWAS loci are enriched in each subclass of 452 
peaks. We found that T2D GWAS loci were highly enriched in shared peaks (P-value 1.64e-16, fold 453 
enrichment 2.03) and beta cell-specific peaks (P-value 6.42e-6, fold enrichment 1.91) (Fig. S3B). We 454 
also observed moderate enrichment of T2D GWAS SNPs in other sets of cell-type-specific peaks, but 455 
strikingly, there was little enrichment in delta cell-specific peaks (P-value 3.12e-3, fold enrichment 1.55) 456 
and no significant enrichment in alpha cell-specific peaks (P-value 1.83e-01, fold enrichment 1.16). This 457 
suggests that the role of alpha and delta cells in the mechanisms underlying genetic predisposition to 458 
T2D pathophysiology might be limited compared to beta cells. Further, the enrichment of shared peaks 459 
also suggests that these variants might be affecting regulatory pathways that are shared across all cell 460 
types in the islets, suggesting that a narrow focus on studying beta cells only for T2D might not yield a 461 
complete picture of the disease mechanisms. These independent enrichment findings from the 462 
GREGOR tool are consistent with the results from the fGWAS analysis (Fig. 4A), indicating the robust 463 
nature of these results. 464 
 465 
3.5. Linking cell-type-specific chromatin accessibility to target genes 466 
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One of the primary challenges in understanding the underlying biological mechanisms at non-coding 467 
T2D GWAS variants is the identification of their target genes. Risk variants occurring in enhancer 468 
regions can often interact with their target genes that are not adjacent. Multiple studies have examined 469 
the regulatory landscape of pancreatic islets and relevant cell lines using chromosome conformation 470 
capture techniques to nominate target genes [47–49]. However, most of these studies were conducted 471 
on bulk islet samples, thereby obscuring any cell-specific signatures of chromatin looping. Additionally, 472 
chromatin looping studies tend to have noisy signals when two regions are close in linear space, which 473 
leads to a bias towards detecting longer-range interactions. In order to mitigate these limitations, we 474 
adopted a recently published approach, Cicero [46], which leverages profiles of chromatin co-475 
accessibility across single cells to infer pairs of chromatin peaks that are likely to be in close physical 476 
proximity. For this analysis, we focused on alpha and beta cell-types as they were the clusters with the 477 
most nuclei. In order to filter the Cicero co-accessible scores for those peak pairs that are more likely to 478 
represent true looping, we compared our results to experimentally-defined loops from three 479 
independent chromatin looping data sets: islet Hi-C [47], islet promoter capture Hi-C (pcHi-C) [48], and 480 
EndoC Pol2 ChIA-PET [49] loops. We found that Cicero peak-pairs from our sci-ATAC-seq data with 481 
score >0.05 were strongly enriched to be called as loops in each of the three reference data sets (Fig. 482 
4C, S4A). With this threshold, we found 190,176 beta cell and 147,716 alpha cell co-accessible peak-483 
pairs. 484 
 485 
Using our new catalog of Cicero-inferred chromatin loops, we next sought to link TSS-distal T2D GWAS 486 
variants to target gene promoters. We focused on the latest T2D GWAS results and used SNPs in 487 
association signals that were genetically fine-mapped to be in a 99% credible set and had >0.05 488 
posterior probability of association (PPAg) [3]. For this mapping procedure, we required that the 489 
credible set SNP was not within 1 kb of an annotated TSS and that the other end of the chromatin loop 490 
occurs within 1 kb of an annotated TSS. Using this approach across both alpha and beta cells, we 491 
found that of the 265 independent GWAS signals containing SNPs that met our criteria, we were able to 492 
nominate target genes at 104 of them (Fig. 4D). In a similar manner, we checked if the SNPs within 493 
each locus overlapped a cell-type-specific peak (Table S6). We observed several notable examples. At 494 
the C2CD4A/B locus, we found rs7163757 (PPAg 0.095) to be linked to C2CD4B in alpha cells (Fig. 495 
4E). Using an islet gene expression and genetic integration approach to identify expression quantitative 496 
trait loci (eQTL), we previously showed that rs7163757 is associated with C2CD4B expression [8], and 497 
a subsequent functional study corroborated these findings [55]. At a different locus, we found 498 
rs11708067 (PPAg 0.79), located in an islet enhancer within the ADCY5 gene, to be linked to the TSS 499 
of the corresponding gene (Fig. 4F). The risk allele of rs11708067 has been reported to be associated 500 
with reduced expression of ADCY5 [56] and functional validation experiments show association with 501 
impaired insulin secretion [4,9]. As an example of a beta cell-specific connection, we found variant 502 
rs13262861 (PPAg 0.97) within the ANK1 locus to be linked to nearby NKX6-3 (Fig. 4G). We have 503 
previously used islet eQTL data to nominate NKX6-3 as an islet target gene at this locus [4,8]. The 504 
extensive support from previous publications for these three loci serves as positive controls for our 505 
results and reinforces the quality of this sci-ATAC-seq data and analyses. Finally, we highlight 506 
rs62059712 (PPAg 0.34) within the ATP1B2 locus as an example of a variant linked to multiple gene 507 
promoters across both beta and alpha cell-types (Fig. 4H). Notably, of the 104 T2D GWAS signals for 508 
which we were able to nominate target genes in either cell type, 60 (~58%) had more than one 509 
nominated target gene.  510 
 511 
4. DISCUSSION 512 
Single-nuclei chromatin accessibility profiling provides a unique approach for mapping of cell-type-513 
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specific regulatory signatures. Here, we utilized the sci-ATAC-seq protocol to generate and study 514 
chromatin accessibility profiles for 1,456 high-quality nuclei from a purified pancreatic islet sample. Our 515 
dataset and analyses provide high-quality maps of cell-type accessibility profiles and regulatory 516 
architecture using an unbiased approach compared to prior maps from sorted cell-type populations. 517 
However, it is essential to emphasize that single-cell data present unique challenges, and that our 518 
study, which analyzed only one pancreatic islet sample, may be limited in how it can address some of 519 
them. 520 
 521 
First, de-novo identification of cell types from the sparse single-cell chromatin accessibility data 522 
continues to be a challenge. We adopted several strategies to address potential biases in our analysis. 523 
Our logistic regression approach to eliminate read depth as a confounding technical variable, combined 524 
with the binomial counting strategy to infer doublet enrichment in clusters, enabled us to identify three 525 
major cell-type populations corresponding to alpha, beta, and delta cells. In order to assign these cell 526 
identities, we relied not only on classical hormone markers, but we also leveraged findings from an 527 
independent islet single-cell RNA-seq study to validate our results. While islets have been reported to 528 
contain other rarer cell-type populations (<5% of all islet cells) [52], our ability to observe them was 529 
limited due to the size of our dataset. 530 
 531 
Second, we faced the challenge of identifying reliable cell-specific accessibility patterns across all cell 532 
types due to the relatively low abundance of delta cells. As such, our U-Net-based deep learning 533 
approach presents a novel strategy for addressing this particular problem. Our model differs from a 534 
related deep learning method, Coda [57], by focusing on single cell ATAC-seq as opposed to bulk 535 
histone ChIP-seq data and uses a more complex architecture (U-Net) which has been used before in 536 
image processing related tasks [39,58] but seen little mention in genomics [59]. We demonstrated, 537 
using alpha and beta cells as reciprocal training and testing datasets, that our model successfully 538 
learns to predict high-quality peak calls from low cell count data. We observed, however, that there are 539 
diminishing returns from using deep learning models when 200 or more cells are used as input to the 540 
model, an observation consistent with the threshold of experimental reproducibility highlighted in a 541 
recent large-scale single nuclei ATAC-seq study [15]. This consistency with an independent study 542 
reinforces the value of our deep learning approach but also highlights a limitation of our delta peak 543 
predictions which derive from a low cell count input dataset. Nonetheless, we envision that our method 544 
will be useful in scenarios where it is challenging or cost-prohibitive to obtain specific cell populations. 545 
 546 
Overall, an important implication of our findings comes from our ability to generate cell-specific 547 
chromatin accessibility maps and to infer looping connections from accessible regions to target genes 548 
of T2D GWAS variants. A recent T2D GWAS [3] reported >400 independent association signals, but 549 
the molecular mechanisms underlying these signals is known only for a subset of the variants. Single 550 
nuclei resolution cell-specific regulatory signatures provide a unique opportunity to infer target gene 551 
links with non-coding elements. Thus, we integrated cell-type co-accessibility links with T2D GWAS 552 
SNPs that were genetically fine-mapped to 99% credible sets to create a higher resolution map of the 553 
regulatory landscape underlying 104 distinct T2D GWAS signals. Focusing on the cell-specificity of the 554 
chromatin accessibility peaks that anchor these target gene associations, we observed seven classes, 555 
representing: i. peaks that are unique to a cell type (three classes), ii. peaks that are shared across all 556 
three cell types (one class), iii. peaks that occur in a pair of cell types (three classes). Interestingly, the 557 
class of peaks shared across all three cell types comprised 26 of the 104 (25%) T2D GWAS to target 558 
gene links even though this class is only one of seven. These results paint a complex picture of disease 559 
mechanisms where certain risk variants may mediate target effects through cell-type-specific pathways, 560 
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while others might affect multiple target genes shared across cell-type populations.  561 
 562 
We noted specific examples at the C2CD4A/B and ANK1 loci, where we were able to nominate specific 563 
variants linked with islet gene expression and their role in T2D pathophysiology as compelling targets 564 
for future mechanistic studies. As this manuscript was under preparation, another similar study 565 
appeared as a preprint [60], and as such an important future topic will be to combine and meta-analyze 566 
multiple islet single-cell ATAC-seq datasets. Such an endeavor will increase statistical power to detect 567 
chromatin features, including loops, at GWAS loci, and eventually enable single-cell resolution 568 
chromatin QTL studies, which will help to further narrow in on functional SNPs. Overall, we believe that 569 
the data, results, and methodology from this study will be of value to the broader research community. 570 
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FIGURE LEGENDS 756 
 757 
Figure 1. Schematic of sci-ATAC-seq study. (A) sci-ATAC-seq protocol for generating single-nuclei 758 
ATAC-seq data from a pancreatic islet sample. The data is then used to identify constituent cell-types 759 
and use deep-learning model to predict peaks on the clusters with fewer nuclei count. (B) ATAC-seq 760 
signal tracks for 10 bulk islet samples and sci-ATAC-seq islet sample. Bottom tracks show the signal 761 
across a random subset of upto 400 single-nuclei. Signal tracks are normalized to one million reads 762 
and scaled between 0-2. (C) Spearman correlation between aggregate sci-ATAC-seq, 13 bulk islets, 3 763 
adipose, 2 muscle, 2 CD4+ T-cells, and 1 GM12878 sample (see Table S1). (D) Distribution of 764 
aggregate sci-ATAC-seq TSS proximal and distal peaks across bulk islet derived ChromHMM 765 
segmentations. 766 
 767 
Figure 2. Clustering and identification of cell-type clusters in sci-ATAC-seq data. (A) UMAP 768 
projection with clustering of 1,456 single-nuclei islets represented by each single point into four clusters 769 
as identified by density-based clustering. (B) Enrichment of cells from each cluster relative to their 770 
expected population proportion across different read sequencing depth bins. Sequencing depth 771 
increases with the bin number. (C) Genome browser tracks showing signal at different cell-type marker 772 
loci: alpha (GCG), beta (INS-IGF2), delta (SST), and a housekeeping gene (GAPDH). Tracks are 773 
normalized to one million reads and scaled between 0-5. (D) Overview of independent cluster 774 
verification scheme utilizing cell-type signature genes as identified by an islet scRNA-seq study by 775 
Lawlor et al (2017). (E) Plot of aggregate ATAC-seq signal (normalized using RPKM) at scRNA-seq 776 
derived cell-type signature genes for alpha, beta, and delta cells. Number of signature genes for each 777 
cell type indicated in the legend. 778 
 779 
Figure 3. Deep learning upscaling from sparse low-count nuclei clusters. (A) Schematic of U-Net 780 
training scheme. Two models are depicted in the illustration: one trained on alpha cells data as input 781 
and other trained on beta cells as input. Delta cell peak predictions from both models are combined to 782 
get final predictions (see Methods). (B) Precision-recall curve comparing peak calls from MACS2 on 783 
downscaled data (alpha cell-type) with predicted peak calls from 28 cell U-net model (trained on beta, 784 
predicted on alpha). (C) Example loci illustrating peak upscaling with the model. For each cell-type, four 785 
tracks are shown: full signal track, peak calls on full data, peak calls on subsampled data, and predicted 786 
peak calls. The predicted peak calls are obtained from a model trained on a different cell-type. For delta 787 
predicted peak calls, intersection of prediction from both alpha and beta models are shown. Signal 788 
tracks normalized to one million reads and scaled between 0-2. (D) Reproducibility of master peaks 789 
from bulk islet ATAC-seq across individual samples. (E) Fold enrichment (log2) of different sets of 790 
reproducible peaks from bulk islet ATAC-seq across 13 islet chromatin states. Genic Enhancer is not 791 
shown because of no enrichment. (F) Overlap of cell-type peaks (alpha, beta, predicted delta) with 792 
different sets of reproducible peaks from bulk islet ATAC-seq data. 793 
 794 
Figure 4. Enrichment of T2D GWAS signals in cell-type-specific chromatin and linking them to 795 
target genes. (A) Fold enrichment (log2) of T2D GWAS SNPs in cell-type peaks in single and 796 
conditional analysis mode using fGWAS tool. For each cell-type, three enrichment values with 95% 797 
confidence intervals are shown: None (single annotation mode), Alpha (conditioned on alpha), Beta 798 
(conditioned on beta), and Delta (conditioned on delta). (B) Partitioning of alpha, beta, and predicted 799 
delta peaks in mutually exclusive sets of cell-type-specific peaks. The subplot (on right) shows the total 800 
number of peaks for each cell-type. (C) Distance-matched Fisher odds that beta cell co-accessibility 801 
links overlap islet Hi-C, islet pcHi-C, and ChIA-PET chromatin loops across different co-accessibility 802 
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threshold bins. (D) Overlap of T2D GWAS credible set SNPs with cell-type-specific peaks. Bin is 803 
colored if there’s at least one SNP (PPAg > 0.05) in the 99% genetic credible set of the T2D GWAS 804 
signal located within 1 kb of an ATAC-seq peak. Cicero score columns are colored to indicate the score 805 
of the highest scoring link to the target gene. (E) Viewpoint plot of alpha Cicero connections centered at 806 
rs7163757 for C2CD4A/B locus, (F) alpha Cicero connections centered at rs11708067 for ADCY5 807 
locus, (G) beta Cicero connections centered at rs13262861 for ANK1 locus, and (H) Cicero connections 808 
for both alpha and beta centered at rs62059712 for ATP1B2 locus. The viewpoint region is +/- 1kb of 809 
the region from the variant. 810 
 811 
  812 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/749283doi: bioRxiv preprint 

https://doi.org/10.1101/749283
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19

SUPPLEMENTARY FIGURE LEGENDS 813 
 814 
Figure S1. ATAC-seq metrics of nuclei from sci-ATAC-seq. (A) Distribution of reads per barcodes 815 
shown with the threshold chosen for filtering background barcodes. (B) Fraction of reads in peaks 816 
versus TSS Enrichment, and (C) Total autosomal reads versus TSS enrichment for all single nuclei. 817 
Density units are arbitrary. (D) TSS coverage of aggregate sci-ATAC-seq, and (E) Fragment length 818 
distribution of aggregate sci-ATAC-seq compared with ten bulk islet ATAC-seq samples. 819 
 820 
Figure S2. Peak calling using deep learning approach. (A) Schematic of U-Net learning strategy. (B) 821 
The training, testing, and validation scheme used for training the models delineating which 822 
chromosomes were part of what dataset. (C) Number of predicted peaks (from 28-cell trained model) 823 
for each cell type with different output posterior probability thresholds. (D) Number of cell-type specific 824 
peaks for alpha, beta, and delta after partitioning into mutually exclusive sets (see methods) with 825 
different output posterior probability thresholds. (E) Average precision in predicting peaks compared for 826 
all four models (two training and two prediction datasets) with different sizes of input training data. (F) 827 
Enrichment of T2D GWAS SNPs (N=378) in predicted beta peak calls (from alpha-trained model) 828 
compared with peaks calls from MACS2 on the data with varying size of input training data. (G) 829 
Precision and recall curves comparing predicted beta peaks (from alpha-trained model) for varying size 830 
of input training data.  831 
 832 
Figure S3. (A) Distribution of TSS proximal and distal peaks (>5kb from nearest Refseq TSS) in shared 833 
peaks and peaks assigned only to alpha, beta, and delta cell-type. (B) Enrichment of T2D GWAS SNPs 834 
(N=378) across all cell-type-specific sets of peaks. 835 
 836 
 837 
Figure S4. (A) Fisher odds score for enrichment of alpha co-accessible sites in loop anchors from three 838 
different dataset: Islet Hi-C, Islet pcHi-C, and EndoC ChIA-PET. 839 
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