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Abstract 19 

The continuing increase in many countries in adult body mass index (BMI kg/m2) and its dispersion 20 

is contributed to by interaction between genetic susceptibilities and an increasingly obesogenic 21 

environment (OE). The determinants of OE-susceptibility are unresolved, due to uncertainty around 22 

relevant genetic and environmental architecture. We aimed to test the multi-modal distributional 23 

predictions of a Mendelian genetic architecture based on collectively common, but individually rare, 24 

large-effect variants and their ability to account for current trends in a large population-based sample. 25 

We studied publicly available adult BMI data (n = 9102) from 3 cycles of NHANES (1999, 2005, 26 

2013). A first degree family history of diabetes served as a binary marker (FH0/FH1) of genetic 27 

obesity susceptibility. We tested for multi-modal BMI distributions non-parametrically using kernel-28 

smoothing and conditional quantile regression (CQR), obtained parametric fits to a Mendelian model 29 

in FH1, and estimated FH x OE interactions in CQR models and ANCOVA models incorporating 30 

secular time.  Non-parametric distributional analyses were consistent with multi-modality and fits to a 31 

Mendelian model in FH1 reliably identified 3 modes.  Mode separation accounted for ~40% of BMI 32 

variance in FH1 providing a lower bound for the contribution of large effects. CQR identified strong 33 

FH x OE interactions and FH1 accounted for ~60% of the secular trends in BMI and its SD in 34 

ANCOVA models. Multimodality in the FH effect is inconsistent with a predominantly polygenic, 35 

small effect architecture and we conclude that large genetic effects interacting with OE provide a 36 

better quantitative explanation for current trends in BMI. 37 

Introduction 38 

The recent and continuing increase in the global mean adult BMI, first seen in high income countries, 39 

is now seen in most countries across a wide range of ethnic composition and socio-economic 40 

conditions (Di Cesare et al., 2016) and is accompanied by increases in measures of dispersion 41 
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(Krishna et al., 2015; Silventoinen et al., 2017). Although BMI is known from family-based studies to 42 

be under strong genetic influences (Loos, 2018) population genetic backgrounds have been 43 

effectively constant over this time, implying that BMI trends are driven by change in environmental 44 

factors (obesogenic environment, OE).  Evidence from twin studies, which demonstrate increased 45 

genetic variance over time, supports an important role for interactions between OE and genetic 46 

susceptibility (G x OE) on both mean and dispersion of BMI (Rokholm et al., 2011; Silventoinen et 47 

al., 2017), but how large a role is not yet known. Defining the role of G x OE in “epidemic” obesity, 48 

and hence of genetic susceptibility itself, is hindered by problems of measurement and modeling of 49 

interactions (Franks and McCarthy, 2016) and by uncertainty around both the genetic architecture 50 

(Loos, 2018) and the exact nature of the environmental drivers (Hall, 2018). Whether population 51 

susceptibility to OE is predominantly determined by a subgroup with high genetic susceptibility or is 52 

more evenly spread within populations is unresolved despite important implications for the 53 

management of obesity and related disorders at population and individual 54 

levels (Kivimaki et al., 2015; Krishna et al., 2015; Jenkins and Campbell, 2015; Razak et al., 2015). 55 

 56 

The genetic variants responsible for obesity susceptibility remain largely unknown. Genome-wide 57 

association studies (GWAS) have identified significant associations with >200 markers with small 58 

effects on BMI (polygenes), together explaining only approximately 3-4 % of total variance 59 

compared to family-based heritabilities (h2) of 50-75%  (Speakman et al., 2018). Few causative 60 

mechanisms responsible for these phenotypically weak associations are known  (Loos, 2018). The 61 

sources of the h2 unaccounted for by GWAS are uncertain; suggestions include overestimation of h2, 62 

large numbers of common genetic variants with small, statistically insignificant effects on phenotypes  63 

(Locke et al., 2015; Khera et al., 2019)  and importantly, candidates not tested in most GWAS. 64 

Among the latter are rare genetic variants with large phenotypic effects and G x OE interactions 65 

(Loos, 2018). Recently significant G x OE interactions have been detected in individual GWAS loci 66 
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and in composite genetic risk scores, which however explain little of the missing component of h2 67 

(Abadi et al., 2017; Nagpal et al., 2018).   68 

 69 
A family history of diabetes (FH) is a potent, predominantly genetic (Hemminki et al., 2010; 70 

Willemsen et al., 2015) risk factor for diabetes diagnosis (DM) and for obesity-related phenotypes 71 

(Ghosh et al., 2010; Tirosh et al., 2011; Scott and Consortium, 2013; Jenkins et al., 2013) consistent 72 

with the strong association between type 2 DM and overweight/obesity. Familial effects on obesity-73 

related phenotypes in adults are also predominantly genetic (Stryjecki et al., 2018; Silventoinen et al., 74 

2017), so to the extent that the DM generating FH is of type 2 (approximately 94% of DM in the US 75 

population (Xu et al., 2018)), FH is a prevalent and readily obtained marker of genetic susceptibility 76 

both to diabetes and to the obesity commonly preceding it. We have previously reported evidence 77 

from a small sample of a multi-modal effect of FH on a composite adiposity index consistent with 78 

segregation in families of discrete obesity risk (Jenkins et al., 2013). Polygenic risk scores (PRS) 79 

based on large numbers of small effects are expected to be, and appear to be, unimodally-distributed 80 

(Llewellyn et al., 2014; Rask-Andersen et al., 2017) and thus cannot account for familial segregation 81 

of discrete risk.  The present work is based on the alternative hypothesis that individually rare, but 82 

collectively common, genetic variants with large phenotypic effects are the source of most of the 83 

missing h2 and of most of G x OE, and that their effects can be detected through analyses of 84 

phenotypic segregation in high-risk families (Jenkins and Campbell, 2014). 85 

 86 
The Continuous National Health and Nutrition Examination Survey (NHANES) is a continuing 87 

(1999-) large-scale population-based survey incorporating an index of adiposity (Body Mass Index, 88 

BMI) and first-degree FH (FH0/FH1) together with potential covariates and confounders. Although 89 

BMI has recognized limitations as an adiposity phenotype (Jenkins and Campbell, 2014; Müller et 90 

al., 2018) it is the basis for most large-scale genetic studies and like other authors, we assume that a 91 

large enough scale and appropriate modeling of covariates will reduce effects of imprecision and bias 92 
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(Speakman et al., 2018). We aimed to test in a large multi-cycle NHANES sample for the presence of 93 

familial segregation of genetic risk and to estimate the contribution of FH, and by extension all 94 

discrete genetic risk, to recent secular trends in adult BMI. The results support a predominant role for 95 

large genetic effects interacting with OE in the obesity “epidemic”. 96 

 97 

Subjects and Methods 98 

Subjects 99 

We used data from the 1999-2000, 2005-2006 and 2013-2014 cycles of NHANES 100 

(https://www.cdc.gov/nchs/nhanes/index.htm  accessed 25 Aug 2017). We extracted records for 101 

participants age 20-65 years with non-missing gender, race/ethnicity, BMI, diabetes family history 102 

(FH) and diabetes diagnosis data, and current smoking status if available.  The definitions of two 103 

fields changed over the sampling period: 1) Diabetes family history was defined in terms of 1° and 2° 104 

relatives in 1999-2000 but by 1° relatives only in subsequent cycles. We recoded the 1999-2000 105 

diabetes family history data to conform to the later definition using the separately collected data for 106 

affected parents and siblings. 2) The self-identified race/ethnicity field (RIDRETH1) code was used 107 

excluding other races (OR) to maintain consistency of categories across cycles (Supplementary 108 

Methods). We excluded from the primary analyses subjects diagnosed with diabetes because of 109 

possible confounding by effects of either diabetes or diabetes therapies on BMI.  The resulting data 110 

set is summarized in Table 1. 111 
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Statistical analyses 112 

Approach 113 

We treated the data as a convenience sample and took no account of the sampling weights provided 114 

by NHANES to permit nationally representative estimates. Our results are not intended to be 115 

representative of the US population.  116 

Our primary analyses are based on non-parametric visualization (kernel-smoothing) and analyses 117 

(conditional quantile regression, CQR) of distributions requiring no prior distributional assumptions. 118 

Parametric fits to multimodal distributions were then used to quantify the contributions of the 119 

predicted large genetic effects model. FH(0/1) is treated analytically as a binary genetic risk marker 120 

but the distribution of its effect across quantiles is interpreted in a Mendelian model in which FH1 121 

represents enrichment of a mixture of single and double carriers of risk variants. Calendar time is 122 

treated as a continuous surrogate of OE. Effects of OE interacting with FH were assessed in CQR 123 

models, and also in least-squares ANCOVA models using bootstrap resampling to minimize 124 

distributional assumptions in the calculation of effect size estimates and errors. All analyses were 125 

performed using R 3.6.1 (R Development Core Team, 2016). 126 

 127 

Summary statistics 128 

Heterogeneity of the samples across cycles was assessed by Chi square test for categorical variables 129 

and by one-way ANOVA for age. Effects on BMI were assessed by ANCOVA against continuous 130 

time (yr = calendar start year - 1999). Effects on phenotype SD's were assessed by Bartlett's test in 131 

one-way ANOVA models. 132 

 133 
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Adjustment 134 

Prior to analysis BMI was adjusted for effects of age, gender and race/ethnicity in a linear model (age 135 

+ age2 + race x gender).  The adjustment model accounted for 4 % of the total variance in BMI 136 

(Supplementary Table S1). 137 

 138 

Distributions 139 

Visualization 140 

The effect of FH on the distribution of adjusted BMI was visualized using kernel-smoothed density 141 

estimates by FH status (R base function density). The degree of smoothing is controlled by the 142 

bandwidth parameter (bw) which was obtained in the full non-diabetic data set (bw = 0.99) from a 143 

measure of the dispersion of the data (Sheather and Jones, 1991). This produces a continuous 144 

distribution function and is widely used to visualise features of potential interest which may be 145 

obscured in histograms. The credibility of the apparent effect of FH on the shape of the distribution 146 

was assessed by post-hoc analysis of density ratios (FH1 / FH0) by quantiles (20) of the full sample. 147 

Mean density ratios with SEM were obtained by quantile by bootstrap resampling with replacement 148 

(1000 draws, stratified by FH status with resample sizes = strata sizes) and compared to the 149 

predictions of normal and log-normal mixture distributions characterised by the proportions, means 150 

and SD's in the sample stratified by FH status and cycle. Lack of fit to the mixture distributions was 151 

assessed by Χ2 tests in 1/variance-weighted linear regressions. 152 

 153 

Conditional Quantile Regression (CQR) 154 

Conditional quantile regression is a powerful tool for analyzing the effect of covariates on 155 

distributions without assumptions of distributional shape.  In contrast to ordinary least-squares (OLS) 156 

regression which characterizes effects on global features of a distribution, CQR analyses local effects 157 
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of covariates independently at any specified quantiles and can detect variations in covariate effects 158 

across quantiles.  Originating in econometrics (Koenker, 2017) it is now used in other areas including 159 

genetics (Briollais and Durrieu, 2014). In the CQR framework developed by Abadi et al (Abadi et al., 160 

2017) for analysis of genomic markers, trends in effect sizes across quantiles represent interactions 161 

between genetic effects and unobserved environmental and/or genetic factors. We treat FH as a 162 

binary genetic risk marker (FH0/FH1) and a linear trend in quantile regression coefficients (ß1i) across 163 

quantiles (τi) represents summed linear interactions of FH with unobserved factors.  We analysed the 164 

effects of FH on adjusted BMI by CQR  using the R package quantreg.  The effect of all interactions 165 

on the FH effect was tested in in a 2 parameter linear model: 166 

for each quantile  τi in y, 167 

y(τi | FH=fh)= ß0i + ß1i * FH 168 

where y(τi | FH=fh) = the ith quantile of adjusted BMI conditional on the value of FH (0,1), the 169 

intercept ß0i is the ith quantile value in FH0 and ß1i is the FH effect size in quantile i. 170 

 171 

The interaction between FH and continuous calendar time was estimated in the ANCOVA model: 172 

y(τi | FH=fh)= ß0i + ß1i * FH + ß2i*yr + ß3i*FH*yr 173 

where yr = cycle start year – 1999, ß0i is the ith quantile value in FH0 at yr =0 and ß2i and ß3i are CQR 174 

coefficients for time and time*FH interaction effects in quantile i. The coefficients for the time-175 

related effects represent the effects in FH0 (ß2i) and the additional effects in FH1 (ß3i) so that the 176 

coefficients for total time effects in FH1 = ß2i + ß3i. 177 

 178 

Equality of CQR parameter effect sizes across quantiles was tested using the anova.rq function in the 179 

R package quantreg. 180 

  181 
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The strengths of the CQR effects  across quantiles were  also assessed in linear meta-regression 182 

analyses of relationships between quantile coefficients ß1-3i and  quantiles using the R package 183 

metafor (Abadi et al., 2017). Regression coefficients (ßMR) with SEM are reported in units of kg.m-2 184 

over the full quantile scale (0-1).  The structure of the FH effects in relation to the multi-modal 185 

Mendelian hypothesis was assessed in an analysis of residuals from linear OLS fits of ß1i to ß0i with 186 

Durbin-Watson tests for residual 1st order autocorrelation (function durbinWatsonTest 187 

 in the R package car). 188 

Parametric fits 189 

We obtained fits to a 3-component normal mixture distribution representing a simple Mendelian 190 

model of fixed genetic effect using an expectation-maximization algorithm (normalmixEM function 191 

in the R package mixtools). The models are characterised by the fitted means (µi), standard deviations 192 

(σi)  and mixing proportions (λi) of  the three component distributions. Full model fits were obtained 193 

in FH1 but were not obtainable in FH0 or DM1 groups and we constrained µi in those groups to values 194 

estimated in FH1 in order to obtain comparable estimates of σi and λi. Risk allele frequencies (q) 195 

under an additive Mendelian model of large genetic effects were calculated from the fitted λi: 196 

q = 0.5*λ2 + λ3 197 

where λ2 and λ3 represent the proportions of carriers of 1 and 2 risk alleles respectively.Within-198 

sample consistency of calculated q across the three groups analysed was  assessed by comparing 199 

fitted qFH1 with the prediction from random mating of DM1 into the full sample:  200 

predicted qFH1 = (qDM + n-weighted mean(qDM, qFH1, qFH0))/2 201 
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Secular trends 202 

 Effects of diabetes family history status (FH0, FH1) and continuous time (yr = calendar start year - 203 

1999) on adjusted BMI and its standard deviation (SD) were assessed in ANCOVA models of the 204 

form: 205 

y = ß0 + ß1 * FH + ß2*yr + ß3*FH*yr 206 

where y = adjusted BMI mean or SD by FH status (0/1) and cycle, and yr = cycle start year – 1999.  207 

Each OLS fit estimated 4 parameters from the 6 data points. Mean parameter estimates with 95% CI 208 

were obtained by bootstrap resampling with replacement (1000 draws stratified by FH status and 209 

cycle with resample sizes = strata sizes). 210 

 211 

Comparison of cross-sectional and secular trend effects 212 

Effects of FH on BMI distribution and on secular trends in BMI were compared by calculating the 213 

contribution (%) of FH1 to the effect in the full non-diabetic sample for calculated risk allele 214 

frequency (q%) and to the slope (ß%) of the relationships between time and BMI in ANCOVA model 215 

described above. Mean (± SEM where possible)  q% and ß% were calculated in the relevant bootstrap 216 

samples. 217 

 218 

Results 219 

Participant characteristics 220 

Data from 9102 non-diabetic subjects met the inclusion criteria, approximately equally distributed 221 

across the 3 cycles. Gender balance varied little but there was a cycle effect in race/ethnicity, most 222 

obvious in the reduced representation of MA in the two later cycles. Average age varied across cycles 223 

but not its SD, while adjusted BMI and its SD showed linear trends with cycle time. FH1 prevalence 224 
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was higher in the two later cycles compared to 1999-2000 as was DM1 prevalence.  Current smoking 225 

status was predominantly missing in the data (55%) and was not included in the BMI adjustment 226 

model. However smoking status was not related to FH status whether analysed in the full data (Χ2 = 227 

2.80, 2 df , p = 0.25) or in those with non-missing smoking status (Χ2 = 0.43, 1 df , p = 0.51), hence is 228 

unlikely to confound analyses of FH effects. The mean age at diagnosis of DM (43.6 yr) is consistent 229 

with predominant type 2 DM in the sample. 230 

Distributions 231 

Visualization 232 

Adjusted BMI in the non-diabetic sample showed an apparently unimodal distribution, right-skewed 233 

compared to a normal model and closer to a log-normal model (Fig 1A). When visualized by FH 234 

status (Fig 1B) the predicted multimodality in FH1 was indicated with modes in the normal weight, 235 

overweight and obese regions of the BMI distribution. In contrast FH0 showed an apparently 236 

unimodal distribution. A difference in shape between the two groups was supported by the analysis of 237 

density ratios (Fig 1B inset) in which models based on mixtures (FH x cycle) of either normal or log-238 

normal distributions did not provide adequate fits to the data (p ≤ 0.001). BMI distribution in the 239 

diabetic sample appeared to be depleted in the lower mode and enriched in the upper modes 240 

compared to FH1 (Fig 1C). 241 

 242 

CQR 243 

Analysis of the effect of FH status alone on the shape of the BMI distribution using CQR 244 

demonstrated increasing FH effect size at higher levels of BMI (ß1MR = 2.2 ± 0.2  (SEM) kg.m-2  Fig 245 

2A, main panel), indicating strong interactions between FH1 and other variables not included in the 246 

model. FH1 effect size ranged from < 1 kg/m2 in the lower quantiles to ~3 kg/m2 in the upper 247 

quantiles, substantially different in both regions to the OLS estimate (1.7 kg/m2).   Inclusion of 248 
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calendar time in the two-way model weakened the trend in ß1 across quantiles (ß1MR = 1.5 ± 0.3 , Fig 249 

2B main panel)  and exposed significant OLS effects and trends across quantiles for main (ß2MR = 250 

0.07 ± 0.02) and interaction (ß3MR = 0.11 ± 0.03) effects of time (Fig 2C-D, main panels). The total 251 

OLS and MR interaction effect sizes in FH1 (ß2OLS + ß3OLS = 0.11 ± 0.03 (SE), ß2MR + ß3MR = 0.18 ± 252 

0.04) were approximately double those in FH0 (ß2OLS, ß2MR, Fig 2C). The analysis supports the 253 

conclusion that calendar time is a strong surrogate of OE interacting with genetic factors as 254 

represented by FH status, and that susceptibility to OE increases with increasing BMI in both groups 255 

but more strongly in FH1.  256 

While the overall MR relationships between ß1 and quantiles in both models were approximately 257 

linear (Fig 2A,B) there was strong evidence for additional non-linear structure in the OLS analysis of  258 

ß1i against ß0i (insets Fig 2A,B).   The linear models provided good fits (one-way: slope = 0.15 ± 259 

0.003 (SE), R2 = 0.98; two-way: slope = 0.10 ± 0.01, R2 = 0.86) but residual sequential structure was 260 

apparent in both models, confirmed by tests of autocorrelation in residuals (pDW ≤ 0.002) . The 261 

pattern of residuals in the two-way model (Fig 2B inset), adjusted for time-related effects, shows 262 

clear signs of discrete effects of FH1 on the distribution of adjusted BMI with distinct peaks in the 263 

lower, middle and upper regions of the distribution. This pattern in the conditional quantile 264 

coefficients does not map directly onto the unconditional quantile plots in Fig 1B, but does highlight 265 

similar regions in the distribution, and permits the conclusion that FH1 has discrete, not continuous 266 

effects on BMI. 267 

Parametric analysis 268 

The distribution of BMI in FH1 (Fig 1B) and the discrete pattern in the FH1 effect by CQR (Fig 2B 269 

inset) appear consistent with a simple Mendelian model and fitting a 3-component normal 270 

distribution model to the FH1 data resulted in robust estimates of component means (Fig 3A) and 271 

mixing coefficients and SDs (Table 2). Approximately 50% of FH1 occupied the upper two modes 272 

and separation between modes accounted for approximately 40% of the total variance in adjusted 273 
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BMI with the remainder assigned to dispersion within modes (Fig 2B). Under a Mendelian model the 274 

variance due to mode separation represents a lower bound on the contribution of large effects as some 275 

of the dispersion within modes represents variance in effect sizes of individual contributing causal 276 

loci (see Discussion) which will contribute to the ~60% of variance assigned to within-modes. 277 

Estimates of component SDs and mixing proportions with component means, constrained for FH0 and 278 

DM1 to those identified in the FH1 data (Table 2), support enrichment in the two upper components in 279 

FH1 compared to FH0 (48% vs. 33%) and more strongly in DM1 (72%).  Predicted risk allele 280 

frequencies in FH1 (q - Table 2) express these distributional properties in Mendelian terms and show 281 

within-sample consistency in that qFH1 predicted from random mating of DM1 (0.37) is not different 282 

to the fitted estimate (0.30 ± 10). 283 

 284 

Secular trends 285 

Adjusted BMI mean (Fig 2A) and SD (Fig 2B) increased over the sampling period significantly faster 286 

in FH1 compared to FH0 in the bootstrapped ANCOVA model, and estimates of ß and ∆ß in the mean 287 

data were indistinguishable from the OLS estimates provided by the CQR analysis (Fig 2C,D).  288 

Similar results were obtained with log-transformed BMI (Supplementary Fig S2).  FH1 accounted for 289 

62% of the BMI mean trend and 60% of the BMI SD trend in this sample over the period 1999-2014, 290 

effects similar in magnitude to the estimated FH1 contribution to the sample risk allele frequency 291 

(50%, Supplementary Table S2). 292 

 293 

Discussion 294 

Summary 295 

We tested the prediction of segregation of discrete effects of FH on adult BMI (Jenkins et al., 2013),  296 

modeled as modes of distribution,  and estimated the contribution of FH1 to recent trends in BMI 297 
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mean and dispersion in a large population-based sample. The results support a predominant role in 298 

the recent obesity "epidemic" for rare genetic variants with large effects interacting with OE. 299 

 300 

Segregation of genetic susceptibility 301 

The non-parametric analysis provided evidence for a multi-modal distribution in the FH1 group 302 

consistent with the prediction of segregation of large genetic effects in families (Jenkins et al., 2013). 303 

Multi-modality was supported by the analysis of density differences between FH1 and FH0 by 304 

unconditional quantiles (Fig 1B) and by evidence of discrete signals in the OLS analysis of CQR 305 

coefficients (Fig 2A&B insets).  The two upper peaks in Fig 2B inset are consistent with the predicted 306 

Mendelian effects of large effect variants on BMI but the potential lower peak is unexpected and may 307 

reflect the presence of type 1 diabetes family history in FH1 group. Individuals with type 1 diabetes 308 

often present with BMI in the underweight (<18.5) – normal range (<25) (Manyanga et al., 2016) but 309 

a genetic basis for this has not been established. 310 

Polygenic risk scores (PRS) in population-based samples are expected to be unimodally-distributed, 311 

and appear to be so (Llewellyn et al., 2014; Rask-Andersen et al., 2017). Any elevated polygenic 312 

obesity risk in DM1 will dilute into the mating population resulting in a right-shifted distribution in 313 

FH1 compared to FH0, not  discrete effects. Alternative explanations for multi-modality might be 314 

discrete stratification of OE components not captured by calendar time which seems unlikely, or un-315 

modeled interactions between FH and other covariates.  Un-modeled interactions between FH and 316 

stratified residual confounders may exist and contribute but we found no evidence for this in plots of 317 

distributions by gender and race/ethnicity (Supplementary Fig S1) or in an analysis of  smoking status 318 

against FH. Discrete inheritance of genetic variants with large effects is the most likely explanation 319 

for multi-modality in the FH effects on the BMI distribution . 320 

 321 
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Approximately 40% of the adjusted BMI variance in FH1 was accounted for by between-modes 322 

variance (Fig 3B) but this represents a lower bound since the identified modes are likely to be 323 

synthetic ie composed of a range of effect sizes due to rare variants at different loci. Indications of 324 

fine structure within the broad central peak (Fig 2B inset) are suggestive. Examples of rare variants 325 

with large effects on BMI in adults (ß) are known from studies of candidate genes and monogenic 326 

obesity loci (Jenkins and Campbell, 2014) while more recently a common variant in Samoans (EAF = 327 

0.26, ß ≈ 1.4 kg/m2 ), very rare in other populations (Minster et al., 2016), and an African-specific 328 

rare variant (EAF = 0.008, ß =4.6 kg/m2) undetected in Europeans and Asians (Chen et al., 2017) 329 

have been identified by GWAS. Overall, ß in these nine examples ranges from 1.4- 9 kg/m2 and a 330 

similar range in effect sizes in the NHANES sample would contribute substantially to the within-331 

mode variance estimated here. A combination of within-subject variance (~5% (Wormser et al., 332 

2013)) with polygenic variance (~ 5% (Loos, 2018)) sets a lower bound for within-modes variance 333 

and hence the upper bound for between modes, implying that between 40% and 90% of total variance 334 

in FH1 may be attributed to large genetic effects. 335 

 336 

G x OE 337 

FH1 is a prevalent (36%) and powerful determinant of the rate of change of mean BMI and its 338 

dispersion over time in the ANCOVA models, accounting for 62% of the BMI trend and 60% of the 339 

BMI SD trend in this sample over 1999-2014. Consistent results were obtained in the CQR models 340 

with ßOLS and ßMR in FH1 approximately double those in FH0. Under a polygenic model the familial 341 

risk would be distributed normally over FH1 which would then be a marker of a large fraction of the 342 

at-risk population. However under the Mendelian model supported here genetic risk would segregate 343 

in families and only approximately 50% of FH1 would acquire the excess familial risk and only ~18% 344 

of the sample would then account for ~60% of the trends. Individuals with a family history DM1 must 345 

represent a fraction of individuals with elevated genetic obesity risk and it is likely that the 346 
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remainder, particularly those with a family history of obesity without DM, would substantially 347 

increase the genetic component of the trends consequent to the high heritability of BMI (Stryjecki et 348 

al., 2018). This Mendelian model is internally consistent in estimates of risk allele frequencies (q) in 349 

FH1, FH0 and DM1 (Table 2) and in comparisons of FH1 effect sizes in cross section (q, ~50%) and 350 

over time (ß, ~60%) (Supplementary Table S2). Our results support the proposition that the largest 351 

part, and perhaps all, recent trends in mean and dispersion of BMI are due to a minor subset of 352 

individuals with elevated genetic susceptibility to OE. 353 

  354 

Limitations 355 

The design and interpretation of fits to parametric mixture distribution models involves choices 356 

concerning the number of components, parameter starting values and algorithms, and fit to a specific 357 

model cannot be taken in isolation as support for its structural validity. We base our choice and 358 

structural interpretation of 3-component normal mixture model fits and parameters on the a priori 359 

hypothesis of Mendelian segregation of obesity risk in families (Jenkins et al., 2013) supported by the 360 

non-parametric distributional plots (Fig 1B,C) and CQR analysis (Fig 2A,B insets).  Like Abadi et al 361 

(Abadi et al., 2017), we interpret interactions in the CQR analysis as predominantly G x OE although 362 

a contribution from G x G interactions cannot be excluded. Our interpretation is supported by the 363 

effects on the interaction of including calendar time in the CQR model (Fig 2B). Other limitations 364 

discussed above include our inability to exclude discreet stratification of OE and the possible 365 

influence of unmeasured/unknown  confounders of FH effects. 366 

 367 

Conclusions 368 

We conclude that a Mendelian model of individually rare but collectively common genetic risk 369 

variants with large effects interacting with OE provides a plausible quantitative explanation for recent 370 
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trends in obesity and should be favored over a predominantly polygenic model which does not. The 371 

evidence for a predominant role for polygenes (Khera et al., 2019) can appear to be strong (eg 372 

“Polygenic obesity is the most common form of obesity in modern societies..." (Albuquerque et al., 373 

2017)) but recent interpretations seek to explain the still missing heritability in obesity in terms of 374 

unidentified large genetic effects and G x OE (Saeed et al., 2018; Loos, 2018) and recommend a 375 

renewed focus on family-based designs and on specific populations in which large effect variants 376 

may be enriched and identified(Minster et al., 2016; Chen et al., 2017). Our results strengthen that 377 

view by showing that a model based on unidentified segregating variants with large effects 378 

interacting with OE can account for the largest part of the secular trend in BMI and its dispersion in a 379 

large population-based sample. 380 
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Figure legends 484 

Figure 1:  Distribution of adjusted BMI in non-diabetic (DM0) and diabetic (DM1) participants in 485 

combined NHANES 1999-2000, 2005-2006 and 2013-2014 cycles.  A) Full non-diabetic sample 486 

(n=9102)  binned by quantiles (n=20) with superimposed kernel-smoothed and fitted densities in 487 

normal and log-normal models. B) Main: kernel-smoothed adjusted BMI density by FH status. Inset: 488 

density ratios (FH1 / FH0) ± SEM obtained by bootstrap resampling by quantiles of the full sample 489 

compared to predictions of normal (solid line) and log-normal (dotted line) mixture models with p 490 

associated with lack-of-fit testing (plof). C) Kernel -smoothed adjusted BMI density in non-diabetic 491 

FH1 (n=3297) compared to diabetic participants (n=793). 492 

Figure 2: Conditional quantile regression effects of diabetes family history (FH) on adjusted BMI in 493 

non-diabetic participants in models consisting of FH alone (A) and in interaction with continuous 494 

calendar time (B-D). The main panels show the effect sizes (ß1-3) by quantile with 95% CI (grey-495 

shaded area), the OLS estimate of the average effect (solid green line) with 95% CI (dotted green 496 

lines) with p-values (pANOVA) from anova tests for equality of ßi across quantiles and the meta-497 

regression fits ± 95%CI (magenta lines) with ßMR ± SEM. The insets in panels A and B show the 498 

patterns of residuals (∆ß1i) ± residual SEM from linear OLS fits of  ß1i (FH1) to ß0i (FH0) with 95% CI 499 

on the fits (dotted lines) around the lines ∆ß1 = 0 representing perfect fits, and with the p value (pDW) 500 

from a Durbin-Watson test of autocorrelation of residuals. CQR estimates of the SEM of ß0i are also 501 

depicted but are mostly obscured by the point symbols. 502 

 503 

Figure 3: A) Adjusted BMI density in FH1 by quantile  (grey bars) and kernel-smoothed (black line) 504 

with fits to a three component normal mixture distribution. B) Estimated contributions in FH1 of the 505 

components of the mixture distribution to the prevalence (mixture coefficients, λ) and variance of 506 

adjusted BMI. 507 
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Figure 4: Effects of diabetes family history (FH0/1) on linear secular trends in age-, gender- and 508 

race/ethnicity-adjusted BMI mean ± sem (A) and standard deviation ±  sem (B).  Parameter estimates 509 

with 95% CI were obtained in ANCOVA models by stratified bootstrap resampling of all non-510 

diabetic individuals (see Methods). Dotted lines enclose 95% CI on fitted values at each point; ß = 511 

regression slope vs. time (kg/m2 per year); ∆ß = ßFH1 – ßFH0 (95%CI). 512 

 513 
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Tables 514 

Table 1: Participants by diabetes status (DM0/DM1) 

 
NHANES cycle 

 
All cycles 1999-2000 2005-2006 2013-2014 p† 

DM0 

n 9102 2865 3076 3161 - 

Gender (F%) 53 55 54 52 0.06 

Race/Ethnicity (%) 

 (MA/OH/NHW/NHB)¥ 
23/8/46/23 30/7/44/20 24/4/49/24 16/11/48/25 7.8 x 10-56 

Age (yr):         Mean 40.5 40.7 39.4 41.5 4.5 x 10-9 

                        SD 13.2 13.2 13 13.2 0.63 

BMI (kg/m2)*:  Mean 28.7 28.3 28.6 29.2 4.6 x 10-9 

                          SD 6.6 6.3 6.4 7.1 1.2 x 10-11 

Diabetes Family History 

(Y%) 
36 29 42 38 4.1 x 10-25 

Current smoking 

(%, Y/N/missing) 
25/20/55 

   
- 

DM1 

n (%) 793 (8.0) 211 (6.9) 252 (7.6) 330 (9.5) 0.0003 

Age at Diagnosis (yr) 43.6 44.3 42.9 43.6 0.47 

 515 

† Cycle effects (p) by ANOVA (age), ANCOVA (BMI), Bartlett's test  (SD's) and Chi-squared test for categorical 516 

variables. 517 

¥ MA = Mexican American, OH = Other Hispanic, NHW = Non-Hispanic White, NHB = Non-Hispanic Black 518 

* Adjusted for age, gender and race/ethnicity in a linear model (see Table S1). 519 

 520 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2019. ; https://doi.org/10.1101/749606doi: bioRxiv preprint 

https://doi.org/10.1101/749606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 
 
 

25

 521 
Table 2: Three-component normal mixture distribution fits to adjusted BMI 

by FH and DM status¥ 

  DM0 DM1 

 Component FH0 FH1  

mean 1 * 25.8±1.0 * 

2 * 32.1±1.8 * 

3 * 40.6±2.5 * 

 

    

sd 1 3.8 3.8±0.9 3.7 

2 5.7 5.1±1.2 4.5 

3 10 8.2±0.8 8.4 

     

λ 1 0.67 0.52±0.16 0.28 

2 0.29 0.37±0.15 0.47 

3 0.04 0.11±0.06 0.25 

     

q
†
 - 0.18 0.30±0.10 

(0.37)§
 

0.49 

 522 

¥  ± bootstrap standard error for FH1 only 523 

* Means in FH0 and DM1 constrained to fitted values in FH1 524 

† Calculated risk allele frequency in an additive Mendelian model of large effects 525 

§ Predicted from DM1 mating randomly into the full sample. 526 

 527 
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