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ABSTRACT 19 

The discus fish (Symphysodon spp.) is an endemic species of the Amazon that is 20 

among the most popular ornamental fish around the world, and is usually used as the 21 

model animal for studying the diversification of Amazon fish. Here, a comparative 22 

analysis of two species of discus fish, i.e., S. haraldi and S. aequifasciatus, based on 23 

several antioxidant indexes was conducted, to test the hypothesis that cold resistance 24 

might correlate with the diversification of discus fish. We set up a continuous 25 

sequence of three temperature programs, namely cooling (28 °C to 14 °C; -1 °C/h), 26 

cold maintenance (14 °C for 12 h) and recovery (14 °C to 28 °C; +1 °C/h). 27 

Subordinate function (SF) combined with principal component analysis (PCA) 28 

showed that the cold hardiness of S. haraldi during cold treatment was in the order of 29 

cooling > cold maintenance ≈ recovery, but the cold hardiness of S. aequifasciatus 30 

during cold treatment was in the order of cold maintenance > cooling > recovery. 31 

Specifically, the lowest cold hardiness was observed in S. aequifasciatus during 32 

recovery, indicating that cold stress resulted in more seriously oxidative stress in S. 33 

aequifasciatus than in S. haraldi. Overall, these results show a significant interspecific 34 

variation, indicating the correlation between environmental adaptation and the 35 

diversification of discus fish. 36 

Keywords: Cold stress; Discus fish; Antioxidant response; Species-specific 37 

38 
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1. Introduction 39 

The discus fish (Symphysodon spp.) is an important ornamental tropical fish all over 40 

the world, originating from the Amazon River (Wen et al., 2018, 2017). In addition to 41 

their Amazon basin-wide distribution, the 3 currently recognized species of the genus 42 

Symphysodon (S. aequifasciatus, S. discus, and S. haraldi, Cichlidae, Perciformes) 43 

(Bleher et al., 2007; Gross et al., 2009) exhibit a large amount of morphological 44 

variation (different color and color patter) and genetic variability associated with 45 

different types of biotopes (Farias and Hrbek, 2008; Koh et al., 1999). For example, S. 46 

haraldi, the ‘bule’ discus, is found in the central portion of the Amazon basin (type 47 

locality Manacapuru river), S. aequifasciatus, the ‘green’ discus, is found in the west 48 

portion of the Amazon basin (type locality Tef´e River), and S. discus, the. Heckel 49 

discus, is found in the Negro River basin (Farias and Hrbek, 2008; Gross et al., 2010). 50 

Fish as an ectotherm, ambient temperature which constrains whole-organism 51 

performance is one of the most important factors affecting the biogeographic 52 

distribution and abundance (Troia and Gido, 2017). Recently, several studies have 53 

shown that distinct responses of antioxidant defense systems (ADS) would occur 54 

between different locations of fish species toward temperature stress (e.g., Bryant et 55 

al., 2018; Chung et al., 2017; Johnston et al., 1998; Rudneva-Titova et al., 1994 56 

Shaliutinakolešová et al., 2013). Yet surprisingly few studies have compared thermal 57 

performance among closely related warm-water species (Troia and Gido, 2015). 58 

We have a hypothesis that, depending on the geographic region and due the 59 

evolution, different species of discus fish may have different sensitivity to cold stress. 60 
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To examine whether species-specific cold hardiness of discus fish, we exposed two 61 

species of discus fish (S. haraldi and S. aequifasciatus) to an acute cold stress, 62 

including a rapid temperature decrease (from 28 to 14° C), maintained up to 12 h, and 63 

then rapidly increase (from 14 to 28° C). ROS generation, ADS together with 64 

oxidative damage production were measured with the assumption that they were 65 

indicators of cold hardiness. Comprehensive evaluation using subordinate function 66 

(SF) method combined with principal component analysis (PCA) revealed cold 67 

hardiness of different species of discus fish. 68 

2. Materials and methods 69 

2.1 Experimental design 70 

Juvenile discus fish (S. haraldi and S. aequifasciatus, body weight 9.24±1.63 g) were 71 

obtained from the Ornamental Fish Breeding Laboratory, Shanghai Ocean University 72 

(Shanghai, China). Then, 60 juvenile fish of each species were randomly divided into 73 

3 glass aquaria (150 L), and acclimated at a temperature of 28 °C for a period of 30 74 

days before the temperature trial. After acclimation, all fishes were subjected to a 75 

continuous sequence of three thermal treatments (namely cooling, cold maintenance 76 

and recovery) each. A schematic representation of the experimental procedure is 77 

provided in Fig. 1. First, the temperature in six aquaria initially decreased from 28 °C 78 

to 14 °C by 1 °C/h (cooling) and 9 fish (3 fish/aquaria) of each species were randomly 79 

sampled at t1 (28 °C), t2 (21 °C) and t3 (14 °C), respectively. When the coldest 80 

experimental temperature of 14 °C was attained, then fish were maintained at 14 °C 81 

for 12 h (cold maintenance) and other 9 specimens (3 fish/aquaria) of each species 82 
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were collected at t4 (6 h) and t5 (12 h), respectively. At the end of experiment period, 83 

the remaining fish returned from 14 °C to the initial temperature value of 28 °C by 84 

1 °C/h (recovery) and all were finally sacrificed and sampled at t6 (5 fish/aquaria; 15 85 

fish totals per species). All animal care was conducted in accordance with the 86 

Administrative Measures for Experimental Animals in Shanghai, and the experimental 87 

protocols were approved by the Animal Ethics Committee of Shanghai Ocean 88 

University (SHOU IACUC protocol # 20171015). 89 

2.2 Sampling procedures 90 

At each sampling times, the gill tissues were excised from each fish, rapidly 91 

deep-frozen in liquid nitrogen and stored at −80 °C for further analyses. On the one 92 

hand, gill samples were filtered by 300 mesh screens after homogenized (1:2, w/v) in 93 

ice-cold phosphate buffer (PBS; 0.1 M, pH 7.4). The single cell suspensions were 94 

used to measure the reactive oxygen species (ROS) content. On the other hand, the 95 

sampled gill tissues were homogenized (1:9, w/v) in an ice-cold NaCl 0.7% solution. 96 

The obtained homogenates were centrifuged at 3000 g at 4 °C for 10 min, and the 97 

supernatant were collected for other analysis. 98 

Indicator tests were performed using classical colorimetric methods with 99 

commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). All 100 

assays, except ROS, were quantified spectrophotome trically, with a Synergy H4 101 

Hybrid Multi-Mode microplate reader (BioTek Instruments, Winooski, VT, USA). 102 

2.3  Reactive oxygen species (ROS) contents analysis 103 

ROS level was measured using 2, 7-dichlorodihydrofluoresce in diacetate 104 
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(H2DCFDA; Molecular Probes, Nanjing Jiancheng Bioengineering Institute, Nanjing, 105 

China), which was oxidized to fluorescent dichlorofluorescein (DCF) by intra-cellular 106 

ROS. A BD Accuri™ C6 flow cytometer (BD Biosciences) was used to analyze the 107 

ROS content. Data were recorded as cell cytograms showing the granularity (SSC 108 

value), relative size (FSC value), and fluorescent channels for each parameter. Each 109 

sample analysis included a total of 20,000 events, and the flow speed was maintained 110 

at less than 300 s−1. FL1 fluorescent channel were set to evaluate it (Wang et al., 2012). 111 

2.4  Antioxidant enzymatic measurements 112 

Total superoxide dismutase (SOD) activity was measured at 550 nm using the 113 

xanthine oxidase method that the protein amount giving 50% inhibition of maximum 114 

colour development contained 1 unit (U) of SOD (McCord and Fridovich, 1969). The 115 

results are accordingly given as U SOD/mg protein. 116 

Catalase (CAT) activity was based on the reaction of the enzyme with methanol 117 

in the presence of an optimal concentration of H2O2 (Johansson and Borg, 1988). The 118 

purple color formed in these reactions was measured at 405 nm to measure CAT 119 

activity.   120 

The activity of glutathione peroxidase (GPx) was measured at 412 nm, because 121 

GSSG occurs in the medium reduced to GSH by GPx and rate of GSH oxidation was 122 

used to calculate GPx activity (Hafeman et al., 1974). It calculated in terms of 123 

decreasing in GSH concentration by 1 μmol/L as one unit of enzyme activity.  124 

Glutathione reductase (GR) activity was indirectly determined by mea-suring 125 

nicotinamide adenine dinucleotide phosphate (NADPH) consumption. Then the 126 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/749705doi: bioRxiv preprint 

https://doi.org/10.1101/749705
http://creativecommons.org/licenses/by-nc-nd/4.0/


decrease in NADPH absorbance at 340nm was measured with a spectrophotometer 127 

(Carlberg and Mannervik, 1975). 128 

Glutathione-S transferase (GST) activity was assayed by following the formation 129 

of glutathione–chlorodinitrobenzene (CDNB) adduct at 412 nm by the decreasing in 130 

reduced GSH concentration (Habig et al., 1974). 131 

2.5  Glutathione contents analysis 132 

The level of reduced Glutathione (GSH) was measured at 412 nm by using 133 

5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) reagent, following the method of Tietze 134 

(1969). DTNB was reduced by the free sulfhydryl groups of GSH to form the yellow 135 

compound 5-thio-2-nitrobenzoic acid (TNB). 136 

2.6  Oxidative damage measurements 137 

Malondialdehyde (MDA) and protein Carbonylation (PC) contents are relatively 138 

direct indexes for low-temperature damage (Ren et al., 2018; Vinagre et al., 2012; Ye 139 

et al., 2016). The higher content, the lower hardiness showed. 140 

PC was measures via a reaction with 2,4-dinitrophenylhydrazine DNPH followed 141 

by TCA precipitation as previously described (Levine et al., 1994; Reznick and Packer, 142 

1994). 143 

MDA occurs in lipid peroxidation and this is measured after incubating at 95 °C 144 

with thibabituric acid (TBA) in aerobic condition (pH 3.4) (Uchiyama and Mihara, 145 

1978). The pink colour formed in these reactions is measures in the 146 

spectrophotometer at 532 nm to measure MDA levels (Ohkawa et al., 1979).  147 

2.7  Statistical analyses 148 
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For all parameters, data were expressed as mean ± standard error (SE). Statistical 149 

analyses were performed using SPSS, PASW statistics 20.0. A one-way analysis of 150 

variance (ANOVA) was performed to test for the effects of sampling species and 151 

temperature on the oxidative stress response values (tested separately) followed by the 152 

Tukey test. A significance level of 0.05 was used in all test procedures. 153 

To intuitively inspect the tendencies in the variation of hardiness indexes 154 

between the temperature processing and species, we produced a heat map and 155 

comprehensively evaluated hardiness indexes using subordinate function (SF) method 156 

combined with principal component analysis (PCA) and correlation analysis. 157 

Follow the data were standardized by Z-score, the heatmap was constructed by 158 

Sanger (V1.0.9). 159 

Principal component analysis (PCA) and correlation analysis were performed 160 

using SPSS. 161 

Subordinate function values were calculated, and average membership and cold 162 

resistance of different discus species were analyzed according to Zhang et al. (2015) 163 

and Zhao et al. (2019) 164 

u (Xi) =(Xi−Xmin)/(Xmax−Xmin) (i=1, 2, ···, n)                   (1) 165 

Weights of various comprehensive indicators were calculated as: 166 

Wi = Pi/ ∑ ���

��� (i=1, 2, ···, n)                                  (2) 167 

The D values of the different treatments were calculated as: 168 

D=� �u�Xi
 ���
�

���
 (i=1, 2,··· , n)                                (3) 169 

Xi, Xmin, Xmax and W� are the score, minimum score, maximum scores and 170 
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importance (weight) of the ith comprehensive indicator, respectively; Pi is the 171 

contribution rate of the �th comprehensive indicator of various treatments of two 172 

species; D is the comprehensive evaluation value for adaptability. 173 

3. Results 174 

3.1  Reactive oxygen species (ROS) 175 

ROS level showed a slight fluctuation in S. aequifasciatus from t1- t5 (cooling and 176 

cold maintenance) until it reached the lowest value, then it showed a sharp rise during 177 

recovery. On the contrary, ROS level showed a sharp rise first (t1-t2) in S. haraldi, 178 

then progressively decrease and recovered to initial level. Due to high individual 179 

variability, the latter value was always statistically significantly higher than the former 180 

except t6 (p < 0.05) (Fig. 2). 181 

3.2  Antioxidant enzymatic activities 182 

The temperature effects on antioxidant enzymatic system in two species are 183 

represented in Fig. 3. There were no effect of temperature on SOD (Fig. 3a) and GR 184 

(Fig. 3b) activity in S. haraldi, but in S. aequifasciatus, only CAT (Fig. 3c) activity 185 

was not affected. During cooling, SOD activity and GPx (Fig. 3d) activities showed 186 

an increase trend in S. aequifasciatus. In S. haraldi, CAT activity increased first and 187 

then recovered, while GPx activity decreased first and then significant increased 188 

during cooling. During cold maintenance, GPx and GR activities increased in S. 189 

aequifasciatus, but SOD activity showed decrease. Oppositely, there were no affects 190 

in S. haraldi during cold maintenance, except GPx activity showed fluctuation. 191 

During recovery, in both species, all antioxidant enzymatic activities except GST were 192 
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recovered. GST activity was progressively increased in both species throughout the 193 

experiment (Fig. 3e), and finally S. aequifasciatus value was higher (p < 0.05) than S. 194 

haraldi. 195 

3.3  Glutathione contents 196 

Neither S. aequifasciatus nor S. haraldi showed significant response under cold stress 197 

on GSH content (Fig. 4). However, the latter value was always significantly higher 198 

than the former value. 199 

3.4  Oxidative damage 200 

During cooling, there were no significant effects on PC (Fig. 5a) and MDA (Fig. 5b) 201 

content in both species. During cold maintenance, an increase in PC content were 202 

found in S. aequifasciatus, and MDA content significant increase in both species. 203 

During recovery, MDA content remained at highest level in S. aequifasciatus, but 204 

decreased in S. haraldi. PC content was not affected in both species during recovery. 205 

3.5 Correlation analysis and comprehensive analysis on hardiness indexes for 206 

different discus fish species 207 

Table 3 showed that the GPx, GR, GSH, GST, SOD activities had positive correlation 208 

with ROS content, and ROS content had negative correlation with CAT activity and 209 

MDA, PC content. PC content had significant and negative correlation with SOD 210 

activity. MDA content had significant and positive correlation with CAT and SOD 211 

activities, while had significant and negative correlation with GPx and GST activities.  212 

The heat map synthesize the expression values of all hardiness indexes for the 213 

two species during cold treatment (Fig. 6). The value of hardiness indexes in discus 214 
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fish differed in different species under different temperature treatment, as evident 215 

from the intensity of colors (level of expression). In S. haraldi, GSH activity was the 216 

only index sustained up-regulated throughout the treatment, meanwhile GST activity 217 

was significantly up-regulated at the end. But in S. aequifasciatus, most of the 218 

hardiness indexes were seriously affected by low temperature, and significantly 219 

up-regulated, such as SOD, GPx, GR, GST activities and ROS, PC, MDA contents.  220 

3.6 Using Principal component analysis (PCA) and Subordinate Function (SF) to 221 

Evaluate Hardiness of two species 222 

As can be seen from Table 2, the first, second, and third principal component variance 223 

contribution rates reached 49.921, 27.723, and 12.658%, respectively. Notably, the 224 

cumulative variance contribution rate was 90.302% (more than 85%) without missing 225 

variables. Therefore, the first three principal components can reflect completely the 226 

different information of the cold resistance system and most of the data had already 227 

been included in the three principal components. 228 

Subordinate function values of various comprehensive indicators of each 229 

treatment were calculated in accordance with Equation (1) (Table 3) following PCA. 230 

For the same comprehensive indicator, such as Z1, the maximum u (X1) was 1.000 231 

for the S. aequifasciatus-cold maintenance treatment and 0.000 for S. 232 

aequifasciatus-cooling. This suggested that when only Z1 was considered, S. 233 

aequifasciatus showed the highest level of adaptability to the cold maintenance 234 

treatment, whereas its adaptability to the cooling treatment was the lowest. The 235 

adaptabilities to the remaining treatments were sorted according to the value of u (Xi). 236 
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Based on the contribution of various comprehensive indicators, the weights were 237 

calculated in accordance with Equation (2). The results showed that the three 238 

comprehensive indicators had weights of 0.553, 0.307 and 0.140, respectively (Table 239 

3). 240 

The comprehensive physiological adaptability capabilities of two species to 241 

various water temperature were calculated in accordance with Equation (3) (Table 3), 242 

and sorted based on the value of D. The higher D value, the higher cold hardiness 243 

showed. To be specific, the cold hardiness of S. haraldi during cold treatment was in 244 

the order of cooling > cold maintenance ≈ recovery, and the cold hardiness of S. 245 

aequifasciatus during cold treatment was in the order of cold maintenance > cooling > 246 

recovery. It is important to note that the minimum D value was obtained for S. 247 

aequifasciatus during recovery, suggesting the lowest cold hardiness, whereas the 248 

cold hardiness based of S. aequifasciatus during cold maintenance and for S. haraldi 249 

during cooling were classified as highest level. 250 

4. Discussion 251 

4.1 Oxidative stress levels increased in both species by acute cold stress 252 

Many studies have found that an acute temperature decrease has an influence on 253 

haematological and metabolic processes (Ban, 2000; Sun et al., 1995), which could 254 

promote the generation of ROS (Joe 2017; Martínez-Álvarez et al., 2005). This is 255 

agree with present finding in two discus fish. Under oxidative stress, antioxidant 256 

defense system inhibiting an excess of oxyradical formation (Joe., 2017; Ren et al., 257 

2018; Vinagre et al., 2012; Ye et al., 2015). For example, Malek (2004) found that 258 
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SOD and GPx isoforms and thioredoxin, but not CAT, upregulated in zebrafish 259 

skeletal muscle under cold stress. Similarly, our previous studies also found that when 260 

S. aequifasciatus under chronic cold stress, the activities of SOD and GPx, and level 261 

of GSH increased while the production of ROS increased, but the production of MDA 262 

not increased (Wen et al., 2018). Unlike chronic cold stress, acute cold stress caused 263 

oxidative damage on both species, revealed by the increased level of MDA and PC 264 

(Almroth et al., 2008; Enzor and Place, 2014; Trenzado et al., 2006). Due to the 265 

antioxidative index was directly correlated to temperature, it therefore appears that 266 

oxidative stress levels could provide information on cold hardiness of fish. 267 

4.2 Is oxidative stress higher in S. aequifasciatus than S. haraldi? 268 

The excess ROS leading to oxidative stress in fish (Atli et al., 2016; Joe, 2017; 269 

Martínez-Álvarez et al., 2005). Therefore, the present study showed that the ADS 270 

might be able to successfully prevent oxidative stress in S. haraldi, but in S. 271 

aequifasciatus (Ates et al., 2008; Atli and Canli, 2007; Eyckmans et al., 2011). 272 

The ADS, such as SOD, CAT, GPX and GR, usually act in a coordinated manner 273 

in order to ensure the optimal protection against oxidative stress (Morales-Medina et 274 

al., 2017). Following temperature reduction, SOD and GPx activities also upregulated 275 

in zebrafish skeletal (Malek et al., 2004). The research in cunner (Tautogolabrus 276 

adspersus) also found that fish acclimated to cold temperature had higher levels of 277 

GR transcript in both the head kidney and liver (Alzaid et al., 2015). Attributed to 278 

complementary activity of GPX to CAT activity, CAT activity usually showed 279 

increased trend while a decreasing trend was observed for GPX (Atli and Canli, 2010; 280 
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Saglam et al., 2014; Santovito et al., 2012). GSH also can neutralise ROS, playing an 281 

important role as a cofactor for various glutathione-dependent antioxidant enzymes 282 

(Grim et al., 2013; Halliwell and Gutteridge, 2007; Sedlak and Lindsay, 1968). For 283 

example, Heise et al. (2007) found that GSH content was two to three times more 284 

concentrated in polar compared to temperate eelpout liver, suggesting that polar 285 

eelpout are more susceptible than their North Sea confamilials. Klein et al (2017) 286 

putted forward an idea that the higher SOD and CAT activity observed in peripheral 287 

tissues of N. rossii respect with N. coriiceps might showed the former need a more 288 

powerful ADS than the latter fish species. In this case, it seems that S. aequifasciatus 289 

was more susceptible than S. haraldi, and needs more powerful ADS.  290 

But at the same time, MDA content, as oxidative damage marker (Joy et al., 2017; 291 

Ren et al., 2018; Vinagre et al., 2012; Ye et al., 2016) was significantly higher in S. 292 

aequifasciatus than in S. haraldi. It suggested that S. haraldi better protected from 293 

oxidative damage than S. aequifasciatus. 294 

From the above, oxidative stress higher in S. aequifasciatus than S. haraldi under 295 

acute cold stress. 296 

4.3 The reason of species-specific cold resistance between S. aequifasciatus and S. 297 

haraldi 298 

In addition to their Amazon basin-wide distribution, different environmental pressure 299 

were subjected by discus fish in different geographic gradients (Eliason et al., 2011; 300 

Heise et al., 2007; Troia and Gido, 2016 and 2017;). Noteworthily, S. aequifasciatus 301 

distributes at the upstream of Amazion River, and S. haraldi distributes at the 302 
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midstream and downstream, while both species distribute at the similar latitudinal 303 

gradients (Ready et al., 2006). A recent research by Carmona-Catot (2011) found that 304 

upstream-to-downstream gradients are as influential as latitudinal gradients in shaping 305 

growth, reproduction, and body condition among European populations of Gambusia 306 

holbrooki. And Model results from the Madison River in Montana indicate that, on 307 

average, rainbow trout at the downstream site (B) would have a stress index that is 308 

2±3 times greater than rainbow trout at the upstream site (A) even though the 309 

difference in mean temperature is only 0.48 °C (Bevelhimer and Bennett, 2000). It 310 

suggested that S. haraldi had a greater stress index than S. aequifasciatus likely 311 

contribute to the upstream-to-downstream gradients. 312 

Environmental pressure has led fish in the region to develop considerable 313 

genomic plasticity during their evolutionary process, and a series of ecological, 314 

morphological, physiological, metabolic and molecular adjustments can be seen. 315 

Indeed, the analysis of mitochondrial DNA haplotypes, chromosomal complement 316 

and meiotic organization indicates that the western Amazonian Symphysodon, S. 317 

aequifasciatus, showed interspecific variability from the central Amazonian 318 

Symphysodon, S. haraldi (Gross et al., 2009; Gross et al., 2010; Gross et al., 2006; 319 

Ready et al., 2006). These adjustments might help them to maintain organic 320 

homeostasis and allow them to survive during these environmental changes. 321 

According to Chippari-Gomes (2003), Symphysodon species positively exhibited 322 

different adapt capacity, which allows them to survive in conditions of moderate 323 

hypoxia. Place et al. (2004) found that the loss of the HSR in the Antarctic 324 
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notothenioids resulted in the inability of T. bernacchii to upregulate hsp70 mRNA 325 

during a 1 h in vitro thermal stress at temperatures as high as +10°C. In contrast to the 326 

loss of the HSR in the notothenioids, Lycodichthys dearborni, a phylogenetically 327 

distant Antarctic species, has retained the ability to upregulate the expression of the 328 

hsp70 gene in response to thermal stress (Place and Hofmann 2005). In view of these, 329 

there should be a more extensive study using molecular methodologies to clarify the 330 

genetic variability which correlated with adaptation to temperature among two 331 

species. 332 

5. Conclusion 333 

The ROS generation, ADS and oxidative damage can be used as hardiness indexes in 334 

Symphysodon. S. haraldi which is found in the central portion of the Amazon basin 335 

show a stronger cold resistance than S. aequifasciatus which is found in the west 336 

portion of the Amazon basin, exhibiting a significant interspecific variability under 337 

acute cold stress. 338 
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Figure captions 1 

Fig. 1. Scheme of the experimental design. Water temperature changes (solid line) and 2 

sampling times (t1-t6). 3 

Fig. 2. Production of reactive oxygen species in the gills of two subspecies of 4 

Symphysodon spp. red line, S. aequifasciatus and blue line, S. haraldi. Data are 5 

presented as means ±SD (n=3). *indicates significant differences (p<0.05) between 6 

subspecies. Different uppercase letters indicate significant differences (p<0.05) 7 

between sampling times within the S. aequifasciatus. Different lowercase letters 8 

indicate significant differences (p<0.05) between sampling times within the S. 9 

haraldi.  10 

Fig. 3. Activities of SOD (a), GR (b), CAT (c), GPx (d) and GST (e) in the gills of 11 

two subspecies of Symphysodon spp. were measured. red line, S. aequifasciatus and 12 

blue line, S. haraldi. Data are presented as means ±SD (n=3). *indicates significant 13 

differences (p<0.05) between subspecies. Different uppercase letters indicate 14 

significant differences (p<0.05) between sampling times within the S. aequifasciatus. 15 

Different lowercase letters indicate significant differences (p<0.05) between sampling 16 

times within the S. haraldi. 17 

Fig. 4. Level of reduced GSH in the gills of two subspecies of Symphysodon spp. red 18 

line, S. aequifasciatus and blue line, S. haraldi. Data are presented as means ±SD 19 

(n=3). *indicates significant differences (p<0.05) between subspecies. Different 20 

uppercase letters indicate significant differences (p<0.05) between sampling times 21 

within the S. aequifasciatus. Different lowercase letters indicate significant 22 
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differences (p<0.05) between sampling times within the S. haraldi. 23 

Fig. 5. Levels of PC (a) and MDA (b) in the gills of two subspecies of Symphysodon 24 

spp. red line, S. aequifasciatus and blue line, S. haraldi. Data are presented as means 25 

±SD (n=3). *indicates significant differences (p<0.05) between subspecies. Different 26 

uppercase letters indicate significant differences (p<0.05) between sampling times 27 

within the S. aequifasciatus. Different lowercase letters indicate significant 28 

differences (p<0.05) between sampling times within the S. haraldi. 29 

Fig. 6. Heat-map visualization of the differential biomarkers of oxidative stress in 30 

response to cold stress between two species. Colour denotes the abundance of 31 

biomarkers of oxidative stress, from the highest (red) to the lowest (blue).  32 
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Fig. 1 34 
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Fig. 5.  44 
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Fig. 6.  47 
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Table 1. Correlation analyses among cold-resistance indices 
 

 

 

 

 

 

 

 

 

 

 

 

* denote significant at the 0.05 probability levels 

 

 

 

Table 2. The eigenvalues, proportions and cumulative of principal components 
 

Principal 

component Eigenvalue Proportion % Cumulative % 

Z1 4.493 49.921 49.921 

Z2 2.495 27.723 77.644 

Z3 1.139 12.658 90.302 

 

 

Index GPx CAT GR GSH GST SOD MDA PC ROS 

GPx 1 

CAT -0.724* 1 

GR 0.796* -0.765* 1 

GSH -0.188 0.479* -0.035 1 

GST 0.63* -0.855* 0.825* -0.079 1 

SOD -0.032 0.622* -0.087 0.694* -0.495* 1 

MDA -0.75* 0.709* -0.391 0.652* -0.489* 0.524* 1 

PC -0.042 -0.305 -0.164 -0.163 0.408 -0.719* -0.4 1 

ROS 0.727* -0.218 0.626* 0.01 0.301 0.329 -0.425 -0.373 1 
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Table 3. The value of comprehensive index [Zi], index weight, u (Xi), D value and comprehensive valuation for each treatment of two species. 
 

Species Z1 Z2 Z3 u (X1) u (X2) u (X3) D 
Comprehensive 

comparison 

S. aequifasciatus-cooling -2.378 2.221 -0.309 0.000 1.000 0.313 0.351  ** 

S. haraldi-cooling 0.853 0.954 1.708 0.533 0.727 1.000 0.658 *** 

S. aequifasciatus-cold maintenance 3.684 0.180 -0.400 1.000 0.560 0.282 0.764 *** 

S. haraldi-cold maintenance -0.180 -0.875 -1.227 0.363 0.332 0.000 0.302 ** 

S. aequifasciatus-recovery -1.497 -2.414 0.819 0.145 0.000 0.697 0.178 * 

S. haraldi-recovery -0.482 -0.066 -0.590 0.313 0.507 0.217 0.359 ** 

Index weight 0.553 0.307 0.140 
 

 

***, 0.60–1.00, for high cold tolerance; **, 0.30–0.59, for moderate cold tolerance and; *, 0–0.29, for low cold resistance. 
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